damand2061's picture
End of training
7342f85
|
raw
history blame
3.67 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
  - generated_from_keras_callback
model-index:
  - name: damand2061/innermore-x-indobert-base-p1
    results: []

damand2061/innermore-x-indobert-base-p1

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0007
  • Validation Loss: 0.2387
  • Validation Precision: 0.7583
  • Validation Recall: 0.6987
  • Validation F1: 0.7273
  • Validation Accuracy: 0.9535
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy Epoch
0.5438 0.2878 0.5065 0.5109 0.5087 0.9161 0
0.1798 0.1890 0.6416 0.6332 0.6374 0.9425 1
0.0764 0.2122 0.5833 0.5502 0.5663 0.9338 2
0.0491 0.1986 0.7729 0.6987 0.7339 0.9545 3
0.0333 0.2071 0.75 0.6812 0.7140 0.9545 4
0.0252 0.1806 0.7456 0.7424 0.7440 0.9530 5
0.0138 0.2283 0.7018 0.6987 0.7002 0.9497 6
0.0073 0.2202 0.7318 0.7031 0.7171 0.9530 7
0.0065 0.2174 0.7762 0.7118 0.7426 0.9540 8
0.0037 0.2373 0.7619 0.6987 0.7289 0.9516 9
0.0021 0.2343 0.7594 0.7031 0.7302 0.9535 10
0.0015 0.2478 0.7546 0.7118 0.7326 0.9530 11
0.0011 0.2405 0.7630 0.7031 0.7318 0.9540 12
0.0006 0.2388 0.7583 0.6987 0.7273 0.9535 13
0.0007 0.2387 0.7583 0.6987 0.7273 0.9535 14

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Tokenizers 0.15.2