cristuf's picture
cristuf/classify-clickbait-gpu
4b70d01 verified
metadata
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: classify-clickbait-gpu
    results: []

classify-clickbait-gpu

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0130
  • Accuracy: 0.9976
  • F1: 0.9976
  • Precision: 0.9976
  • Recall: 0.9976
  • Accuracy Label Clickbait: 0.9933
  • Accuracy Label Factual: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label Clickbait Accuracy Label Factual
0.0546 0.4831 100 0.0504 0.9902 0.9902 0.9902 0.9902 0.9866 0.9923
0.0071 0.9662 200 0.0060 0.9988 0.9988 0.9988 0.9988 0.9967 1.0
0.0008 1.4493 300 0.0088 0.9976 0.9976 0.9976 0.9976 0.9933 1.0
0.0006 1.9324 400 0.0310 0.9939 0.9939 0.9939 0.9939 0.9833 1.0
0.0007 2.4155 500 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0009 2.8986 600 0.0079 0.9988 0.9988 0.9988 0.9988 0.9967 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1