Edit model card

llama3-8b-spaetzle-v20

llama3-8b-spaetzle-v20 is a merge of the following models:

Benchmarks

On EQ-Bench v2_de it achieves 65.7 (171/171 parseable). From Open LLM Leaderboard (details):

Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
cstr/llama3-8b-spaetzle-v20 71.83 70.39 85.69 68.52 60.98 78.37 67.02

🧩 Configuration

models:
  - model: cstr/llama3-8b-spaetzle-v13
    # no parameters necessary for base model
  - model: nbeerbower/llama-3-wissenschaft-8B-v2
    parameters:
      density: 0.65
      weight: 0.4        
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v13
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/llama3-8b-spaetzle-v20"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
40
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cstr/llama3-8b-spaetzle-v20

Spaces using cstr/llama3-8b-spaetzle-v20 5

Collection including cstr/llama3-8b-spaetzle-v20