Vision-and-Language Transformer (ViLT), fine-tuned on COCO
Vision-and-Language Transformer (ViLT) model fine-tuned on COCO. It was introduced in the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Kim et al. and first released in this repository.
Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team.
Intended uses & limitations
You can use the model for image and text retrieval.
How to use
Here is how to use the model in PyTorch:
from transformers import ViltProcessor, ViltForImageAndTextRetrieval
import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-coco")
model = ViltForImageAndTextRetrieval.from_pretrained("dandelin/vilt-b32-finetuned-coco")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
scores = dict()
for text in texts:
encoding = processor(image, text, return_tensors="pt")
outputs = model(**encoding)
scores[text] = outputs.logits[0, :].item()
Training data
(to do)
Training procedure
Preprocessing
(to do)
Pretraining
(to do)
Evaluation results
(to do)
BibTeX entry and citation info
@misc{kim2021vilt,
title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision},
author={Wonjae Kim and Bokyung Son and Ildoo Kim},
year={2021},
eprint={2102.03334},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
- Downloads last month
- 578