Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center">
|
2 |
+
Commonsene Object Affordance Task [COAT]
|
3 |
+
</h1>
|
4 |
+
|
5 |
+
<p align="center">
|
6 |
+
<br>
|
7 |
+
<a href="https://openreview.net/pdf?id=xYkdmEGhIM">OpenReview</a> | <a href="https://drive.google.com/drive/u/4/folders/1reH0JHhPM_tFzDMcAaJF0PycFMixfIbo">Datasets</a>
|
8 |
+
</p>
|
9 |
+
|
10 |
+
<p align="center">
|
11 |
+
<img src="https://github.com/com-phy-affordance/COAT/blob/main/utility-intro(1).png" alt="Paper Summary Flowchart">
|
12 |
+
<em>A 3 level framework adumbrating human commonsense style reasoning for estimating object affordance for various tasks</em>
|
13 |
+
</p>
|
14 |
+
|
15 |
+
### Experimental Setup:
|
16 |
+
- Task List: [tasks](https://github.com/com-phy-affordance/com-affordance/blob/main/tasks.json)
|
17 |
+
- Object List: [objects](https://github.com/com-phy-affordance/com-affordance/blob/main/concepts.json)
|
18 |
+
- Utility List[^1]: [utilities](https://github.com/com-phy-affordance/com-affordance/blob/main/concepts.json)
|
19 |
+
- Variables Used:
|
20 |
+
```temperature```, ```mass```, ```material```, ```already-in-use```, ```condition```
|
21 |
+
|
22 |
+
### Utility Level Pruning:
|
23 |
+
This gives us ```Utility```to``Object`` mappings also called ```utility objects```
|
24 |
+
- GT Object-Utility Mappings : [utility-mappings](https://github.com/com-phy-affordance/com-affordance/blob/main/objects.json)
|
25 |
+
|
26 |
+
### Task-u(Utility Level):
|
27 |
+
Here we evaluate models on their ability to prune out appropriate objects on the basis of Utility.
|
28 |
+
- GT (Utility)-(Object) Mappings: [utility-objects](https://github.com/com-phy-affordance/com-affordance/blob/main/objects.json)
|
29 |
+
- Task-u Dataset: [4 Variations](https://drive.google.com/drive/folders/1JJSIicKGp0a7ThsenKl0XWKsTtPL_b5z?usp=sharing)
|
30 |
+
|
31 |
+
### Task-0(Context Level):
|
32 |
+
Here we evaluate models on their ability to prune out appropriate objects on the basis of Context. This gives us ```(Task,Utility)```to``Object`` mappings also called ```context objects```
|
33 |
+
- GT (Task-Utility)-(Object) Mappings: [context-objects](https://github.com/com-phy-affordance/com-affordance/blob/main/oracle.json)
|
34 |
+
- Task-0 Dataset: [4 Variations](https://drive.google.com/drive/folders/1reH0JHhPM_tFzDMcAaJF0PycFMixfIbo?usp=sharing)
|
35 |
+
|
36 |
+
### Task-1(Physical State Level):
|
37 |
+
Here we evaluate models on their ability to prune out the ```ideal``` configuration when presented with a number of ```context object``` configurations. (Something that is pretty obvious to humans)
|
38 |
+
- All Possible Common Configurations: [possible configurations](https://github.com/com-phy-affordance/com-affordance/blob/main/task-1/possible_configurations_v1.json)
|
39 |
+
- Ideal Configurations: [ideal configurations](https://github.com/com-phy-affordance/com-affordance/blob/main/task-1/pouch_config_oracle.json)
|
40 |
+
- Commonsense Common Occurence Variables: [common variables values](https://github.com/com-phy-affordance/com-affordance/blob/main/task-1/common_var_responses.json)
|
41 |
+
- Task-1 Dataset: [12 Variations](https://drive.google.com/drive/folders/1reH0JHhPM_tFzDMcAaJF0PycFMixfIbo?usp=sharing)
|
42 |
+
|
43 |
+
### Task-2(Physical State Level):
|
44 |
+
Here we evaluate models on their ability to prune out the most appropriate```sub-optimal``` configuration when presented with a number of sub-optimal configurations of ```context objects```. (Something that is pretty obvious to humans)
|
45 |
+
- Suboptimal Configurations: [suboptimal configurations](https://github.com/com-phy-affordance/com-affordance/blob/main/task-2/pouch_suboptimal.json)
|
46 |
+
- Human Preference Material Order: [material preference](https://github.com/com-phy-affordance/com-affordance/blob/main/task-2/material_preference.json)
|
47 |
+
- Task-2 Dataset: [14 Variations](https://drive.google.com/drive/folders/1reH0JHhPM_tFzDMcAaJF0PycFMixfIbo?usp=sharing)
|
48 |
+
---------------------------------------------------------------------------------------------------------------
|
49 |
+
|
50 |
+
### Finetuning Datasets
|
51 |
+
|
52 |
+
Please refer to [Appendix F.1](https://openreview.net/pdf?id=xYkdmEGhIM) for dataset details
|
53 |
+
|
54 |
+
- Finetuning Dataset for Object Level Selection : [Google Drive Link](https://drive.google.com/drive/folders/1GtrGQxTTtYEczYK1ytB71Y2HGxM1TEu5?usp=drive_link)
|
55 |
+
- Finetuning Dataset for Physical State Level Selection : [Google Drive Link](https://drive.google.com/drive/folders/1FiZc8u_G8wUrN4NroZmIgmcTe0jor72T?usp=drive_link)
|
56 |
+
|
57 |
+
### Full Pipeline Evaluation Datasets
|
58 |
+
|
59 |
+
Please refer to [Appendix F.2](https://openreview.net/pdf?id=xYkdmEGhIM) for dataset deatails
|
60 |
+
|
61 |
+
- Ideal Object Choice Datasets : [Google Drive Link](https://drive.google.com/drive/folders/1SMM2TU1BKH32oKtfmW0gS3QfyUA68IZ0?usp=drive_link)
|
62 |
+
- Moderate Object Choice Datasets : [Google Drive Link](https://drive.google.com/drive/folders/1SlZQBp4Iao3VHnmOFZMKfzn_LWOctnVE?usp=drive_link)
|
63 |
+
|
64 |
+
|
65 |
+
<h3>Prompts Used</h3>
|
66 |
+
<p>
|
67 |
+
|
68 |
+
[Quantitative Examples](https://giant-licorice-a62.notion.site/Prompts-for-Appendix-Examples-d58e0184d1c546bd8632024de3f7ac25)
|
69 |
+
</p>
|
70 |
+
|
71 |
+
### Implementations For Language Models:
|
72 |
+
- PaLM/GPT3.5-Turbo: API
|
73 |
+
- LLama13B: huggingface text generation pipeline [link](https://huggingface.co/blog/llama2)
|
74 |
+
- Vicuna13B: lmsys [link](https://github.com/lm-sys/FastChat)
|
75 |
+
- Vicuna7B: lmsys [link](https://github.com/lm-sys/FastChat)
|
76 |
+
- Mistral-7B: huggingface [link](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
77 |
+
- ChatGLM-6B: huggingface [link](https://huggingface.co/THUDM/chatglm-6b)
|
78 |
+
- ChatGLM2-6B: huggingface [link](https://github.com/THUDM/ChatGLM2-6B)
|
79 |
+
|
80 |
+
[^1]: For the purpose of datasets, we've used `concept and utility` interchangeably.
|
81 |
+
----------------------------------------------------------------------------------------------------------------
|
82 |
+
### Upcoming Stuff:
|
83 |
+
- generating object, task, utility jsons for your purpose
|
84 |
+
- generating task-0 datasets for your own task list, object list, utility lists
|
85 |
+
- generating task-1, task-2 datasets for your own variables, your preferred possible configurations, handcrafted penalty schema and your own preferences.
|
86 |
+
|
87 |
+
> play around, create more variables, go for more comprehensive reward structures, go in any depth you wish. Let's create more agents capable of physical commonsense reasoning!
|
88 |
+
|
89 |
+
PS: If you need any help experimenting with this data or curating your own datasets, feel free to create an Issue.
|