See axolotl config
axolotl version: 0.4.0
base_model: sail/Sailor-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
#we used a small dataset to teach the model function calling abilities
- path: ./echonettobatrain.jsonl
ds_type: json
type: sharegpt
dataset_prepared_path: last_run_function_call
#0.05
val_set_size: 0.02
output_dir: ./Sailor-7B-toba
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: false
eval_sample_packing: true
pad_to_sequence_len: true
# important, to get the same trainable parameters then for a qlora training with lora_r=32 and lora_alpha=16 you need to adjust the lora_r depending on the amount of filtered layers you want to use. With top_n=4 you would go for lora_r= 256
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: false
lora_fan_in_fan_out:
lora_target_modules:
- layers.0.self_attn.v_proj
- layers.1.self_attn.v_proj
- layers.2.self_attn.v_proj
- layers.3.self_attn.v_proj
- layers.4.self_attn.v_proj
- layers.5.self_attn.v_proj
- layers.6.self_attn.v_proj
- layers.7.self_attn.v_proj
- layers.8.self_attn.v_proj
- layers.9.self_attn.v_proj
- layers.10.self_attn.v_proj
- layers.11.self_attn.v_proj
- layers.12.self_attn.v_proj
- layers.13.self_attn.v_proj
- layers.14.self_attn.v_proj
- layers.15.self_attn.v_proj
- layers.16.self_attn.v_proj
- layers.17.self_attn.v_proj
- layers.18.self_attn.v_proj
- layers.19.self_attn.v_proj
- layers.20.self_attn.v_proj
- layers.21.self_attn.v_proj
- layers.22.self_attn.v_proj
- layers.23.self_attn.v_proj
- layers.24.self_attn.v_proj
- layers.25.self_attn.v_proj
- layers.26.self_attn.v_proj
- layers.27.self_attn.v_proj
- layers.28.self_attn.v_proj
- layers.29.self_attn.v_proj
- layers.30.self_attn.v_proj
- layers.31.self_attn.v_proj
- layers.0.self_attn.k_proj
- layers.1.self_attn.k_proj
- layers.2.self_attn.k_proj
- layers.3.self_attn.k_proj
- layers.4.self_attn.k_proj
- layers.5.self_attn.k_proj
- layers.6.self_attn.k_proj
- layers.7.self_attn.k_proj
- layers.8.self_attn.k_proj
- layers.9.self_attn.k_proj
- layers.10.self_attn.k_proj
- layers.11.self_attn.k_proj
- layers.12.self_attn.k_proj
- layers.13.self_attn.k_proj
- layers.14.self_attn.k_proj
- layers.15.self_attn.k_proj
- layers.16.self_attn.k_proj
- layers.17.self_attn.k_proj
- layers.18.self_attn.k_proj
- layers.19.self_attn.k_proj
- layers.20.self_attn.k_proj
- layers.21.self_attn.k_proj
- layers.22.self_attn.k_proj
- layers.23.self_attn.k_proj
- layers.24.self_attn.k_proj
- layers.25.self_attn.k_proj
- layers.26.self_attn.k_proj
- layers.27.self_attn.k_proj
- layers.28.self_attn.k_proj
- layers.29.self_attn.k_proj
- layers.30.self_attn.k_proj
- layers.31.self_attn.k_proj
- layers.0.self_attn.o_proj
- layers.1.self_attn.o_proj
- layers.2.self_attn.o_proj
- layers.3.self_attn.o_proj
- layers.4.self_attn.o_proj
- layers.5.self_attn.o_proj
- layers.6.self_attn.o_proj
- layers.7.self_attn.o_proj
- layers.8.self_attn.o_proj
- layers.9.self_attn.o_proj
- layers.10.self_attn.o_proj
- layers.11.self_attn.o_proj
- layers.12.self_attn.o_proj
- layers.13.self_attn.o_proj
- layers.14.self_attn.o_proj
- layers.15.self_attn.o_proj
- layers.16.self_attn.o_proj
- layers.17.self_attn.o_proj
- layers.18.self_attn.o_proj
- layers.19.self_attn.o_proj
- layers.20.self_attn.o_proj
- layers.21.self_attn.o_proj
- layers.22.self_attn.o_proj
- layers.23.self_attn.o_proj
- layers.24.self_attn.o_proj
- layers.25.self_attn.o_proj
- layers.26.self_attn.o_proj
- layers.27.self_attn.o_proj
- layers.28.self_attn.o_proj
- layers.29.self_attn.o_proj
- layers.30.self_attn.o_proj
- layers.31.self_attn.o_proj
- layers.0.self_attn.q_proj
- layers.1.self_attn.q_proj
- layers.2.self_attn.q_proj
- layers.3.self_attn.q_proj
- layers.4.self_attn.q_proj
- layers.5.self_attn.q_proj
- layers.6.self_attn.q_proj
- layers.7.self_attn.q_proj
- layers.8.self_attn.q_proj
- layers.9.self_attn.q_proj
- layers.10.self_attn.q_proj
- layers.11.self_attn.q_proj
- layers.12.self_attn.q_proj
- layers.13.self_attn.q_proj
- layers.14.self_attn.q_proj
- layers.15.self_attn.q_proj
- layers.16.self_attn.q_proj
- layers.17.self_attn.q_proj
- layers.18.self_attn.q_proj
- layers.19.self_attn.q_proj
- layers.20.self_attn.q_proj
- layers.21.self_attn.q_proj
- layers.22.self_attn.q_proj
- layers.23.self_attn.q_proj
- layers.24.self_attn.q_proj
- layers.25.self_attn.q_proj
- layers.26.self_attn.q_proj
- layers.27.self_attn.q_proj
- layers.28.self_attn.q_proj
- layers.29.self_attn.q_proj
- layers.30.self_attn.q_proj
- layers.31.self_attn.q_proj
- layers.0.mlp.down_proj
- layers.1.mlp.down_proj
- layers.2.mlp.down_proj
- layers.3.mlp.down_proj
- layers.4.mlp.down_proj
- layers.5.mlp.down_proj
- layers.6.mlp.down_proj
- layers.7.mlp.down_proj
- layers.8.mlp.down_proj
- layers.9.mlp.down_proj
- layers.10.mlp.down_proj
- layers.11.mlp.down_proj
- layers.12.mlp.down_proj
- layers.13.mlp.down_proj
- layers.14.mlp.down_proj
- layers.15.mlp.down_proj
- layers.16.mlp.down_proj
- layers.17.mlp.down_proj
- layers.18.mlp.down_proj
- layers.19.mlp.down_proj
- layers.20.mlp.down_proj
- layers.21.mlp.down_proj
- layers.22.mlp.down_proj
- layers.23.mlp.down_proj
- layers.24.mlp.down_proj
- layers.25.mlp.down_proj
- layers.26.mlp.down_proj
- layers.27.mlp.down_proj
- layers.28.mlp.down_proj
- layers.29.mlp.down_proj
- layers.30.mlp.down_proj
- layers.31.mlp.down_proj
- layers.0.mlp.up_proj
- layers.1.mlp.up_proj
- layers.2.mlp.up_proj
- layers.3.mlp.up_proj
- layers.4.mlp.up_proj
- layers.5.mlp.up_proj
- layers.6.mlp.up_proj
- layers.7.mlp.up_proj
- layers.8.mlp.up_proj
- layers.9.mlp.up_proj
- layers.10.mlp.up_proj
- layers.11.mlp.up_proj
- layers.12.mlp.up_proj
- layers.13.mlp.up_proj
- layers.14.mlp.up_proj
- layers.15.mlp.up_proj
- layers.16.mlp.up_proj
- layers.17.mlp.up_proj
- layers.18.mlp.up_proj
- layers.19.mlp.up_proj
- layers.20.mlp.up_proj
- layers.21.mlp.up_proj
- layers.22.mlp.up_proj
- layers.23.mlp.up_proj
- layers.24.mlp.up_proj
- layers.25.mlp.up_proj
- layers.26.mlp.up_proj
- layers.27.mlp.up_proj
- layers.28.mlp.up_proj
- layers.29.mlp.up_proj
- layers.30.mlp.up_proj
- layers.31.mlp.up_proj
# important: you need to unfreeze the lm.head
- lm.head
wandb_project: axolotl-sailor7b-toba
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00025
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps: 0.2
eval_table_size:
eval_table_max_new_tokens: 128
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Sailor-7B-toba
This model is a fine-tuned version of sail/Sailor-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.0998 | 0.0 | 1 | 5.1501 |
1.3477 | 0.6 | 622 | 1.6304 |
1.268 | 1.2 | 1244 | 1.4755 |
0.8714 | 1.8 | 1866 | 1.2799 |
0.4408 | 2.4 | 2488 | 1.3876 |
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 0