Edit model card

w2v-bert-bem-genbed-combined-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the GENBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2969
  • Wer: 0.4669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6407 0.5495 200 0.6847 0.8381
0.458 1.0989 400 0.4856 0.6787
0.4014 1.6484 600 0.4310 0.6258
0.3523 2.1978 800 0.3654 0.5422
0.3298 2.7473 1000 0.3534 0.5374
0.2749 3.2967 1200 0.3402 0.5196
0.2705 3.8462 1400 0.3284 0.5250
0.249 4.3956 1600 0.3499 0.5299
0.2508 4.9451 1800 0.3512 0.5582
0.2081 5.4945 2000 0.3217 0.4808
0.2176 6.0440 2200 0.3141 0.472
0.1784 6.5934 2400 0.2969 0.4669
0.166 7.1429 2600 0.3367 0.4914
0.157 7.6923 2800 0.3206 0.4903
0.1398 8.2418 3000 0.3260 0.4617

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
11
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/w2v-bert-bem-genbed-combined-model

Finetuned
(183)
this model