metadata
library_name: peft
license: cc-by-sa-4.0
datasets:
- ctu-aic/csfever_v2
language:
- cs
metrics:
- accuracy
- f1
- recall
- precision
pipeline_tag: text-classification
Model card for lora-xlm-roberta-large-squad2-csfever_v2-f1
Model details
Model for natural language inference.
Training procedure
Framework versions
- PEFT 0.4.0
Uses
PEFT (Transformers)
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSequenceClassification, Pipeline, AutoTokenizer
config = PeftConfig.from_pretrained("ctu-aic/lora-xlm-roberta-large-squad2-csfever_v2-f1")
model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, config)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
#pipeline for NLI
class NliPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "evidence" in kwargs:
preprocess_kwargs["evidence"] = kwargs["evidence"]
return preprocess_kwargs, {}, {}
def preprocess(self, claim, evidence=""):
model_input = self.tokenizer(claim, evidence, return_tensors=self.framework, truncation=True)
return model_input
def _forward(self, model_inputs):
outputs = self.model(**model_inputs)
return outputs
def postprocess(self, model_outputs):
logits = model_outputs.logits
predictions = torch.argmax(logits, dim=-1)
return {"logits": logits, "label": int(predictions[0])}
nli_pipeline = NliPipeline(model=model, tokenizer=tokenizer)
nli_pipeline("claim", "evidence")