w2v-bert-bem-bl / README.md
csikasote's picture
End of training
9ebe00c verified
|
raw
history blame
2.36 kB
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - automatic-speech-recognition
  - BembaSpeech
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-bem-bl
    results: []

w2v-bert-bem-bl

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2136
  • Wer: 0.4539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5344 0.7027 500 0.5448 0.7379
0.4242 1.4055 1000 0.3055 0.6025
0.3603 2.1082 1500 0.2693 0.5385
0.3144 2.8110 2000 0.2683 0.5529
0.2656 3.5137 2500 0.2472 0.5258
0.2311 4.2164 3000 0.2352 0.5026
0.2106 4.9192 3500 0.2327 0.5003
0.1816 5.6219 4000 0.2298 0.4987
0.1432 6.3247 4500 0.2178 0.4686
0.1431 7.0274 5000 0.2172 0.4747
0.1069 7.7301 5500 0.2136 0.4539
0.0767 8.4329 6000 0.2270 0.4403
0.0667 9.1356 6500 0.2375 0.4385
0.0468 9.8384 7000 0.2403 0.4353

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1