File size: 1,762 Bytes
73c9c5c
 
 
 
 
 
3a05d22
394d86b
 
 
 
 
73c9c5c
 
394d86b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c9c5c
 
 
 
 
 
 
3a05d22
394d86b
 
 
 
 
 
73c9c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a05d22
 
 
 
73c9c5c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_model
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wnut_17
      type: wnut_17
      config: wnut_17
      split: validation
      args: wnut_17
    metrics:
    - name: Precision
      type: precision
      value: 0.7006578947368421
    - name: Recall
      type: recall
      value: 0.5095693779904307
    - name: F1
      type: f1
      value: 0.590027700831025
    - name: Accuracy
      type: accuracy
      value: 0.9553054866806535
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ner_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2586
- Precision: 0.7007
- Recall: 0.5096
- F1: 0.5900
- Accuracy: 0.9553

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results



### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0