|
--- |
|
tags: |
|
- tabular-classification |
|
- sklearn |
|
dataset: |
|
- titanic |
|
widget: |
|
structuredData: |
|
PassengerId: |
|
- 1191 |
|
Pclass: |
|
- 1 |
|
Name: |
|
- Sherlock Holmes |
|
Sex: |
|
- male |
|
SibSp: |
|
- 0 |
|
Parch: |
|
- 0 |
|
Ticket: |
|
- C.A.29395 |
|
Fare: |
|
- 12 |
|
Cabin: |
|
- F44 |
|
Embarked: |
|
- S |
|
--- |
|
|
|
## Titanic (Survived/Not Survived) - Binary Classification |
|
|
|
### How to use |
|
|
|
```python |
|
from huggingface_hub import hf_hub_url, cached_download |
|
import joblib |
|
import pandas as pd |
|
import numpy as np |
|
from tensorflow.keras.models import load_model |
|
|
|
REPO_ID = 'danupurnomo/dummy-titanic' |
|
PIPELINE_FILENAME = 'final_pipeline.pkl' |
|
TF_FILENAME = 'titanic_model.h5' |
|
|
|
model_pipeline = joblib.load(cached_download( |
|
hf_hub_url(REPO_ID, PIPELINE_FILENAME) |
|
)) |
|
|
|
model_seq = load_model(cached_download( |
|
hf_hub_url(REPO_ID, TF_FILENAME) |
|
)) |
|
``` |
|
|
|
### Example A New Data |
|
```python |
|
new_data = { |
|
'PassengerId': 1191, |
|
'Pclass': 1, |
|
'Name': 'Sherlock Holmes', |
|
'Sex': 'male', |
|
'Age': 30, |
|
'SibSp': 0, |
|
'Parch': 0, |
|
'Ticket': 'C.A.29395', |
|
'Fare': 12, |
|
'Cabin': 'F44', |
|
'Embarked': 'S' |
|
} |
|
new_data = pd.DataFrame([new_data]) |
|
``` |
|
|
|
### Transform Inference-Set |
|
```python |
|
new_data_transform = model_pipeline.transform(new_data) |
|
``` |
|
|
|
### Predict using Neural Networks |
|
```python |
|
y_pred_inf_single = model_seq.predict(new_data_transform) |
|
y_pred_inf_single = np.where(y_pred_inf_single >= 0.5, 1, 0) |
|
print('Result : ', y_pred_inf_single) |
|
# [[0]] |
|
``` |