Edit model card

TenaliAI-FinTech-v1

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss
1.7046 1.0 2163 1.3254
0.9319 2.0 4326 0.8316
0.748 3.0 6489 0.7299
0.6583 4.0 8652 0.6946
0.6182 5.0 10815 0.6901
0.5848 6.0 12978 0.6760
0.5789 7.0 15141 0.6797
0.543 8.0 17304 0.6948
0.5364 9.0 19467 0.7041
0.5203 10.0 21630 0.7032
0.4974 11.0 23793 0.7076
0.519 12.0 25956 0.7232
0.5235 13.0 28119 0.7073
0.5332 14.0 30282 0.7254
0.5109 15.0 32445 0.7158
0.5031 16.0 34608 0.7207
0.5169 17.0 36771 0.7369
0.4915 18.0 38934 0.7322
0.4975 19.0 41097 0.7422
0.4961 20.0 43260 0.7533
0.4692 21.0 45423 0.7670
0.5122 22.0 47586 0.7420
0.5024 23.0 49749 0.7388
0.4867 24.0 51912 0.7470
0.4884 25.0 54075 0.7474

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Tokenizers 0.20.3
Downloads last month
190
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for credentek/TenaliAI-FinTech-v1

Finetuned
(2104)
this model