metadata
language: en
library_name: bm25s
tags:
- bm25
- bm25s
- retrieval
- search
- lexical
BM25S Index
This is a BM25S index created with the bm25s
library (version 0.2.0
), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks.
BM25S Related Links:
Installation
You can install the bm25s
library with pip
:
pip install "bm25s==0.2.0"
# For huggingface hub usage
pip install huggingface_hub
Loading a bm25s
index
You can use this index for information retrieval tasks. Here is an example:
import bm25s
from bm25s.hf import BM25HF
# Load the index
retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency")
# You can retrieve now
query = "a cat is a feline"
results = retriever.retrieve(bm25s.tokenize(query), k=3)
Saving a bm25s
index
You can save a bm25s
index to the Hugging Face Hub. Here is an example:
import bm25s
from bm25s.hf import BM25HF
corpus = [
"northwest bank",
"misfits market",
"merrick bank login",
"marketing",
"market place",
"jetblue customer service",
"internal revenue service",
"how to make money online",
"gordon food service",
"futures market",
"frontier airlines customer service",
"food banks near me",
"first convenience bank",
"eastern bank",
"dollar bank",
]
retriever = BM25HF(corpus=corpus)
retriever.index(bm25s.tokenize(corpus))
token = None # You can get a token from the Hugging Face website
retriever.save_to_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", token=token)
Advanced usage
You can leverage more advanced features of the BM25S library during load_from_hub
:
# Load corpus and index in memory-map (mmap=True) to reduce memory
retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", load_corpus=True, mmap=True)
# Load a different branch/revision
retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", revision="main")
# Change directory where the local files should be downloaded
retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", local_dir="/path/to/dir")
# Load private repositories with a token:
retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", token=token)
Stats
This dataset was created using the following data: 497 keywords Cryptocurrency (semrush)
Statistic | Value |
---|---|
Number of documents | 602959 |
Number of tokens | 2414020 |
Average tokens per document | 4.0 |
Parameters
The index was created with the following parameters:
Parameter | Value |
---|---|
k1 | 1.5 |
b | 0.75 |
delta | 0.5 |
method | lucene |
idf method | lucene |
Citation
To cite bm25s
, please use the following bibtex:
@misc{lu_2024_bm25s,
title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring},
author={Xing Han Lù},
year={2024},
eprint={2407.03618},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.03618},
}