Lightweight Learned Image Compression (LLIC)
Installation
- Follow the installation instructions for torch and compressai
- Install LLIC via pip:
pip install LLIC
Pre-trained checkpoints
An imagenet-trained checkpoint for RGB images is available on huggingface: LLIC_rgb_v0.0.1.pth
Request access to other checkpoints (grayscale, hyperspectral, microscopy, etc)
Usage example
import torch
import zlib
import numpy as np
import compressai
from io import BytesIO
from IPython.display import display
from PIL import Image
from LLIC import LLIC
from torchvision.transforms import ToPILImage, PILToTensor
Load the model
checkpoint = torch.load("LLIC_rgb_v0.0.1.pth",map_location="cpu")
codec = LLIC.RateDistortionAutoEncoder()
codec.load_state_dict(checkpoint['model_state_dict'])
<All keys matched successfully>
Download example image
!wget https://r0k.us/graphics/kodak/kodak/kodim05.png
original_image = Image.open("kodim05.png")
original_image
The analysis and synthesis transforms expect dimensions to be multiples of of 16. Zero padding can be applied otherwise.
def pad(x, p=2**5):
h, w = x.size(2), x.size(3)
pad, _ = compressai.ops.compute_padding(h, w, min_div=p)
return torch.nn.functional.pad(x, pad, mode="constant", value=0)
def preprocess(pil_image):
tensor = PILToTensor()(pil_image)
tensor = tensor.unsqueeze(0)
tensor = tensor.to(torch.float)
tensor = tensor/255
tensor = tensor - 0.5
return pad(tensor)
Compress the image and save file
padded_image = preprocess(original_image)
original_size = padded_image.shape
compressed_image, compressed_shape = LLIC.compress(padded_image, codec)
with open("kodim05.llic", 'wb') as f:
f.write(compressed_image)
Decompress and view the image
def crop(x, size):
H, W = x.size(2), x.size(3)
h, w = size
_, unpad = compressai.ops.compute_padding(h, w, out_h=H, out_w=W)
return torch.nn.functional.pad(x, unpad, mode="constant", value=0)
def postprocess(tensor):
tensor = tensor[0] + 0.5
tensor = 255*tensor
tensor = tensor.clamp(0,255)
tensor = tensor.to(torch.uint8)
pil_image = ToPILImage()(tensor)
return pil_image
with open("kodim05.llic", 'rb') as f:
compressed_image = f.read()
tensor = LLIC.decompress(compressed_image, compressed_shape, codec)
recovered_image = postprocess(crop(tensor, (512,768)))
recovered_image