|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- automatic-speech-recognition |
|
- BembaSpeech |
|
- mms |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: mms-1b-bem-female-sv |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cicasote/huggingface/runs/tuxgh6td) |
|
# mms-1b-bem-female-sv |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BEMBASPEECH - BEM dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2132 |
|
- Wer: 0.3557 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.3992 | 200 | 0.3566 | 0.5019 | |
|
| No log | 0.7984 | 400 | 0.2620 | 0.4029 | |
|
| 1.7214 | 1.1976 | 600 | 0.2546 | 0.4100 | |
|
| 1.7214 | 1.5968 | 800 | 0.2359 | 0.3965 | |
|
| 0.2801 | 1.9960 | 1000 | 0.2322 | 0.3810 | |
|
| 0.2801 | 2.3952 | 1200 | 0.2305 | 0.3746 | |
|
| 0.2801 | 2.7944 | 1400 | 0.2258 | 0.3336 | |
|
| 0.2528 | 3.1936 | 1600 | 0.2262 | 0.4309 | |
|
| 0.2528 | 3.5928 | 1800 | 0.2164 | 0.3514 | |
|
| 0.2351 | 3.9920 | 2000 | 0.2215 | 0.3894 | |
|
| 0.2351 | 4.3912 | 2200 | 0.2165 | 0.3624 | |
|
| 0.2351 | 4.7904 | 2400 | 0.2132 | 0.3557 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|