csikasote's picture
End of training
7110be8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - automatic-speech-recognition
  - natbed
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: xls-r-1b-bem-natbed-native-model
    results: []

xls-r-1b-bem-natbed-native-model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the NATBED - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6841
  • Wer: 0.7487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.5137 0.5618 100 2.5549 1.0
1.3916 1.1236 200 1.0883 0.9840
0.9962 1.6854 300 0.8153 0.8190
0.8625 2.2472 400 0.8690 0.8418
0.8168 2.8090 500 0.7395 0.7390
0.7197 3.3708 600 0.7596 0.7366
0.6848 3.9326 700 0.7033 0.7229
0.6134 4.4944 800 0.8300 0.7662
0.6303 5.0562 900 0.7365 0.7896
0.5467 5.6180 1000 0.6841 0.7487
0.5194 6.1798 1100 0.7868 0.6949
0.4617 6.7416 1200 0.7563 0.7278
0.4525 7.3034 1300 0.7276 0.6730

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0