Create multilingual-TEDX-fr
Browse files- multilingual-TEDX-fr +232 -0
multilingual-TEDX-fr
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from ctypes import Array
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import List, Tuple
|
6 |
+
from pathlib import Path
|
7 |
+
import xml.etree.ElementTree as ET
|
8 |
+
import ffmpeg
|
9 |
+
import csv
|
10 |
+
import datasets
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{salesky2021mtedx,
|
15 |
+
title={Multilingual TEDx Corpus for Speech Recognition and Translation},
|
16 |
+
author={Elizabeth Salesky and Matthew Wiesner and Jacob Bremerman and Roldano Cattoni and Matteo Negri and Marco Turchi and Douglas W. Oard and Matt Post},
|
17 |
+
booktitle={Proceedings of Interspeech},
|
18 |
+
year={2021},
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DESCRIPTION = """\
|
23 |
+
French subpart of the multilingual TEDX dataset
|
24 |
+
"""
|
25 |
+
SAMPLING_RATE = 16_000
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class Utterance:
|
29 |
+
speaker_id: str
|
30 |
+
index: int
|
31 |
+
sentence: str
|
32 |
+
start_timestamp: float
|
33 |
+
end_timestamp: float
|
34 |
+
|
35 |
+
|
36 |
+
class TEDXConfig(datasets.BuilderConfig):
|
37 |
+
"""BuilderConfig for TEDX."""
|
38 |
+
|
39 |
+
def __init__(self, name, **kwargs):
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
name: `string`, name of dataset config (=language)
|
43 |
+
**kwargs: keyword arguments forwarded to super.
|
44 |
+
"""
|
45 |
+
super(TEDXConfig, self).__init__(
|
46 |
+
version=datasets.Version("2.14.5", ""), name=name, **kwargs
|
47 |
+
)
|
48 |
+
self.single_samples = (name == "single_samples")
|
49 |
+
self.max = (name == "max")
|
50 |
+
if not self.single_samples and not self.max:
|
51 |
+
self.max_duration = float(name.split("=")[1][:-1])
|
52 |
+
else:
|
53 |
+
self.max_duration = np.inf
|
54 |
+
|
55 |
+
|
56 |
+
class TEDX(datasets.GeneratorBasedBuilder):
|
57 |
+
|
58 |
+
BUILDER_CONFIGS = [
|
59 |
+
TEDXConfig(name="single_samples", description="all samples taken separately, can be very short and imprecise"),
|
60 |
+
TEDXConfig(name="max", description="all samples of a talk are merged together"),
|
61 |
+
TEDXConfig(name="max=30s", description="samples are merged in order to reach a max duration of 30 seconds."
|
62 |
+
"Does not remove single utterances that may exceed "
|
63 |
+
"the maximum duration"),
|
64 |
+
|
65 |
+
TEDXConfig(name="max=10s", description="samples are merged in order to reach a max duration of 10 seconds"
|
66 |
+
"Does not remove single utterances that may exceed "
|
67 |
+
"the maximum duration"),
|
68 |
+
]
|
69 |
+
|
70 |
+
DEFAULT_CONFIG_NAME = "single_samples"
|
71 |
+
|
72 |
+
def _info(self):
|
73 |
+
return datasets.DatasetInfo(
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
features=datasets.Features(
|
76 |
+
{
|
77 |
+
"file": datasets.Value("string"),
|
78 |
+
"audio": datasets.features.Audio(sampling_rate=SAMPLING_RATE),
|
79 |
+
"sentence": datasets.Value("string"),
|
80 |
+
"speaker_id": datasets.Value("string"),
|
81 |
+
"start_timestamp": datasets.Value("float"),
|
82 |
+
"end_timestamp": datasets.Value("float"),
|
83 |
+
"index": datasets.Value("int32"),
|
84 |
+
}
|
85 |
+
),
|
86 |
+
citation=_CITATION,
|
87 |
+
)
|
88 |
+
|
89 |
+
def _split_by_audio_file(self, segments_path: str, sentences_path: str, split_name: str) -> Tuple[List[str], List[List[Utterance]]]:
|
90 |
+
speaker_paths = []
|
91 |
+
seen_ids = {}
|
92 |
+
segments = []
|
93 |
+
with open(segments_path, "r") as segments, open(sentences_path) as sentences:
|
94 |
+
segments_reader = csv.DictReader(segments, delimiter=' ', fieldnames=["segment_id", "speaker_id", "start_timestamp", "end_timestamp"])
|
95 |
+
sentences_list = sentences.readlines()
|
96 |
+
for segment, sentence in zip(segments_reader, sentences_list):
|
97 |
+
if segment["speaker_id"] not in seen_ids:
|
98 |
+
seen_ids.add(segment["speaker_id"])
|
99 |
+
speaker_paths.append(Path("data") / Path(split_name) / Path("wav") / Path(f"{segment['speaker_id']}.flac"))
|
100 |
+
segments.append([])
|
101 |
+
segments[-1].append(Utterance(speaker_id=segment["speaker_id"],
|
102 |
+
index=int(segment["segment_id"].split("_")[1]),
|
103 |
+
sentence=sentence,
|
104 |
+
start_timestamp=segment["segment_start_timestamp"],
|
105 |
+
end_timestamp=segment["segment_end_timestamp"]
|
106 |
+
))
|
107 |
+
return speaker_paths, segments
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
def _split_generators(self, dl_manager):
|
112 |
+
segments = {
|
113 |
+
"train": dl_manager.download("data/train/txt/segments"),
|
114 |
+
"test": dl_manager.download("data/test/txt/segments"),
|
115 |
+
"dev": dl_manager.download("data/dev/txt/segments")
|
116 |
+
}
|
117 |
+
sentences = {
|
118 |
+
"train": dl_manager.download("data/train/txt/train.fr"),
|
119 |
+
"test": dl_manager.download("data/test/txt/test.fr"),
|
120 |
+
"dev": dl_manager.download("data/dev/txt/dev.fr"),
|
121 |
+
}
|
122 |
+
|
123 |
+
splitted_dataset = {}
|
124 |
+
segments = dl_manager.download(segments)
|
125 |
+
sentences = dl_manager.download(sentences)
|
126 |
+
print(segments)
|
127 |
+
for split in segments:
|
128 |
+
audios_path, utterances = self._split_by_audio_file(segments[split], sentences[split], split)
|
129 |
+
audios_path = dl_manager.download(audios_path)
|
130 |
+
splitted_dataset[split] = {
|
131 |
+
"audios_path": audios_path,
|
132 |
+
"utterances": utterances
|
133 |
+
}
|
134 |
+
|
135 |
+
splits = [
|
136 |
+
datasets.SplitGenerator(
|
137 |
+
name=datasets.Split.TRAIN,
|
138 |
+
gen_kwargs= splitted_dataset["train"]
|
139 |
+
),
|
140 |
+
datasets.SplitGenerator(
|
141 |
+
name=datasets.Split.TEST,
|
142 |
+
gen_kwargs=splitted_dataset["test"]
|
143 |
+
),
|
144 |
+
datasets.SplitGenerator(
|
145 |
+
name=datasets.Split.VALIDATION,
|
146 |
+
gen_kwargs=splitted_dataset["test"]
|
147 |
+
),
|
148 |
+
]
|
149 |
+
|
150 |
+
return splits
|
151 |
+
|
152 |
+
@staticmethod
|
153 |
+
def merge_utterances(utterance1: Utterance, utterance2: Utterance) -> Utterance:
|
154 |
+
assert(utterance1.speaker_id == utterance2.speaker_id)
|
155 |
+
assert(utterance2.index > utterance1.index)
|
156 |
+
return Utterance(
|
157 |
+
speaker_id=utterance1.speaker_id,
|
158 |
+
sentence=re.sub(r"\s+", " ", utterance1.sentence + " " + utterance2.sentence),
|
159 |
+
start_timestamp=utterance1.start_timestamp,
|
160 |
+
end_timestamp=utterance2.end_timestamp,
|
161 |
+
index = utterance1.index
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
def _merged_utterances_iterator(self, utterances: List[Utterance]):
|
167 |
+
utterances = iter(utterances)
|
168 |
+
if self.config.single_samples:
|
169 |
+
yield from utterances
|
170 |
+
merged_utterance = next(utterances)
|
171 |
+
start_time = merged_utterance.start_timestamp
|
172 |
+
while True:
|
173 |
+
try:
|
174 |
+
new_utterance = next(utterances)
|
175 |
+
except StopIteration:
|
176 |
+
yield merged_utterance
|
177 |
+
break
|
178 |
+
end_time = new_utterance.end_timestamp
|
179 |
+
if end_time - start_time > self.config.max_duration:
|
180 |
+
yield merged_utterance
|
181 |
+
merged_utterance = new_utterance
|
182 |
+
start_time = merged_utterance.start_timestamp
|
183 |
+
else:
|
184 |
+
merged_utterance = TEDX.merge_utterances(merged_utterance, new_utterance)
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def load_audio(file: str, sr: int = SAMPLING_RATE):
|
190 |
+
"""
|
191 |
+
Open an audio file and read as mono waveform, resampling as necessary
|
192 |
+
Parameters
|
193 |
+
----------
|
194 |
+
file:vThe audio file to read
|
195 |
+
sr: int
|
196 |
+
The sample rate to resample the audio if necessary
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
A NumPy array containing the audio waveform, in float32 dtype.
|
200 |
+
"""
|
201 |
+
try:
|
202 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
203 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
204 |
+
out, _ = (
|
205 |
+
ffmpeg.input(file)
|
206 |
+
.output('-', format='s16le', acodec='pcm_s16le', ac=1, ar=sr)
|
207 |
+
.run(capture_stdout=True, capture_stderr=True)
|
208 |
+
)
|
209 |
+
except ffmpeg.Error as e:
|
210 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
211 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
212 |
+
|
213 |
+
@staticmethod
|
214 |
+
def _cut_audio(audio: Array, start_timestamp: float, end_timestamp: float):
|
215 |
+
return audio[int(round(start_timestamp * SAMPLING_RATE)): int(round(end_timestamp * SAMPLING_RATE)) + 1]
|
216 |
+
|
217 |
+
def _generate_examples(self, audios_path: List[str], utterances: List[List[Utterance]]):
|
218 |
+
"""Generate examples from a Multilingual LibriSpeech data dir."""
|
219 |
+
for audio_path, utterances in zip(audios_path, utterances):
|
220 |
+
audio = self.load_audio(audio_path)
|
221 |
+
for utterance in self._merged_utterances_iterator(utterances):
|
222 |
+
transcript_name = f"{utterance.speaker_id}-{utterance.index}"
|
223 |
+
yield transcript_name, {
|
224 |
+
"file": transcript_name,
|
225 |
+
"index": utterance.index,
|
226 |
+
"sentence": utterance.sentence,
|
227 |
+
"start_timestamp": utterance.start_timestamp,
|
228 |
+
"end_timestamp": utterance.end_timestamp,
|
229 |
+
"speaker_id": utterance.speaker_id,
|
230 |
+
"audio": {"path": transcript_name,
|
231 |
+
"array": self._cut_audio(audio, utterance.start_timestamp, utterance.end_timestamp),
|
232 |
+
"sampling_rate": SAMPLING_RATE}}
|