Model Card for xlm-roberta-large-binary-cs-iib
This model is fine-tuned for binary text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
Model Description
The model was fine-tuned on a Czech dataset of Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Supportive Interactions present or not.
- Developed by: Anonymous
- Language(s): cs
- Finetuned from: xml-roberta-large
Model Sources
- Repository: https://github.com/csocsci/supportive-interactions
- Paper: Stay tuned!
Usage
Here is how to use this model to classify a context-window of a dialogue:
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Prepare input texts. This model is fine-tuned for Czech
test_texts = ['Utterance1;Utterance2;Utterance3']
# Load the model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(
'csocsci/xlm-roberta-large-binary-cs-iib', num_labels=2).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(
'csocsci/xlm-roberta-large-binary-cs-iib',
use_fast=False, truncation_side='left')
assert tokenizer.truncation_side == 'left'
# Define helper functions
def get_probs(text, tokenizer, model):
inputs = tokenizer(text, padding=True, truncation=True, max_length=256,
return_tensors="pt").to("cuda")
outputs = model(**inputs)
return outputs[0].softmax(1)
def preds2class(probs, threshold=0.5):
pclasses = np.zeros(probs.shape)
pclasses[np.where(probs >= threshold)] = 1
return pclasses.argmax(-1)
def print_predictions(texts):
probabilities = [get_probs(
texts[i], tokenizer, model).cpu().detach().numpy()[0]
for i in range(len(texts))]
predicted_classes = preds2class(np.array(probabilities))
for c, p in zip(predicted_classes, probabilities):
print(f'{c}: {p}')
# Run the prediction
print_predictions(test_texts)
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.