daniejps10's picture
Update README.md
48d8014
metadata
license: apache-2.0
base_model: distilroberta-base
tags:
  - text-classification
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
widget:
  - text:
      - >-
        Yucaipa owned Dominick 's before selling the chain to Safeway in 1998
        for $ 2.5 billion.
      - >-
        Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to
        Safeway for $ 1.8 billion in 1998.
    example_title: Not Equivalent
  - text:
      - >-
        Revenue in the first quarter of the year dropped 15 percent from the
        same period a year earlier.
      - >-
        With the scandal hanging over Stewart's company revenue the first
        quarter of the year dropped 15 percent from the same period a year
        earlier.
    example_title: Equivalent
model-index:
  - name: platzi-distilroberta-base-mrpc-glue-djps10
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7965686274509803
          - name: F1
            type: f1
            value: 0.8672

platzi-distilroberta-base-mrpc-glue-djps10

This model is a fine-tuned version of distilroberta-base on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4939
  • Accuracy: 0.7966
  • F1: 0.8672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5453 1.09 500 0.4939 0.7966 0.8672
0.3506 2.18 1000 0.7823 0.8186 0.8693

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3