Edit model card

Model Card for Model ID

Lora for Blip2 to generate QAs from a picture.

Infertece Demo

from datasets import load_dataset 
from peft import PeftModel
import torch
from transformers import AutoProcessor, Blip2ForConditionalGeneration

# prepare the model
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded", device_map="auto", load_in_8bit=True)
model = PeftModel.from_pretrained(model, "curlyfu/blip2-OCR-QA-generation")

# prepare inputs
dataset = load_dataset("howard-hou/OCR-VQA", split="test")
example = dataset[10]
image = example["image"]

inputs = processor(images=image, return_tensors="pt").to("cuda", torch.float16)
pixel_values = inputs.pixel_values

generated_ids = model.generate(pixel_values=pixel_values, max_length=100)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_caption)

Thanks

huggingface/notebooks

Downloads last month
31
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for curlyfu/blip2-QA-generation

Adapter
(36)
this model