Fix bug in selecting a gene with "aggregate_data" option
#310
by
davidjwen
- opened
- geneformer/in_silico_perturber_stats.py +396 -692
geneformer/in_silico_perturber_stats.py
CHANGED
@@ -1,180 +1,131 @@
|
|
1 |
"""
|
2 |
Geneformer in silico perturber stats generator.
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
... "output_prefix")
|
18 |
-
|
19 |
-
**Description:**
|
20 |
-
|
21 |
-
| Aggregates data or calculates stats for in silico perturbations based on type of statistics specified in InSilicoPerturberStats.
|
22 |
-
| Input data is raw in silico perturbation results in the form of dictionaries outputted by ``in_silico_perturber``.
|
23 |
-
|
24 |
"""
|
25 |
|
26 |
|
27 |
-
import logging
|
28 |
import os
|
29 |
-
import
|
30 |
-
import random
|
31 |
-
from pathlib import Path
|
32 |
-
|
33 |
import numpy as np
|
34 |
import pandas as pd
|
|
|
|
|
35 |
import statsmodels.stats.multitest as smt
|
|
|
36 |
from scipy.stats import ranksums
|
37 |
from sklearn.mixture import GaussianMixture
|
38 |
-
from tqdm.auto import
|
|
|
|
|
39 |
|
40 |
-
from .perturber_utils import flatten_list, validate_cell_states_to_model
|
41 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
42 |
|
43 |
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
44 |
|
45 |
logger = logging.getLogger(__name__)
|
46 |
|
47 |
-
|
48 |
# invert dictionary keys/values
|
49 |
def invert_dict(dictionary):
|
50 |
return {v: k for k, v in dictionary.items()}
|
51 |
|
52 |
-
|
53 |
def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token):
|
54 |
if cell_or_gene_emb == "cell":
|
55 |
-
cell_emb_dict = {
|
56 |
-
|
57 |
-
}
|
58 |
return [cell_emb_dict]
|
59 |
elif cell_or_gene_emb == "gene":
|
60 |
-
|
61 |
-
|
62 |
-
else:
|
63 |
-
gene_emb_dict = {
|
64 |
-
k: v for k, v in cos_sims_dict.items() if v and anchor_token == k[0]
|
65 |
-
}
|
66 |
return [gene_emb_dict]
|
67 |
|
68 |
|
|
|
|
|
|
|
69 |
# read raw dictionary files
|
70 |
-
def read_dictionaries(
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
file_found = False
|
78 |
file_path_list = []
|
79 |
if cell_states_to_model is None:
|
80 |
dict_list = []
|
81 |
else:
|
82 |
-
|
83 |
-
|
84 |
-
state: value
|
85 |
-
for state, value in cell_states_to_model.items()
|
86 |
-
if state != "state_key"
|
87 |
-
and cell_states_to_model[state] is not None
|
88 |
-
and cell_states_to_model[state] != []
|
89 |
-
}
|
90 |
-
cell_states_list = []
|
91 |
-
# flatten all state values into list
|
92 |
-
for state in cell_states_to_model_valid:
|
93 |
-
value = cell_states_to_model_valid[state]
|
94 |
-
if isinstance(value, list):
|
95 |
-
cell_states_list += value
|
96 |
-
else:
|
97 |
-
cell_states_list.append(value)
|
98 |
-
state_dict = {state_value: dict() for state_value in cell_states_list}
|
99 |
for file in os.listdir(input_data_directory):
|
100 |
-
# process only
|
101 |
if file.endswith(pickle_suffix):
|
102 |
file_found = True
|
103 |
file_path_list += [f"{input_data_directory}/{file}"]
|
104 |
for file_path in tqdm(file_path_list):
|
105 |
-
with open(file_path,
|
106 |
cos_sims_dict = pickle.load(fp)
|
107 |
if cell_states_to_model is None:
|
108 |
dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token)
|
109 |
else:
|
110 |
-
for
|
111 |
-
|
112 |
-
cos_sims_dict[state_value], cell_or_gene_emb, anchor_token
|
113 |
-
)[0]
|
114 |
-
for key in new_dict:
|
115 |
-
try:
|
116 |
-
state_dict[state_value][key] += new_dict[key]
|
117 |
-
except KeyError:
|
118 |
-
state_dict[state_value][key] = new_dict[key]
|
119 |
if not file_found:
|
120 |
logger.error(
|
121 |
-
|
122 |
-
|
123 |
-
)
|
124 |
raise
|
125 |
if cell_states_to_model is None:
|
126 |
return dict_list
|
127 |
else:
|
128 |
return state_dict
|
129 |
|
130 |
-
|
131 |
# get complete gene list
|
132 |
-
def get_gene_list(dict_list,
|
133 |
if mode == "cell":
|
134 |
position = 0
|
135 |
elif mode == "gene":
|
136 |
position = 1
|
137 |
gene_set = set()
|
138 |
-
|
139 |
-
for
|
140 |
-
gene_set.update([k[position] for k, v in dict_i.items() if v])
|
141 |
-
elif isinstance(dict_list, dict):
|
142 |
-
for state, dict_i in dict_list.items():
|
143 |
-
gene_set.update([k[position] for k, v in dict_i.items() if v])
|
144 |
-
else:
|
145 |
-
logger.error(
|
146 |
-
"dict_list should be a list, or if modeling shift to goal states, a dict. "
|
147 |
-
f"{type(dict_list)} is not the correct format."
|
148 |
-
)
|
149 |
-
raise
|
150 |
gene_list = list(gene_set)
|
151 |
if mode == "gene":
|
152 |
gene_list.remove("cell_emb")
|
153 |
gene_list.sort()
|
154 |
return gene_list
|
155 |
|
156 |
-
|
157 |
def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
|
158 |
try:
|
159 |
return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])
|
160 |
-
except TypeError:
|
161 |
-
return gene_token_id_dict.get(token_tuple, np.nan)
|
162 |
-
|
163 |
|
164 |
def n_detections(token, dict_list, mode, anchor_token):
|
165 |
cos_sim_megalist = []
|
166 |
for dict_i in dict_list:
|
167 |
if mode == "cell":
|
168 |
-
cos_sim_megalist += dict_i.get((token, "cell_emb"),
|
169 |
elif mode == "gene":
|
170 |
-
cos_sim_megalist += dict_i.get((anchor_token, token),
|
171 |
return len(cos_sim_megalist)
|
172 |
|
173 |
-
|
174 |
def get_fdr(pvalues):
|
175 |
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
176 |
|
177 |
-
|
178 |
def get_impact_component(test_value, gaussian_mixture_model):
|
179 |
impact_border = gaussian_mixture_model.means_[0][0]
|
180 |
nonimpact_border = gaussian_mixture_model.means_[1][0]
|
@@ -190,357 +141,237 @@ def get_impact_component(test_value, gaussian_mixture_model):
|
|
190 |
impact_component = 1
|
191 |
return impact_component
|
192 |
|
193 |
-
|
194 |
# aggregate data for single perturbation in multiple cells
|
195 |
-
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):
|
196 |
-
names
|
197 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
198 |
|
199 |
cos_shift_data = []
|
200 |
token = cos_sims_df["Gene"][0]
|
201 |
for dict_i in dict_list:
|
202 |
-
cos_shift_data += dict_i.get((token, "cell_emb"),
|
203 |
cos_sims_full_df["Cosine_shift"] = cos_shift_data
|
204 |
-
return cos_sims_full_df
|
205 |
-
|
206 |
-
|
207 |
-
def find(variable, x):
|
208 |
-
try:
|
209 |
-
if x in variable: # Test if variable is iterable and contains x
|
210 |
-
return True
|
211 |
-
except (ValueError, TypeError):
|
212 |
-
return x == variable # Test if variable is x if non-iterable
|
213 |
-
|
214 |
-
|
215 |
-
def isp_aggregate_gene_shifts(
|
216 |
-
cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict
|
217 |
-
):
|
218 |
-
cos_shift_data = dict()
|
219 |
-
for i in trange(cos_sims_df.shape[0]):
|
220 |
-
token = cos_sims_df["Gene"][i]
|
221 |
-
for dict_i in dict_list:
|
222 |
-
affected_pairs = [k for k, v in dict_i.items() if find(k[0], token)]
|
223 |
-
for key in affected_pairs:
|
224 |
-
if key in cos_shift_data.keys():
|
225 |
-
cos_shift_data[key] += dict_i.get(key, [])
|
226 |
-
else:
|
227 |
-
cos_shift_data[key] = dict_i.get(key, [])
|
228 |
-
|
229 |
-
cos_data_mean = {
|
230 |
-
k: [np.mean(v), np.std(v), len(v)] for k, v in cos_shift_data.items()
|
231 |
-
}
|
232 |
-
cos_sims_full_df = pd.DataFrame()
|
233 |
-
cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()]
|
234 |
-
cos_sims_full_df["Gene_name"] = [
|
235 |
-
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"][0]
|
236 |
-
for k, v in cos_data_mean.items()
|
237 |
-
]
|
238 |
-
cos_sims_full_df["Ensembl_ID"] = [
|
239 |
-
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"][0]
|
240 |
-
for k, v in cos_data_mean.items()
|
241 |
-
]
|
242 |
-
|
243 |
-
cos_sims_full_df["Affected"] = [k[1] for k, v in cos_data_mean.items()]
|
244 |
-
cos_sims_full_df["Affected_gene_name"] = [
|
245 |
-
gene_id_name_dict.get(gene_token_id_dict.get(token, np.nan), np.nan)
|
246 |
-
for token in cos_sims_full_df["Affected"]
|
247 |
-
]
|
248 |
-
cos_sims_full_df["Affected_Ensembl_ID"] = [
|
249 |
-
gene_token_id_dict.get(token, np.nan) for token in cos_sims_full_df["Affected"]
|
250 |
-
]
|
251 |
-
cos_sims_full_df["Cosine_shift_mean"] = [v[0] for k, v in cos_data_mean.items()]
|
252 |
-
cos_sims_full_df["Cosine_shift_stdev"] = [v[1] for k, v in cos_data_mean.items()]
|
253 |
-
cos_sims_full_df["N_Detections"] = [v[2] for k, v in cos_data_mean.items()]
|
254 |
-
|
255 |
-
specific_val = "cell_emb"
|
256 |
-
cos_sims_full_df["temp"] = list(cos_sims_full_df["Affected"] == specific_val)
|
257 |
-
# reorder so cell embs are at the top and all are subordered by magnitude of cosine shift
|
258 |
-
cos_sims_full_df = cos_sims_full_df.sort_values(
|
259 |
-
by=(["temp", "Cosine_shift_mean"]), ascending=[False, False]
|
260 |
-
).drop("temp", axis=1)
|
261 |
-
|
262 |
-
return cos_sims_full_df
|
263 |
-
|
264 |
|
265 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
266 |
-
def isp_stats_to_goal_state(
|
267 |
-
|
268 |
-
)
|
269 |
-
|
270 |
-
("alt_states"
|
271 |
-
or (len(cell_states_to_model["alt_states"]) == 0)
|
272 |
-
or (cell_states_to_model["alt_states"] == [None])
|
273 |
-
):
|
274 |
alt_end_state_exists = False
|
275 |
-
elif (len(cell_states_to_model["alt_states"]) > 0) and (
|
276 |
-
cell_states_to_model["alt_states"] != [None]
|
277 |
-
):
|
278 |
alt_end_state_exists = True
|
279 |
-
|
280 |
# for single perturbation in multiple cells, there are no random perturbations to compare to
|
281 |
if genes_perturbed != "all":
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
285 |
token = cos_sims_df["Gene"][0]
|
286 |
-
|
287 |
-
(token, "cell_emb"),
|
288 |
-
|
289 |
-
|
290 |
-
if alt_end_state_exists
|
291 |
-
for
|
292 |
-
|
293 |
-
|
294 |
-
(token, "cell_emb"), []
|
295 |
-
)
|
296 |
-
cos_sims_full_df[f"Shift_to_alt_end_{alt_state}"] = [
|
297 |
-
np.mean(cos_shift_data_alt_state)
|
298 |
-
]
|
299 |
-
|
300 |
# sort by shift to desired state
|
301 |
-
cos_sims_full_df = cos_sims_full_df.sort_values(
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
elif genes_perturbed == "all":
|
307 |
-
|
308 |
-
if alt_end_state_exists is True:
|
309 |
-
alt_end_state_random_dict = {
|
310 |
-
alt_state: [] for alt_state in cell_states_to_model["alt_states"]
|
311 |
-
}
|
312 |
for i in trange(cos_sims_df.shape[0]):
|
313 |
token = cos_sims_df["Gene"][i]
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
|
323 |
# downsample to improve speed of ranksums
|
324 |
if len(goal_end_random_megalist) > 100_000:
|
325 |
random.seed(42)
|
326 |
-
goal_end_random_megalist = random.sample(
|
327 |
-
|
328 |
-
)
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
"
|
341 |
-
"
|
342 |
-
"Goal_end_vs_random_pval",
|
343 |
-
]
|
344 |
-
if alt_end_state_exists is True:
|
345 |
-
[
|
346 |
-
names.append(f"Shift_to_alt_end_{alt_state}")
|
347 |
-
for alt_state in cell_states_to_model["alt_states"]
|
348 |
-
]
|
349 |
-
names.append(names.pop(names.index("Goal_end_vs_random_pval")))
|
350 |
-
[
|
351 |
-
names.append(f"Alt_end_vs_random_pval_{alt_state}")
|
352 |
-
for alt_state in cell_states_to_model["alt_states"]
|
353 |
-
]
|
354 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
355 |
|
356 |
-
n_detections_dict = dict()
|
357 |
for i in trange(cos_sims_df.shape[0]):
|
358 |
token = cos_sims_df["Gene"][i]
|
359 |
name = cos_sims_df["Gene_name"][i]
|
360 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
361 |
-
|
362 |
-
cell_states_to_model["goal_state"]
|
363 |
-
].get((token, "cell_emb"), [])
|
364 |
-
n_detections_dict[token] = len(goal_end_cos_sim_megalist)
|
365 |
-
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
366 |
-
pval_goal_end = ranksums(
|
367 |
-
goal_end_random_megalist, goal_end_cos_sim_megalist
|
368 |
-
).pvalue
|
369 |
-
|
370 |
-
if alt_end_state_exists is True:
|
371 |
-
alt_end_state_dict = {
|
372 |
-
alt_state: [] for alt_state in cell_states_to_model["alt_states"]
|
373 |
-
}
|
374 |
-
for alt_state in cell_states_to_model["alt_states"]:
|
375 |
-
alt_end_state_dict[alt_state] = result_dict[alt_state].get(
|
376 |
-
(token, "cell_emb"), []
|
377 |
-
)
|
378 |
-
alt_end_state_dict[f"{alt_state}_mean"] = np.mean(
|
379 |
-
alt_end_state_dict[alt_state]
|
380 |
-
)
|
381 |
-
alt_end_state_dict[f"{alt_state}_pval"] = ranksums(
|
382 |
-
alt_end_state_random_dict[alt_state],
|
383 |
-
alt_end_state_dict[alt_state],
|
384 |
-
).pvalue
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
results_dict["Gene_name"] = name
|
389 |
-
results_dict["Ensembl_ID"] = ensembl_id
|
390 |
-
results_dict["Shift_to_goal_end"] = mean_goal_end
|
391 |
-
results_dict["Goal_end_vs_random_pval"] = pval_goal_end
|
392 |
-
if alt_end_state_exists is True:
|
393 |
-
for alt_state in cell_states_to_model["alt_states"]:
|
394 |
-
results_dict[f"Shift_to_alt_end_{alt_state}"] = alt_end_state_dict[
|
395 |
-
f"{alt_state}_mean"
|
396 |
-
]
|
397 |
-
results_dict[
|
398 |
-
f"Alt_end_vs_random_pval_{alt_state}"
|
399 |
-
] = alt_end_state_dict[f"{alt_state}_pval"]
|
400 |
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
# quantify number of detections of each gene
|
414 |
-
cos_sims_full_df["N_Detections"] = [
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
by=["Sig", "Shift_to_goal_end", "Goal_end_FDR"],
|
424 |
-
ascending=[False, False, True],
|
425 |
-
)
|
426 |
-
|
427 |
return cos_sims_full_df
|
428 |
|
429 |
-
|
430 |
# stats comparing cos sim shifts of test perturbations vs null distribution
|
431 |
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
432 |
cos_sims_full_df = cos_sims_df.copy()
|
433 |
|
434 |
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
435 |
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
436 |
-
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(
|
437 |
-
cos_sims_df.shape[0], dtype=float
|
438 |
-
)
|
439 |
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
440 |
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
441 |
-
cos_sims_full_df["N_Detections_test"] = np.zeros(
|
442 |
-
|
443 |
-
|
444 |
-
cos_sims_full_df["N_Detections_null"] = np.zeros(
|
445 |
-
cos_sims_df.shape[0], dtype="uint32"
|
446 |
-
)
|
447 |
-
|
448 |
for i in trange(cos_sims_df.shape[0]):
|
449 |
token = cos_sims_df["Gene"][i]
|
450 |
test_shifts = []
|
451 |
null_shifts = []
|
452 |
-
|
453 |
for dict_i in dict_list:
|
454 |
-
test_shifts += dict_i.get((token, "cell_emb"),
|
455 |
|
456 |
for dict_i in null_dict_list:
|
457 |
-
null_shifts += dict_i.get((token, "cell_emb"),
|
458 |
-
|
459 |
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
|
460 |
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
|
461 |
-
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(
|
462 |
-
|
463 |
-
|
464 |
-
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(
|
465 |
-
test_shifts, null_shifts, nan_policy="omit"
|
466 |
-
).pvalue
|
467 |
# remove nan values
|
468 |
-
cos_sims_full_df.Test_vs_null_pval = np.where(
|
469 |
-
np.isnan(cos_sims_full_df.Test_vs_null_pval),
|
470 |
-
1,
|
471 |
-
cos_sims_full_df.Test_vs_null_pval,
|
472 |
-
)
|
473 |
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
|
474 |
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
475 |
|
476 |
-
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
cos_sims_full_df = cos_sims_full_df.sort_values(
|
484 |
-
by=["Sig", "Test_vs_null_avg_shift", "Test_vs_null_FDR"],
|
485 |
-
ascending=[False, False, True],
|
486 |
-
)
|
487 |
return cos_sims_full_df
|
488 |
|
489 |
-
|
490 |
# stats for identifying perturbations with largest effect within a given set of cells
|
491 |
# fits a mixture model to 2 components (impact vs. non-impact) and
|
492 |
# reports the most likely component for each test perturbation
|
493 |
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
494 |
# we recommend only using the mixture model strategy with uniform cell populations
|
495 |
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
498 |
if combos == 0:
|
499 |
names += ["Test_avg_shift"]
|
500 |
elif combos == 1:
|
501 |
-
names += [
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
names += ["Impact_component", "Impact_component_percent"]
|
510 |
|
511 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
512 |
avg_values = []
|
513 |
gene_names = []
|
514 |
-
|
515 |
for i in trange(cos_sims_df.shape[0]):
|
516 |
token = cos_sims_df["Gene"][i]
|
517 |
name = cos_sims_df["Gene_name"][i]
|
518 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
519 |
cos_shift_data = []
|
520 |
-
|
521 |
for dict_i in dict_list:
|
522 |
if (combos == 0) and (anchor_token is not None):
|
523 |
-
cos_shift_data += dict_i.get((anchor_token, token),
|
524 |
else:
|
525 |
-
cos_shift_data += dict_i.get((token, "cell_emb"),
|
526 |
-
|
527 |
# Extract values for current gene
|
528 |
if combos == 0:
|
529 |
test_values = cos_shift_data
|
530 |
elif combos == 1:
|
531 |
test_values = []
|
532 |
for tup in cos_shift_data:
|
533 |
-
test_values.append(tup[2])
|
534 |
-
|
535 |
if len(test_values) > 0:
|
536 |
avg_value = np.mean(test_values)
|
537 |
avg_values.append(avg_value)
|
538 |
gene_names.append(name)
|
539 |
-
|
540 |
# fit Gaussian mixture model to dataset of mean for each gene
|
541 |
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
542 |
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
543 |
-
|
544 |
for i in trange(cos_sims_df.shape[0]):
|
545 |
token = cos_sims_df["Gene"][i]
|
546 |
name = cos_sims_df["Gene_name"][i]
|
@@ -549,95 +380,72 @@ def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
|
|
549 |
|
550 |
for dict_i in dict_list:
|
551 |
if (combos == 0) and (anchor_token is not None):
|
552 |
-
cos_shift_data += dict_i.get((anchor_token, token),
|
553 |
else:
|
554 |
-
cos_shift_data += dict_i.get((token, "cell_emb"),
|
555 |
-
|
556 |
if combos == 0:
|
557 |
mean_test = np.mean(cos_shift_data)
|
558 |
-
impact_components = [
|
559 |
-
get_impact_component(value, gm) for value in cos_shift_data
|
560 |
-
]
|
561 |
elif combos == 1:
|
562 |
-
anchor_cos_sim_megalist = [
|
563 |
-
|
564 |
-
]
|
565 |
-
|
566 |
-
|
567 |
-
1 - ((1 - anchor) + (1 - token))
|
568 |
-
for anchor, token, combo in cos_shift_data
|
569 |
-
]
|
570 |
-
combo_anchor_token_cos_sim_megalist = [
|
571 |
-
combo for anchor, token, combo in cos_shift_data
|
572 |
-
]
|
573 |
-
combo_minus_sum_cos_sim_megalist = [
|
574 |
-
combo - (1 - ((1 - anchor) + (1 - token)))
|
575 |
-
for anchor, token, combo in cos_shift_data
|
576 |
-
]
|
577 |
|
578 |
mean_anchor = np.mean(anchor_cos_sim_megalist)
|
579 |
mean_token = np.mean(token_cos_sim_megalist)
|
580 |
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
|
581 |
mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
|
582 |
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
|
583 |
-
|
584 |
-
impact_components = [
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
data_i = [token, name, ensembl_id]
|
593 |
if combos == 0:
|
594 |
data_i += [mean_test]
|
595 |
elif combos == 1:
|
596 |
-
data_i += [
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
# quantify number of detections of each gene
|
609 |
-
cos_sims_full_df["N_Detections"] = [
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
if combos == 0:
|
615 |
-
cos_sims_full_df = cos_sims_full_df.sort_values(
|
616 |
-
|
617 |
-
|
618 |
elif combos == 1:
|
619 |
-
cos_sims_full_df = cos_sims_full_df.sort_values(
|
620 |
-
|
621 |
-
|
622 |
return cos_sims_full_df
|
623 |
|
624 |
-
|
625 |
class InSilicoPerturberStats:
|
626 |
valid_option_dict = {
|
627 |
-
"mode": {
|
628 |
-
|
629 |
-
"vs_null",
|
630 |
-
"mixture_model",
|
631 |
-
"aggregate_data",
|
632 |
-
"aggregate_gene_shifts",
|
633 |
-
},
|
634 |
-
"genes_perturbed": {"all", list},
|
635 |
-
"combos": {0, 1},
|
636 |
"anchor_gene": {None, str},
|
637 |
"cell_states_to_model": {None, dict},
|
638 |
-
"pickle_suffix": {None, str}
|
639 |
}
|
640 |
-
|
641 |
def __init__(
|
642 |
self,
|
643 |
mode="mixture_model",
|
@@ -652,42 +460,41 @@ class InSilicoPerturberStats:
|
|
652 |
"""
|
653 |
Initialize in silico perturber stats generator.
|
654 |
|
655 |
-
|
656 |
-
|
657 |
-
mode : {"goal_state_shift",
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
| "aggregate_gene_shifts": aggregates cosine shifts of genes in response to perturbation(s)
|
664 |
genes_perturbed : "all", list
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
combos : {0,1,2}
|
669 |
-
|
670 |
anchor_gene : None, str
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
cell_states_to_model: None, dict
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
token_dictionary_file : Path
|
688 |
-
|
689 |
gene_name_id_dictionary_file : Path
|
690 |
-
|
691 |
"""
|
692 |
|
693 |
self.mode = mode
|
@@ -696,13 +503,13 @@ class InSilicoPerturberStats:
|
|
696 |
self.anchor_gene = anchor_gene
|
697 |
self.cell_states_to_model = cell_states_to_model
|
698 |
self.pickle_suffix = pickle_suffix
|
699 |
-
|
700 |
self.validate_options()
|
701 |
|
702 |
# load token dictionary (Ensembl IDs:token)
|
703 |
with open(token_dictionary_file, "rb") as f:
|
704 |
self.gene_token_dict = pickle.load(f)
|
705 |
-
|
706 |
# load gene name dictionary (gene name:Ensembl ID)
|
707 |
with open(gene_name_id_dictionary_file, "rb") as f:
|
708 |
self.gene_name_id_dict = pickle.load(f)
|
@@ -713,7 +520,7 @@ class InSilicoPerturberStats:
|
|
713 |
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
714 |
|
715 |
def validate_options(self):
|
716 |
-
for attr_name,
|
717 |
attr_value = self.__dict__[attr_name]
|
718 |
if type(attr_value) not in {list, dict}:
|
719 |
if attr_name in {"anchor_gene"}:
|
@@ -722,40 +529,35 @@ class InSilicoPerturberStats:
|
|
722 |
continue
|
723 |
valid_type = False
|
724 |
for option in valid_options:
|
725 |
-
|
726 |
-
|
727 |
-
):
|
728 |
valid_type = True
|
729 |
break
|
730 |
if not valid_type:
|
731 |
logger.error(
|
732 |
-
f"Invalid option for {attr_name}. "
|
733 |
f"Valid options for {attr_name}: {valid_options}"
|
734 |
)
|
735 |
raise
|
736 |
-
|
737 |
if self.cell_states_to_model is not None:
|
738 |
if len(self.cell_states_to_model.items()) == 1:
|
739 |
logger.warning(
|
740 |
-
"The single value dictionary for cell_states_to_model will be "
|
741 |
-
"replaced with a dictionary with named keys for start, goal, and alternate states. "
|
742 |
-
"Please specify state_key, start_state, goal_state, and alt_states "
|
743 |
-
"in the cell_states_to_model dictionary for future use. "
|
744 |
-
"For example, cell_states_to_model={"
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
)
|
750 |
-
for key,
|
751 |
if (len(value) == 3) and isinstance(value, tuple):
|
752 |
-
if (
|
753 |
-
isinstance(value[0], list)
|
754 |
-
and isinstance(value[1], list)
|
755 |
-
and isinstance(value[2], list)
|
756 |
-
):
|
757 |
if len(value[0]) == 1 and len(value[1]) == 1:
|
758 |
-
all_values = value[0]
|
759 |
if len(all_values) == len(set(all_values)):
|
760 |
continue
|
761 |
# reformat to the new named key format
|
@@ -764,176 +566,140 @@ class InSilicoPerturberStats:
|
|
764 |
"state_key": list(self.cell_states_to_model.keys())[0],
|
765 |
"start_state": state_values[0][0],
|
766 |
"goal_state": state_values[1][0],
|
767 |
-
"alt_states": state_values[2:][0]
|
768 |
}
|
769 |
-
elif set(self.cell_states_to_model.keys()) == {
|
770 |
-
"state_key"
|
771 |
-
|
772 |
-
|
773 |
-
"alt_states",
|
774 |
-
}:
|
775 |
-
if (
|
776 |
-
(self.cell_states_to_model["state_key"] is None)
|
777 |
-
or (self.cell_states_to_model["start_state"] is None)
|
778 |
-
or (self.cell_states_to_model["goal_state"] is None)
|
779 |
-
):
|
780 |
logger.error(
|
781 |
-
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model."
|
782 |
-
)
|
783 |
raise
|
784 |
-
|
785 |
-
if
|
786 |
-
|
787 |
-
|
788 |
-
):
|
789 |
-
logger.error("All states must be unique.")
|
790 |
raise
|
791 |
|
792 |
if self.cell_states_to_model["alt_states"] is not None:
|
793 |
-
if
|
794 |
logger.error(
|
795 |
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
|
796 |
)
|
797 |
raise
|
798 |
-
if len(self.cell_states_to_model["alt_states"])
|
799 |
-
|
800 |
-
|
801 |
-
logger.error("All states must be unique.")
|
802 |
raise
|
803 |
|
804 |
-
elif set(self.cell_states_to_model.keys()) == {
|
805 |
-
"state_key",
|
806 |
-
"start_state",
|
807 |
-
"goal_state",
|
808 |
-
}:
|
809 |
-
self.cell_states_to_model["alt_states"] = []
|
810 |
else:
|
811 |
logger.error(
|
812 |
-
"cell_states_to_model must only have the following four keys: "
|
813 |
-
"'state_key', 'start_state', 'goal_state', 'alt_states'."
|
814 |
-
"For example, cell_states_to_model={"
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
)
|
820 |
raise
|
821 |
|
822 |
if self.anchor_gene is not None:
|
823 |
self.anchor_gene = None
|
824 |
logger.warning(
|
825 |
-
"anchor_gene set to None. "
|
826 |
-
"Currently, anchor gene not available "
|
827 |
-
"when modeling multiple cell states."
|
828 |
-
|
829 |
-
|
830 |
if self.combos > 0:
|
831 |
if self.anchor_gene is None:
|
832 |
logger.error(
|
833 |
-
"Currently, stats are only supported for combination "
|
834 |
-
"in silico perturbation run with anchor gene. Please add "
|
835 |
-
"anchor gene when using with combos > 0. "
|
836 |
-
)
|
837 |
raise
|
838 |
-
|
839 |
if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
|
840 |
logger.error(
|
841 |
-
|
842 |
-
|
843 |
-
)
|
844 |
raise
|
845 |
if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
|
846 |
logger.error(
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
null_dict_list=None,
|
859 |
-
):
|
860 |
"""
|
861 |
Get stats for in silico perturbation data and save as results in output_directory.
|
862 |
|
863 |
-
|
864 |
-
|
865 |
input_data_directory : Path
|
866 |
-
|
867 |
null_dist_data_directory : Path
|
868 |
-
|
869 |
output_directory : Path
|
870 |
-
|
871 |
output_prefix : str
|
872 |
-
|
873 |
-
null_dict_list:
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
Definition of possible columns in .csv output file.
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
| In case of aggregating gene shifts:
|
918 |
-
| "Perturbed": ID(s) of gene(s) being perturbed
|
919 |
-
| "Affected": ID of affected gene or "cell_emb" indicating the impact on the cell embedding as a whole
|
920 |
-
| "Cosine_shift_mean": mean of cosine shift of modeled perturbation on affected gene or cell
|
921 |
-
| "Cosine_shift_stdev": standard deviation of cosine shift of modeled perturbation on affected gene or cell
|
922 |
"""
|
923 |
|
924 |
-
if self.mode not in [
|
925 |
-
"goal_state_shift",
|
926 |
-
"vs_null",
|
927 |
-
"mixture_model",
|
928 |
-
"aggregate_data",
|
929 |
-
"aggregate_gene_shifts",
|
930 |
-
]:
|
931 |
logger.error(
|
932 |
-
"Currently, only modes available are stats for goal_state_shift, "
|
933 |
-
"vs_null (comparing to null distribution), "
|
934 |
-
"mixture_model (fitting mixture model for perturbations with or without impact)
|
935 |
-
"and aggregating data for single perturbations or for gene embedding shifts."
|
936 |
-
)
|
937 |
raise
|
938 |
|
939 |
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
@@ -942,107 +708,45 @@ class InSilicoPerturberStats:
|
|
942 |
# obtain total gene list
|
943 |
if (self.combos == 0) and (self.anchor_token is not None):
|
944 |
# cos sim data for effect of gene perturbation on the embedding of each other gene
|
945 |
-
dict_list = read_dictionaries(
|
946 |
-
input_data_directory,
|
947 |
-
"gene",
|
948 |
-
self.anchor_token,
|
949 |
-
self.cell_states_to_model,
|
950 |
-
self.pickle_suffix,
|
951 |
-
)
|
952 |
gene_list = get_gene_list(dict_list, "gene")
|
953 |
-
elif (
|
954 |
-
(self.combos == 0)
|
955 |
-
and (self.anchor_token is None)
|
956 |
-
and (self.mode == "aggregate_gene_shifts")
|
957 |
-
):
|
958 |
-
dict_list = read_dictionaries(
|
959 |
-
input_data_directory,
|
960 |
-
"gene",
|
961 |
-
self.anchor_token,
|
962 |
-
self.cell_states_to_model,
|
963 |
-
self.pickle_suffix,
|
964 |
-
)
|
965 |
-
gene_list = get_gene_list(dict_list, "cell")
|
966 |
else:
|
967 |
# cos sim data for effect of gene perturbation on the embedding of each cell
|
968 |
-
dict_list = read_dictionaries(
|
969 |
-
input_data_directory,
|
970 |
-
"cell",
|
971 |
-
self.anchor_token,
|
972 |
-
self.cell_states_to_model,
|
973 |
-
self.pickle_suffix,
|
974 |
-
)
|
975 |
gene_list = get_gene_list(dict_list, "cell")
|
976 |
-
|
977 |
# initiate results dataframe
|
978 |
-
cos_sims_df_initial = pd.DataFrame(
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
for genes in gene_list
|
989 |
-
],
|
990 |
-
},
|
991 |
-
index=[i for i in range(len(gene_list))],
|
992 |
-
)
|
993 |
|
994 |
if self.mode == "goal_state_shift":
|
995 |
-
cos_sims_df = isp_stats_to_goal_state(
|
996 |
-
|
997 |
-
dict_list,
|
998 |
-
self.cell_states_to_model,
|
999 |
-
self.genes_perturbed,
|
1000 |
-
)
|
1001 |
-
|
1002 |
elif self.mode == "vs_null":
|
1003 |
if null_dict_list is None:
|
1004 |
-
null_dict_list = read_dictionaries(
|
1005 |
-
|
1006 |
-
"cell",
|
1007 |
-
self.anchor_token,
|
1008 |
-
self.cell_states_to_model,
|
1009 |
-
self.pickle_suffix,
|
1010 |
-
)
|
1011 |
-
cos_sims_df = isp_stats_vs_null(
|
1012 |
-
cos_sims_df_initial, dict_list, null_dict_list
|
1013 |
-
)
|
1014 |
|
1015 |
elif self.mode == "mixture_model":
|
1016 |
-
cos_sims_df = isp_stats_mixture_model(
|
1017 |
-
|
1018 |
-
)
|
1019 |
-
|
1020 |
elif self.mode == "aggregate_data":
|
1021 |
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list)
|
1022 |
|
1023 |
-
elif self.mode == "aggregate_gene_shifts":
|
1024 |
-
cos_sims_df = isp_aggregate_gene_shifts(
|
1025 |
-
cos_sims_df_initial,
|
1026 |
-
dict_list,
|
1027 |
-
self.gene_token_id_dict,
|
1028 |
-
self.gene_id_name_dict,
|
1029 |
-
)
|
1030 |
-
|
1031 |
# save perturbation stats to output_path
|
1032 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
1033 |
cos_sims_df.to_csv(output_path)
|
1034 |
|
1035 |
def token_to_gene_name(self, item):
|
1036 |
-
if
|
1037 |
-
return self.gene_id_name_dict.get(
|
1038 |
-
|
1039 |
-
)
|
1040 |
-
if isinstance(item, tuple):
|
1041 |
-
return tuple(
|
1042 |
-
[
|
1043 |
-
self.gene_id_name_dict.get(
|
1044 |
-
self.gene_token_id_dict.get(i, np.nan), np.nan
|
1045 |
-
)
|
1046 |
-
for i in item
|
1047 |
-
]
|
1048 |
-
)
|
|
|
1 |
"""
|
2 |
Geneformer in silico perturber stats generator.
|
3 |
|
4 |
+
Usage:
|
5 |
+
from geneformer import InSilicoPerturberStats
|
6 |
+
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
7 |
+
combos=0,
|
8 |
+
anchor_gene=None,
|
9 |
+
cell_states_to_model={"state_key": "disease",
|
10 |
+
"start_state": "dcm",
|
11 |
+
"goal_state": "nf",
|
12 |
+
"alt_states": ["hcm", "other1", "other2"]})
|
13 |
+
ispstats.get_stats("path/to/input_data",
|
14 |
+
None,
|
15 |
+
"path/to/output_directory",
|
16 |
+
"output_prefix")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"""
|
18 |
|
19 |
|
|
|
20 |
import os
|
21 |
+
import logging
|
|
|
|
|
|
|
22 |
import numpy as np
|
23 |
import pandas as pd
|
24 |
+
import pickle
|
25 |
+
import random
|
26 |
import statsmodels.stats.multitest as smt
|
27 |
+
from pathlib import Path
|
28 |
from scipy.stats import ranksums
|
29 |
from sklearn.mixture import GaussianMixture
|
30 |
+
from tqdm.auto import trange, tqdm
|
31 |
+
|
32 |
+
from .perturber_helpers import flatten_list
|
33 |
|
|
|
34 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
35 |
|
36 |
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
37 |
|
38 |
logger = logging.getLogger(__name__)
|
39 |
|
|
|
40 |
# invert dictionary keys/values
|
41 |
def invert_dict(dictionary):
|
42 |
return {v: k for k, v in dictionary.items()}
|
43 |
|
|
|
44 |
def read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token):
|
45 |
if cell_or_gene_emb == "cell":
|
46 |
+
cell_emb_dict = {k: v for k,
|
47 |
+
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
|
|
48 |
return [cell_emb_dict]
|
49 |
elif cell_or_gene_emb == "gene":
|
50 |
+
gene_emb_dict = {k: v for k,
|
51 |
+
v in cos_sims_dict.items() if v and anchor_token == k[0]}
|
|
|
|
|
|
|
|
|
52 |
return [gene_emb_dict]
|
53 |
|
54 |
|
55 |
+
def recursive_search_dir(dir, pickle_suffix):
|
56 |
+
|
57 |
+
|
58 |
# read raw dictionary files
|
59 |
+
def read_dictionaries(input_data_directory,
|
60 |
+
cell_or_gene_emb,
|
61 |
+
anchor_token,
|
62 |
+
cell_states_to_model,
|
63 |
+
pickle_suffix,
|
64 |
+
recursive=False):
|
65 |
+
|
66 |
file_found = False
|
67 |
file_path_list = []
|
68 |
if cell_states_to_model is None:
|
69 |
dict_list = []
|
70 |
else:
|
71 |
+
state_dict = {state: [] for state in cell_states_to_model}
|
72 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
for file in os.listdir(input_data_directory):
|
74 |
+
# process only _raw.pickle files
|
75 |
if file.endswith(pickle_suffix):
|
76 |
file_found = True
|
77 |
file_path_list += [f"{input_data_directory}/{file}"]
|
78 |
for file_path in tqdm(file_path_list):
|
79 |
+
with open(file_path, 'rb') as fp:
|
80 |
cos_sims_dict = pickle.load(fp)
|
81 |
if cell_states_to_model is None:
|
82 |
dict_list += read_dict(cos_sims_dict, cell_or_gene_emb, anchor_token)
|
83 |
else:
|
84 |
+
for state in cell_states_to_model:
|
85 |
+
state_dict[state] += read_dict(cos_sims_dict[state], cell_or_gene_emb, anchor_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if not file_found:
|
87 |
logger.error(
|
88 |
+
f"No raw data for processing found within provided directory. " \
|
89 |
+
"Please ensure data files end with '{pickle_suffix}'.")
|
|
|
90 |
raise
|
91 |
if cell_states_to_model is None:
|
92 |
return dict_list
|
93 |
else:
|
94 |
return state_dict
|
95 |
|
|
|
96 |
# get complete gene list
|
97 |
+
def get_gene_list(dict_list,mode):
|
98 |
if mode == "cell":
|
99 |
position = 0
|
100 |
elif mode == "gene":
|
101 |
position = 1
|
102 |
gene_set = set()
|
103 |
+
for dict_i in dict_list:
|
104 |
+
gene_set.update([k[position] for k, v in dict_i.items() if v])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
gene_list = list(gene_set)
|
106 |
if mode == "gene":
|
107 |
gene_list.remove("cell_emb")
|
108 |
gene_list.sort()
|
109 |
return gene_list
|
110 |
|
|
|
111 |
def token_tuple_to_ensembl_ids(token_tuple, gene_token_id_dict):
|
112 |
try:
|
113 |
return tuple([gene_token_id_dict.get(i, np.nan) for i in token_tuple])
|
114 |
+
except TypeError as te:
|
115 |
+
return tuple(gene_token_id_dict.get(token_tuple, np.nan))
|
|
|
116 |
|
117 |
def n_detections(token, dict_list, mode, anchor_token):
|
118 |
cos_sim_megalist = []
|
119 |
for dict_i in dict_list:
|
120 |
if mode == "cell":
|
121 |
+
cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
|
122 |
elif mode == "gene":
|
123 |
+
cos_sim_megalist += dict_i.get((anchor_token, token),[])
|
124 |
return len(cos_sim_megalist)
|
125 |
|
|
|
126 |
def get_fdr(pvalues):
|
127 |
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
128 |
|
|
|
129 |
def get_impact_component(test_value, gaussian_mixture_model):
|
130 |
impact_border = gaussian_mixture_model.means_[0][0]
|
131 |
nonimpact_border = gaussian_mixture_model.means_[1][0]
|
|
|
141 |
impact_component = 1
|
142 |
return impact_component
|
143 |
|
|
|
144 |
# aggregate data for single perturbation in multiple cells
|
145 |
+
def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):
|
146 |
+
names=["Cosine_shift"]
|
147 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
148 |
|
149 |
cos_shift_data = []
|
150 |
token = cos_sims_df["Gene"][0]
|
151 |
for dict_i in dict_list:
|
152 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
153 |
cos_sims_full_df["Cosine_shift"] = cos_shift_data
|
154 |
+
return cos_sims_full_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
157 |
+
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_perturbed):
|
158 |
+
cell_state_key = cell_states_to_model["start_state"]
|
159 |
+
if ("alt_states" not in cell_states_to_model.keys()) \
|
160 |
+
or (len(cell_states_to_model["alt_states"]) == 0) \
|
161 |
+
or (cell_states_to_model["alt_states"] == [None]):
|
|
|
|
|
|
|
162 |
alt_end_state_exists = False
|
163 |
+
elif (len(cell_states_to_model["alt_states"]) > 0) and (cell_states_to_model["alt_states"] != [None]):
|
|
|
|
|
164 |
alt_end_state_exists = True
|
165 |
+
|
166 |
# for single perturbation in multiple cells, there are no random perturbations to compare to
|
167 |
if genes_perturbed != "all":
|
168 |
+
names=["Shift_to_goal_end",
|
169 |
+
"Shift_to_alt_end"]
|
170 |
+
if alt_end_state_exists == False:
|
171 |
+
names.remove("Shift_to_alt_end")
|
172 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
173 |
+
|
174 |
+
cos_shift_data = []
|
175 |
token = cos_sims_df["Gene"][0]
|
176 |
+
for dict_i in dict_list:
|
177 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
178 |
+
if alt_end_state_exists == False:
|
179 |
+
cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end in cos_shift_data]
|
180 |
+
if alt_end_state_exists == True:
|
181 |
+
cos_sims_full_df["Shift_to_goal_end"] = [goal_end for start_state,goal_end,alt_end in cos_shift_data]
|
182 |
+
cos_sims_full_df["Shift_to_alt_end"] = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
|
183 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
# sort by shift to desired state
|
185 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Shift_to_goal_end"],
|
186 |
+
ascending=[False])
|
187 |
+
return cos_sims_full_df
|
188 |
+
|
|
|
189 |
elif genes_perturbed == "all":
|
190 |
+
random_tuples = []
|
|
|
|
|
|
|
|
|
191 |
for i in trange(cos_sims_df.shape[0]):
|
192 |
token = cos_sims_df["Gene"][i]
|
193 |
+
for dict_i in dict_list:
|
194 |
+
random_tuples += dict_i.get((token, "cell_emb"),[])
|
195 |
+
|
196 |
+
if alt_end_state_exists == False:
|
197 |
+
goal_end_random_megalist = [goal_end for start_state,goal_end in random_tuples]
|
198 |
+
elif alt_end_state_exists == True:
|
199 |
+
goal_end_random_megalist = [goal_end for start_state,goal_end,alt_end in random_tuples]
|
200 |
+
alt_end_random_megalist = [alt_end for start_state,goal_end,alt_end in random_tuples]
|
201 |
|
202 |
# downsample to improve speed of ranksums
|
203 |
if len(goal_end_random_megalist) > 100_000:
|
204 |
random.seed(42)
|
205 |
+
goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
|
206 |
+
if alt_end_state_exists == True:
|
207 |
+
if len(alt_end_random_megalist) > 100_000:
|
208 |
+
random.seed(42)
|
209 |
+
alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)
|
210 |
+
|
211 |
+
names=["Gene",
|
212 |
+
"Gene_name",
|
213 |
+
"Ensembl_ID",
|
214 |
+
"Shift_to_goal_end",
|
215 |
+
"Shift_to_alt_end",
|
216 |
+
"Goal_end_vs_random_pval",
|
217 |
+
"Alt_end_vs_random_pval"]
|
218 |
+
if alt_end_state_exists == False:
|
219 |
+
names.remove("Shift_to_alt_end")
|
220 |
+
names.remove("Alt_end_vs_random_pval")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
222 |
|
|
|
223 |
for i in trange(cos_sims_df.shape[0]):
|
224 |
token = cos_sims_df["Gene"][i]
|
225 |
name = cos_sims_df["Gene_name"][i]
|
226 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
227 |
+
cos_shift_data = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
for dict_i in dict_list:
|
230 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
if alt_end_state_exists == False:
|
233 |
+
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end in cos_shift_data]
|
234 |
+
elif alt_end_state_exists == True:
|
235 |
+
goal_end_cos_sim_megalist = [goal_end for start_state,goal_end,alt_end in cos_shift_data]
|
236 |
+
alt_end_cos_sim_megalist = [alt_end for start_state,goal_end,alt_end in cos_shift_data]
|
237 |
+
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
238 |
+
pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue
|
239 |
|
240 |
+
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
241 |
+
pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue
|
242 |
+
|
243 |
+
if alt_end_state_exists == False:
|
244 |
+
data_i = [token,
|
245 |
+
name,
|
246 |
+
ensembl_id,
|
247 |
+
mean_goal_end,
|
248 |
+
pval_goal_end]
|
249 |
+
elif alt_end_state_exists == True:
|
250 |
+
data_i = [token,
|
251 |
+
name,
|
252 |
+
ensembl_id,
|
253 |
+
mean_goal_end,
|
254 |
+
mean_alt_end,
|
255 |
+
pval_goal_end,
|
256 |
+
pval_alt_end]
|
257 |
+
|
258 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
259 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
260 |
+
|
261 |
+
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
262 |
+
if alt_end_state_exists == True:
|
263 |
+
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
264 |
|
265 |
# quantify number of detections of each gene
|
266 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]
|
267 |
+
|
268 |
+
# sort by shift to desired state\
|
269 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"]]
|
270 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
271 |
+
"Shift_to_goal_end",
|
272 |
+
"Goal_end_FDR"],
|
273 |
+
ascending=[False,False,True])
|
274 |
+
|
|
|
|
|
|
|
|
|
275 |
return cos_sims_full_df
|
276 |
|
|
|
277 |
# stats comparing cos sim shifts of test perturbations vs null distribution
|
278 |
def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
279 |
cos_sims_full_df = cos_sims_df.copy()
|
280 |
|
281 |
cos_sims_full_df["Test_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
282 |
cos_sims_full_df["Null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
283 |
+
cos_sims_full_df["Test_vs_null_avg_shift"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
|
|
|
|
284 |
cos_sims_full_df["Test_vs_null_pval"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
285 |
cos_sims_full_df["Test_vs_null_FDR"] = np.zeros(cos_sims_df.shape[0], dtype=float)
|
286 |
+
cos_sims_full_df["N_Detections_test"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
|
287 |
+
cos_sims_full_df["N_Detections_null"] = np.zeros(cos_sims_df.shape[0], dtype="uint32")
|
288 |
+
|
|
|
|
|
|
|
|
|
289 |
for i in trange(cos_sims_df.shape[0]):
|
290 |
token = cos_sims_df["Gene"][i]
|
291 |
test_shifts = []
|
292 |
null_shifts = []
|
293 |
+
|
294 |
for dict_i in dict_list:
|
295 |
+
test_shifts += dict_i.get((token, "cell_emb"),[])
|
296 |
|
297 |
for dict_i in null_dict_list:
|
298 |
+
null_shifts += dict_i.get((token, "cell_emb"),[])
|
299 |
+
|
300 |
cos_sims_full_df.loc[i, "Test_avg_shift"] = np.mean(test_shifts)
|
301 |
cos_sims_full_df.loc[i, "Null_avg_shift"] = np.mean(null_shifts)
|
302 |
+
cos_sims_full_df.loc[i, "Test_vs_null_avg_shift"] = np.mean(test_shifts)-np.mean(null_shifts)
|
303 |
+
cos_sims_full_df.loc[i, "Test_vs_null_pval"] = ranksums(test_shifts,
|
304 |
+
null_shifts, nan_policy="omit").pvalue
|
|
|
|
|
|
|
305 |
# remove nan values
|
306 |
+
cos_sims_full_df.Test_vs_null_pval = np.where(np.isnan(cos_sims_full_df.Test_vs_null_pval), 1, cos_sims_full_df.Test_vs_null_pval)
|
|
|
|
|
|
|
|
|
307 |
cos_sims_full_df.loc[i, "N_Detections_test"] = len(test_shifts)
|
308 |
cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
|
309 |
|
310 |
+
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"])
|
311 |
+
|
312 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"]]
|
313 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
314 |
+
"Test_vs_null_avg_shift",
|
315 |
+
"Test_vs_null_FDR"],
|
316 |
+
ascending=[False,False,True])
|
|
|
|
|
|
|
|
|
317 |
return cos_sims_full_df
|
318 |
|
|
|
319 |
# stats for identifying perturbations with largest effect within a given set of cells
|
320 |
# fits a mixture model to 2 components (impact vs. non-impact) and
|
321 |
# reports the most likely component for each test perturbation
|
322 |
# Note: because assumes given perturbation has a consistent effect in the cells tested,
|
323 |
# we recommend only using the mixture model strategy with uniform cell populations
|
324 |
def isp_stats_mixture_model(cos_sims_df, dict_list, combos, anchor_token):
|
325 |
+
|
326 |
+
names=["Gene",
|
327 |
+
"Gene_name",
|
328 |
+
"Ensembl_ID"]
|
329 |
+
|
330 |
if combos == 0:
|
331 |
names += ["Test_avg_shift"]
|
332 |
elif combos == 1:
|
333 |
+
names += ["Anchor_shift",
|
334 |
+
"Test_token_shift",
|
335 |
+
"Sum_of_indiv_shifts",
|
336 |
+
"Combo_shift",
|
337 |
+
"Combo_minus_sum_shift"]
|
338 |
+
|
339 |
+
names += ["Impact_component",
|
340 |
+
"Impact_component_percent"]
|
|
|
341 |
|
342 |
cos_sims_full_df = pd.DataFrame(columns=names)
|
343 |
avg_values = []
|
344 |
gene_names = []
|
345 |
+
|
346 |
for i in trange(cos_sims_df.shape[0]):
|
347 |
token = cos_sims_df["Gene"][i]
|
348 |
name = cos_sims_df["Gene_name"][i]
|
349 |
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
350 |
cos_shift_data = []
|
351 |
+
|
352 |
for dict_i in dict_list:
|
353 |
if (combos == 0) and (anchor_token is not None):
|
354 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
355 |
else:
|
356 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
357 |
+
|
358 |
# Extract values for current gene
|
359 |
if combos == 0:
|
360 |
test_values = cos_shift_data
|
361 |
elif combos == 1:
|
362 |
test_values = []
|
363 |
for tup in cos_shift_data:
|
364 |
+
test_values.append(tup[2])
|
365 |
+
|
366 |
if len(test_values) > 0:
|
367 |
avg_value = np.mean(test_values)
|
368 |
avg_values.append(avg_value)
|
369 |
gene_names.append(name)
|
370 |
+
|
371 |
# fit Gaussian mixture model to dataset of mean for each gene
|
372 |
avg_values_to_fit = np.array(avg_values).reshape(-1, 1)
|
373 |
gm = GaussianMixture(n_components=2, random_state=0).fit(avg_values_to_fit)
|
374 |
+
|
375 |
for i in trange(cos_sims_df.shape[0]):
|
376 |
token = cos_sims_df["Gene"][i]
|
377 |
name = cos_sims_df["Gene_name"][i]
|
|
|
380 |
|
381 |
for dict_i in dict_list:
|
382 |
if (combos == 0) and (anchor_token is not None):
|
383 |
+
cos_shift_data += dict_i.get((anchor_token, token),[])
|
384 |
else:
|
385 |
+
cos_shift_data += dict_i.get((token, "cell_emb"),[])
|
386 |
+
|
387 |
if combos == 0:
|
388 |
mean_test = np.mean(cos_shift_data)
|
389 |
+
impact_components = [get_impact_component(value,gm) for value in cos_shift_data]
|
|
|
|
|
390 |
elif combos == 1:
|
391 |
+
anchor_cos_sim_megalist = [anchor for anchor,token,combo in cos_shift_data]
|
392 |
+
token_cos_sim_megalist = [token for anchor,token,combo in cos_shift_data]
|
393 |
+
anchor_plus_token_cos_sim_megalist = [1-((1-anchor)+(1-token)) for anchor,token,combo in cos_shift_data]
|
394 |
+
combo_anchor_token_cos_sim_megalist = [combo for anchor,token,combo in cos_shift_data]
|
395 |
+
combo_minus_sum_cos_sim_megalist = [combo-(1-((1-anchor)+(1-token))) for anchor,token,combo in cos_shift_data]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
mean_anchor = np.mean(anchor_cos_sim_megalist)
|
398 |
mean_token = np.mean(token_cos_sim_megalist)
|
399 |
mean_sum = np.mean(anchor_plus_token_cos_sim_megalist)
|
400 |
mean_test = np.mean(combo_anchor_token_cos_sim_megalist)
|
401 |
mean_combo_minus_sum = np.mean(combo_minus_sum_cos_sim_megalist)
|
402 |
+
|
403 |
+
impact_components = [get_impact_component(value,gm) for value in combo_anchor_token_cos_sim_megalist]
|
404 |
+
|
405 |
+
impact_component = get_impact_component(mean_test,gm)
|
406 |
+
impact_component_percent = np.mean(impact_components)*100
|
407 |
+
|
408 |
+
data_i = [token,
|
409 |
+
name,
|
410 |
+
ensembl_id]
|
|
|
411 |
if combos == 0:
|
412 |
data_i += [mean_test]
|
413 |
elif combos == 1:
|
414 |
+
data_i += [mean_anchor,
|
415 |
+
mean_token,
|
416 |
+
mean_sum,
|
417 |
+
mean_test,
|
418 |
+
mean_combo_minus_sum]
|
419 |
+
data_i += [impact_component,
|
420 |
+
impact_component_percent]
|
421 |
+
|
422 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
423 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
424 |
+
|
|
|
425 |
# quantify number of detections of each gene
|
426 |
+
cos_sims_full_df["N_Detections"] = [n_detections(i,
|
427 |
+
dict_list,
|
428 |
+
"gene",
|
429 |
+
anchor_token) for i in cos_sims_full_df["Gene"]]
|
430 |
+
|
431 |
if combos == 0:
|
432 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
433 |
+
"Test_avg_shift"],
|
434 |
+
ascending=[False,True])
|
435 |
elif combos == 1:
|
436 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Impact_component",
|
437 |
+
"Combo_minus_sum_shift"],
|
438 |
+
ascending=[False,True])
|
439 |
return cos_sims_full_df
|
440 |
|
|
|
441 |
class InSilicoPerturberStats:
|
442 |
valid_option_dict = {
|
443 |
+
"mode": {"goal_state_shift","vs_null","mixture_model","aggregate_data"},
|
444 |
+
"combos": {0,1},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
"anchor_gene": {None, str},
|
446 |
"cell_states_to_model": {None, dict},
|
447 |
+
"pickle_suffix": {None, str}
|
448 |
}
|
|
|
449 |
def __init__(
|
450 |
self,
|
451 |
mode="mixture_model",
|
|
|
460 |
"""
|
461 |
Initialize in silico perturber stats generator.
|
462 |
|
463 |
+
Parameters
|
464 |
+
----------
|
465 |
+
mode : {"goal_state_shift","vs_null","mixture_model","aggregate_data"}
|
466 |
+
Type of stats.
|
467 |
+
"goal_state_shift": perturbation vs. random for desired cell state shift
|
468 |
+
"vs_null": perturbation vs. null from provided null distribution dataset
|
469 |
+
"mixture_model": perturbation in impact vs. no impact component of mixture model (no goal direction)
|
470 |
+
"aggregate_data": aggregates cosine shifts for single perturbation in multiple cells
|
|
|
471 |
genes_perturbed : "all", list
|
472 |
+
Genes perturbed in isp experiment.
|
473 |
+
Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
|
474 |
+
Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
|
475 |
combos : {0,1,2}
|
476 |
+
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
477 |
anchor_gene : None, str
|
478 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
|
479 |
+
For example, if combos=1 and anchor_gene="ENSG00000136574":
|
480 |
+
analyzes data for anchor gene perturbed in combination with each other gene.
|
481 |
+
However, if combos=0 and anchor_gene="ENSG00000136574":
|
482 |
+
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
|
483 |
cell_states_to_model: None, dict
|
484 |
+
Cell states to model if testing perturbations that achieve goal state change.
|
485 |
+
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
|
486 |
+
state_key: key specifying name of column in .dataset that defines the start/goal states
|
487 |
+
start_state: value in the state_key column that specifies the start state
|
488 |
+
goal_state: value in the state_key column taht specifies the goal end state
|
489 |
+
alt_states: list of values in the state_key column that specify the alternate end states
|
490 |
+
For example: {"state_key": "disease",
|
491 |
+
"start_state": "dcm",
|
492 |
+
"goal_state": "nf",
|
493 |
+
"alt_states": ["hcm", "other1", "other2"]}
|
494 |
token_dictionary_file : Path
|
495 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
496 |
gene_name_id_dictionary_file : Path
|
497 |
+
Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
|
498 |
"""
|
499 |
|
500 |
self.mode = mode
|
|
|
503 |
self.anchor_gene = anchor_gene
|
504 |
self.cell_states_to_model = cell_states_to_model
|
505 |
self.pickle_suffix = pickle_suffix
|
506 |
+
|
507 |
self.validate_options()
|
508 |
|
509 |
# load token dictionary (Ensembl IDs:token)
|
510 |
with open(token_dictionary_file, "rb") as f:
|
511 |
self.gene_token_dict = pickle.load(f)
|
512 |
+
|
513 |
# load gene name dictionary (gene name:Ensembl ID)
|
514 |
with open(gene_name_id_dictionary_file, "rb") as f:
|
515 |
self.gene_name_id_dict = pickle.load(f)
|
|
|
520 |
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
521 |
|
522 |
def validate_options(self):
|
523 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
524 |
attr_value = self.__dict__[attr_name]
|
525 |
if type(attr_value) not in {list, dict}:
|
526 |
if attr_name in {"anchor_gene"}:
|
|
|
529 |
continue
|
530 |
valid_type = False
|
531 |
for option in valid_options:
|
532 |
+
# not sure what the last check is for?
|
533 |
+
if isinstance(attr_value, option): # and (option in [int,list,dict]):
|
|
|
534 |
valid_type = True
|
535 |
break
|
536 |
if not valid_type:
|
537 |
logger.error(
|
538 |
+
f"Invalid option for {attr_name}. " \
|
539 |
f"Valid options for {attr_name}: {valid_options}"
|
540 |
)
|
541 |
raise
|
542 |
+
|
543 |
if self.cell_states_to_model is not None:
|
544 |
if len(self.cell_states_to_model.items()) == 1:
|
545 |
logger.warning(
|
546 |
+
"The single value dictionary for cell_states_to_model will be " \
|
547 |
+
"replaced with a dictionary with named keys for start, goal, and alternate states. " \
|
548 |
+
"Please specify state_key, start_state, goal_state, and alt_states " \
|
549 |
+
"in the cell_states_to_model dictionary for future use. " \
|
550 |
+
"For example, cell_states_to_model={" \
|
551 |
+
"'state_key': 'disease', " \
|
552 |
+
"'start_state': 'dcm', " \
|
553 |
+
"'goal_state': 'nf', " \
|
554 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
555 |
)
|
556 |
+
for key,value in self.cell_states_to_model.items():
|
557 |
if (len(value) == 3) and isinstance(value, tuple):
|
558 |
+
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
|
|
|
|
|
|
|
|
559 |
if len(value[0]) == 1 and len(value[1]) == 1:
|
560 |
+
all_values = value[0]+value[1]+value[2]
|
561 |
if len(all_values) == len(set(all_values)):
|
562 |
continue
|
563 |
# reformat to the new named key format
|
|
|
566 |
"state_key": list(self.cell_states_to_model.keys())[0],
|
567 |
"start_state": state_values[0][0],
|
568 |
"goal_state": state_values[1][0],
|
569 |
+
"alt_states": state_values[2:][0]
|
570 |
}
|
571 |
+
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}:
|
572 |
+
if (self.cell_states_to_model["state_key"] is None) \
|
573 |
+
or (self.cell_states_to_model["start_state"] is None) \
|
574 |
+
or (self.cell_states_to_model["goal_state"] is None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
logger.error(
|
576 |
+
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.")
|
|
|
577 |
raise
|
578 |
+
|
579 |
+
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]:
|
580 |
+
logger.error(
|
581 |
+
"All states must be unique.")
|
|
|
|
|
582 |
raise
|
583 |
|
584 |
if self.cell_states_to_model["alt_states"] is not None:
|
585 |
+
if type(self.cell_states_to_model["alt_states"]) is not list:
|
586 |
logger.error(
|
587 |
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
|
588 |
)
|
589 |
raise
|
590 |
+
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])):
|
591 |
+
logger.error(
|
592 |
+
"All states must be unique.")
|
|
|
593 |
raise
|
594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
else:
|
596 |
logger.error(
|
597 |
+
"cell_states_to_model must only have the following four keys: " \
|
598 |
+
"'state_key', 'start_state', 'goal_state', 'alt_states'." \
|
599 |
+
"For example, cell_states_to_model={" \
|
600 |
+
"'state_key': 'disease', " \
|
601 |
+
"'start_state': 'dcm', " \
|
602 |
+
"'goal_state': 'nf', " \
|
603 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
604 |
)
|
605 |
raise
|
606 |
|
607 |
if self.anchor_gene is not None:
|
608 |
self.anchor_gene = None
|
609 |
logger.warning(
|
610 |
+
"anchor_gene set to None. " \
|
611 |
+
"Currently, anchor gene not available " \
|
612 |
+
"when modeling multiple cell states.")
|
613 |
+
|
|
|
614 |
if self.combos > 0:
|
615 |
if self.anchor_gene is None:
|
616 |
logger.error(
|
617 |
+
"Currently, stats are only supported for combination " \
|
618 |
+
"in silico perturbation run with anchor gene. Please add " \
|
619 |
+
"anchor gene when using with combos > 0. ")
|
|
|
620 |
raise
|
621 |
+
|
622 |
if (self.mode == "mixture_model") and (self.genes_perturbed != "all"):
|
623 |
logger.error(
|
624 |
+
"Mixture model mode requires multiple gene perturbations to fit model " \
|
625 |
+
"so is incompatible with a single grouped perturbation.")
|
|
|
626 |
raise
|
627 |
if (self.mode == "aggregate_data") and (self.genes_perturbed == "all"):
|
628 |
logger.error(
|
629 |
+
"Simple data aggregation mode is for single perturbation in multiple cells " \
|
630 |
+
"so is incompatible with a genes_perturbed being 'all'.")
|
631 |
+
raise
|
632 |
+
|
633 |
+
def get_stats(self,
|
634 |
+
input_data_directory,
|
635 |
+
null_dist_data_directory,
|
636 |
+
output_directory,
|
637 |
+
output_prefix,
|
638 |
+
null_dict_list=None,
|
639 |
+
recursive=False):
|
|
|
|
|
640 |
"""
|
641 |
Get stats for in silico perturbation data and save as results in output_directory.
|
642 |
|
643 |
+
Parameters
|
644 |
+
----------
|
645 |
input_data_directory : Path
|
646 |
+
Path to directory containing cos_sim dictionary inputs
|
647 |
null_dist_data_directory : Path
|
648 |
+
Path to directory containing null distribution cos_sim dictionary inputs
|
649 |
output_directory : Path
|
650 |
+
Path to directory where perturbation data will be saved as .csv
|
651 |
output_prefix : str
|
652 |
+
Prefix for output .csv
|
653 |
+
null_dict_list: dict
|
654 |
+
List of loaded null distribtion dictionary if more than one comparison vs. the null is to be performed
|
655 |
+
|
656 |
+
Outputs
|
657 |
+
----------
|
658 |
Definition of possible columns in .csv output file.
|
659 |
+
|
660 |
+
Of note, not all columns will be present in all output files.
|
661 |
+
Some columns are specific to particular perturbation modes.
|
662 |
+
|
663 |
+
"Gene": gene token
|
664 |
+
"Gene_name": gene name
|
665 |
+
"Ensembl_ID": gene Ensembl ID
|
666 |
+
"N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
|
667 |
+
"Sig": 1 if FDR<0.05, otherwise 0
|
668 |
+
|
669 |
+
"Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
|
670 |
+
"Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
|
671 |
+
"Goal_end_vs_random_pval": pvalue of cosine shift from start state towards goal end state by Wilcoxon
|
672 |
+
pvalue compares shift caused by perturbing given gene compared to random genes
|
673 |
+
"Alt_end_vs_random_pval": pvalue of cosine shift from start state towards alternate end state by Wilcoxon
|
674 |
+
pvalue compares shift caused by perturbing given gene compared to random genes
|
675 |
+
"Goal_end_FDR": Benjamini-Hochberg correction of "Goal_end_vs_random_pval"
|
676 |
+
"Alt_end_FDR": Benjamini-Hochberg correction of "Alt_end_vs_random_pval"
|
677 |
+
|
678 |
+
"Test_avg_shift": cosine shift in response to given perturbation in cells from test distribution
|
679 |
+
"Null_avg_shift": cosine shift in response to given perturbation in cells from null distribution (e.g. random cells)
|
680 |
+
"Test_vs_null_avg_shift": difference in cosine shift in cells from test vs. null distribution
|
681 |
+
(i.e. "Test_avg_shift" minus "Null_avg_shift")
|
682 |
+
"Test_vs_null_pval": pvalue of cosine shift in test vs. null distribution
|
683 |
+
"Test_vs_null_FDR": Benjamini-Hochberg correction of "Test_vs_null_pval"
|
684 |
+
"N_Detections_test": "N_Detections" in cells from test distribution
|
685 |
+
"N_Detections_null": "N_Detections" in cells from null distribution
|
686 |
+
|
687 |
+
"Anchor_shift": cosine shift in response to given perturbation of anchor gene
|
688 |
+
"Test_token_shift": cosine shift in response to given perturbation of test gene
|
689 |
+
"Sum_of_indiv_shifts": sum of cosine shifts in response to individually perturbing test and anchor genes
|
690 |
+
"Combo_shift": cosine shift in response to given perturbation of both anchor and test gene(s) in combination
|
691 |
+
"Combo_minus_sum_shift": difference of cosine shifts in response combo perturbation vs. sum of individual perturbations
|
692 |
+
(i.e. "Combo_shift" minus "Sum_of_indiv_shifts")
|
693 |
+
"Impact_component": whether the given perturbation was modeled to be within the impact component by the mixture model
|
694 |
+
1: within impact component; 0: not within impact component
|
695 |
+
"Impact_component_percent": percent of cells in which given perturbation was modeled to be within impact component
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
"""
|
697 |
|
698 |
+
if self.mode not in ["goal_state_shift", "vs_null", "mixture_model","aggregate_data"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
699 |
logger.error(
|
700 |
+
"Currently, only modes available are stats for goal_state_shift, " \
|
701 |
+
"vs_null (comparing to null distribution), and " \
|
702 |
+
"mixture_model (fitting mixture model for perturbations with or without impact).")
|
|
|
|
|
703 |
raise
|
704 |
|
705 |
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
|
|
708 |
# obtain total gene list
|
709 |
if (self.combos == 0) and (self.anchor_token is not None):
|
710 |
# cos sim data for effect of gene perturbation on the embedding of each other gene
|
711 |
+
dict_list = read_dictionaries(input_data_directory, "gene", self.anchor_token, self.cell_states_to_model, self.pickle_suffix, recursive=recursive)
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
gene_list = get_gene_list(dict_list, "gene")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
else:
|
714 |
# cos sim data for effect of gene perturbation on the embedding of each cell
|
715 |
+
dict_list = read_dictionaries(input_data_directory, "cell", self.anchor_token, self.cell_states_to_model, self.pickle_suffix, recursive=recursive)
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
gene_list = get_gene_list(dict_list, "cell")
|
717 |
+
|
718 |
# initiate results dataframe
|
719 |
+
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
720 |
+
"Gene_name": [self.token_to_gene_name(item) \
|
721 |
+
for item in gene_list],
|
722 |
+
"Ensembl_ID": [token_tuple_to_ensembl_ids(genes, self.gene_token_id_dict) \
|
723 |
+
if self.genes_perturbed != "all" else \
|
724 |
+
self.gene_token_id_dict[genes[1]] \
|
725 |
+
if isinstance(genes,tuple) else \
|
726 |
+
self.gene_token_id_dict[genes] \
|
727 |
+
for genes in gene_list]}, \
|
728 |
+
index=[i for i in range(len(gene_list))])
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
if self.mode == "goal_state_shift":
|
731 |
+
cos_sims_df = isp_stats_to_goal_state(cos_sims_df_initial, dict_list, self.cell_states_to_model, self.genes_perturbed)
|
732 |
+
|
|
|
|
|
|
|
|
|
|
|
733 |
elif self.mode == "vs_null":
|
734 |
if null_dict_list is None:
|
735 |
+
null_dict_list = read_dictionaries(null_dist_data_directory, "cell", self.anchor_token, self.cell_states_to_model, self.pickle_suffix)
|
736 |
+
cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list, null_dict_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
737 |
|
738 |
elif self.mode == "mixture_model":
|
739 |
+
cos_sims_df = isp_stats_mixture_model(cos_sims_df_initial, dict_list, self.combos, self.anchor_token)
|
740 |
+
|
|
|
|
|
741 |
elif self.mode == "aggregate_data":
|
742 |
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list)
|
743 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
744 |
# save perturbation stats to output_path
|
745 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
746 |
cos_sims_df.to_csv(output_path)
|
747 |
|
748 |
def token_to_gene_name(self, item):
|
749 |
+
if isinstance(item,int):
|
750 |
+
return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
|
751 |
+
if isinstance(item,tuple):
|
752 |
+
return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|