ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
a3c2a240-90d4-4864-80a2-208148d1b716
cpp
tensorflow/tensorflow
horizontal_loop_fusion
third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion.cc
third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion_test.cc
#include "xla/service/gpu/transforms/horizontal_loop_fusion.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/sub_byte_normalization.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { PrimitiveType GetUniqueOutputTypeOfFusible(const HloInstruction& fusible) { auto outputs = GetOutputsOfFusible(fusible); CHECK(!outputs.empty()); PrimitiveType first_output_type = outputs[0]->shape().element_type(); for (size_t i = 1; i < outputs.size(); ++i) { PrimitiveType cur_output_type = outputs[i]->shape().element_type(); CHECK(first_output_type == cur_output_type) << "Output types are expected to be unique, but see " << PrimitiveType_Name(first_output_type) << " and " << PrimitiveType_Name(cur_output_type); } return first_output_type; } class HorizontalLoopFusionImpl { public: explicit HorizontalLoopFusionImpl(HloComputation* computation, absl::string_view prefix) : computation_(computation), prefix_(prefix) {} ~HorizontalLoopFusionImpl() = default; absl::StatusOr<bool> Run(); private: absl::Status Fuse(absl::Span<HloInstruction*> fused_fusion_instrs, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates); absl::Status CreateFusedComputation( absl::Span<HloInstruction*> fused_fusion_instrs, std::unique_ptr<HloComputation>* uniq_computation, std::vector<HloInstruction*>* bound_operands, bool sliced_input_fusion); absl::StatusOr<bool> FuseConsumerOperands( HloInstruction* consumer, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates); class FusionCandidates { public: explicit FusionCandidates(HloInstruction* consumer, bool sliced_input_fusion) : fusible_instrs_(), pos_(0), sliced_input_fusion_(sliced_input_fusion) { Initialize(consumer); } absl::Span<HloInstruction*> GetNextSpanOfFusions(); private: void Initialize(HloInstruction*); std::vector<HloInstruction*> fusible_instrs_; size_t pos_; bool sliced_input_fusion_; }; HloComputation* computation_; std::string prefix_; }; bool IsFusibleCandidate(const HloInstruction& instr) { if (!instr.control_successors().empty() || !instr.control_predecessors().empty()) { return false; } if (IsNestableVariadicReduction(instr)) { return false; } if (instr.IsElementwise() && instr.operand_count() > 0) { return true; } if (!instr.IsLoopFusion()) { return false; } auto outputs = GetOutputsOfFusible(instr); CHECK(!outputs.empty()); const HloInstruction* first_output = outputs[0]; for (size_t i = 1; i < outputs.size(); ++i) { if (first_output->shape().element_type() != outputs[i]->shape().element_type()) { return false; } } return true; } bool IsProfitableFusionCandidate(const HloInstruction& instr, bool sliced_input_fusion) { const int64_t kShapeThreshold = sliced_input_fusion ? 128 * 2048 : 8192 * 8192; const int64_t kInstrCountThreshold = sliced_input_fusion ? 30 : 128; const HloInstruction* root = (instr.opcode() == HloOpcode::kFusion) ? instr.fused_expression_root() : &instr; if (root->opcode() == HloOpcode::kTuple) { Shape shape = root->operand(0)->shape(); if (ShapeUtil::ElementsIn(shape) > kShapeThreshold) { VLOG(2) << "Profitable check failed due to element count with " "sliced_input_fusion=" << sliced_input_fusion; return false; } } else { Shape shape = root->shape(); if (ShapeUtil::ElementsIn(shape) > kShapeThreshold) { VLOG(2) << "Profiltable check failed due to element size with " "sliced_input_fusion=" << sliced_input_fusion; return false; } } if (instr.opcode() == HloOpcode::kFusion && instr.fused_instruction_count() > kInstrCountThreshold) { return false; } return true; } bool HasOnlyRowMajorLayout(const HloInstruction& instr) { if (instr.opcode() != HloOpcode::kFusion) { return LayoutUtil::IsMonotonicWithDim0Major(instr.shape().layout()); } auto fused_instrs = instr.fused_instructions_computation()->instructions(); for (HloInstruction* i : fused_instrs) { if (!LayoutUtil::IsDenseArray(i->shape())) { continue; } if (!LayoutUtil::IsMonotonicWithDim0Major(i->shape().layout())) { return false; } } return true; } bool AnyOpndIsParamSharedAmongFusions( const HloInstruction* instr, const absl::flat_hash_set<HloInstruction*>& fusion_instrs) { return absl::c_any_of(instr->operands(), [&](const HloInstruction* opnd) { return opnd->opcode() == HloOpcode::kParameter && absl::c_any_of(opnd->users(), [&](const HloInstruction* user) { return user != instr && fusion_instrs.contains(user); }); }); } void HorizontalLoopFusionImpl::FusionCandidates::Initialize( HloInstruction* consumer) { absl::flat_hash_set<HloInstruction*> fusible_candidates; std::vector<HloInstruction*> ordered_fusible_candidates; for (HloInstruction* opnd : consumer->operands()) { HloInstruction* predecessor = opnd->LatestNonGteAncestor(); if (IsFusibleCandidate(*predecessor)) { if (fusible_candidates.insert(predecessor).second) { ordered_fusible_candidates.push_back(predecessor); } } } for (HloInstruction* instr : ordered_fusible_candidates) { if (!IsConsumerTheOnlyNonRootUser(*instr, *consumer)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects maybe illegal instr " << instr->ToString() << "; including it may create cycles in HLO."; continue; } else if (!IsProfitableFusionCandidate(*instr, sliced_input_fusion_)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects may-not-be profitable fusion instr" << instr->ToString(); continue; } else if (!HasOnlyRowMajorLayout(*instr)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects non-row-major fusion instr " << instr->ToString(); continue; } else if (AnyOpndIsParamSharedAmongFusions(instr, fusible_candidates)) { VLOG(2) << "sliced_input_fusion=" << sliced_input_fusion_ << " rejects the fusion instr because it shares parameter with" << " other fusion candidates, instr: " << instr->ToString(); continue; } else { VLOG(2) << "Find a fusion candidate " << instr->ToString(); fusible_instrs_.push_back(instr); } } std::stable_sort( fusible_instrs_.begin(), fusible_instrs_.end(), [&](const HloInstruction* a, const HloInstruction* b) { if (GetUniqueOutputTypeOfFusible(*a) != GetUniqueOutputTypeOfFusible(*b)) { return GetUniqueOutputTypeOfFusible(*a) < GetUniqueOutputTypeOfFusible(*b); } else if (GetOutputSizeOfFusible(*a) != GetOutputSizeOfFusible(*b)) { return GetOutputSizeOfFusible(*a) < GetOutputSizeOfFusible(*b); } else if (GetInstrCountOfFusible(*a) != GetInstrCountOfFusible(*b)) { return GetInstrCountOfFusible(*a) < GetInstrCountOfFusible(*b); } else { return ShapeUtil::ElementsIn(GetOutputsOfFusible(*a)[0]->shape()) < ShapeUtil::ElementsIn(GetOutputsOfFusible(*b)[0]->shape()); } }); } absl::Span<HloInstruction*> HorizontalLoopFusionImpl::FusionCandidates::GetNextSpanOfFusions() { if (pos_ >= fusible_instrs_.size()) { return absl::Span<HloInstruction*>(); } const auto kMaxFusionBatchSize = [&]() -> int64_t { if (sliced_input_fusion_) { return 32; } else { if (fusible_instrs_[pos_]->opcode() == HloOpcode::kFusion) { return 32; } else { return 64; } } }(); size_t left = pos_; size_t right = pos_ + 1; size_t first_output_size = GetOutputSizeOfFusible(*fusible_instrs_[left]); PrimitiveType first_output_type = GetUniqueOutputTypeOfFusible(*fusible_instrs_[left]); constexpr int64_t kMaxCudaParamSize = 4000; size_t accum_io_size = 0; size_t accum_num_outputs = 0; for (; right < fusible_instrs_.size(); ++right) { PrimitiveType cur_output_type = GetUniqueOutputTypeOfFusible(*fusible_instrs_[right]); if (first_output_type != cur_output_type) { break; } if (first_output_size != GetOutputSizeOfFusible(*fusible_instrs_[right])) { break; } if (GetInstrCountOfFusible(*fusible_instrs_[left]) != GetInstrCountOfFusible(*fusible_instrs_[right])) { break; } if (!sliced_input_fusion_ && !ShapeUtil::EqualIgnoringElementType( GetOutputsOfFusible(*fusible_instrs_[left])[0]->shape(), GetOutputsOfFusible(*fusible_instrs_[right])[0]->shape())) { break; } size_t num_outputs = GetOutputSizeOfFusible(*fusible_instrs_[right]); accum_num_outputs += num_outputs; if (accum_num_outputs >= kMaxFusionBatchSize) { break; } accum_io_size += fusible_instrs_.at(right)->operand_count() + num_outputs; if (accum_io_size * 8 >= kMaxCudaParamSize) { break; } } VLOG(2) << "horizontal fuse get instruction span with " << (right - left) << " instructions for sliced_input_fusion=" << sliced_input_fusion_ << " fusion"; pos_ = right; return absl::MakeSpan(fusible_instrs_).subspan(left, right - left); } absl::StatusOr<bool> HorizontalLoopFusionImpl::FuseConsumerOperands( HloInstruction* consumer, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates) { bool changed = false; FusionCandidates loop_fusion_candidates(consumer, sliced_input_fusion); while (true) { auto fusibles = loop_fusion_candidates.GetNextSpanOfFusions(); if (fusibles.empty()) { break; } else if (fusibles.size() == 1) { continue; } changed = true; std::vector<HloInstruction*> fusion_instrs; for (HloInstruction* instr : fusibles) { if (instr->opcode() == HloOpcode::kFusion) { fusion_instrs.push_back(instr); } else { TF_ASSIGN_OR_RETURN( HloInstruction * fusion_instr, MakeFusionInstruction(instr, HloInstruction::FusionKind::kLoop)); fusion_instrs.push_back(fusion_instr); } } TF_RETURN_IF_ERROR(Fuse(absl::MakeSpan(fusion_instrs), sliced_input_fusion, to_fuse_candidates)); } return changed; } absl::Status HorizontalLoopFusionImpl::CreateFusedComputation( absl::Span<HloInstruction*> fused_fusion_instrs, std::unique_ptr<HloComputation>* uniq_computation, std::vector<HloInstruction*>* bound_operands, bool sliced_input_fusion) { HloComputation::Builder b(prefix_ + "horizontally_fused_computation"); size_t fused_comp_param_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto old_params = fused_fusion_instrs[i]->fused_parameters(); for (size_t j = 0; j < old_params.size(); ++j) { HloInstruction* bound_opnd = fused_fusion_instrs[i]->mutable_operand(j); b.AddInstruction(HloInstruction::CreateParameter( fused_comp_param_id++, bound_opnd->shape(), absl::StrCat("param_", i, "_", j))); bound_operands->push_back(bound_opnd); } } HloInstruction* dummy_root = b.AddInstruction( HloInstruction::CreateTuple(std::vector<HloInstruction*>{})); *uniq_computation = b.Build(dummy_root); HloComputation* comp = uniq_computation->get(); absl::flat_hash_map<const HloInstruction*, HloInstruction*> clone_map; size_t new_param_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto old_params = fused_fusion_instrs[i]->fused_parameters(); for (size_t j = 0; j < old_params.size(); ++j) { HloInstruction* old_param = old_params[j]; HloInstruction* new_param = comp->parameter_instruction(new_param_id++); clone_map.insert({old_param, new_param}); } } const OpMetadata* metadata = nullptr; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { auto def_to_use_order = fused_fusion_instrs[i] ->fused_instructions_computation() ->MakeInstructionPostOrder(); for (HloInstruction* old_instr : def_to_use_order) { if (old_instr->opcode() == HloOpcode::kParameter || (sliced_input_fusion && old_instr->opcode() == HloOpcode::kTuple && old_instr == fused_fusion_instrs[i]->fused_expression_root())) { continue; } std::vector<HloInstruction*> new_opnds; const auto& old_opnds = old_instr->operands(); new_opnds.reserve(old_opnds.size()); for (HloInstruction* old_opnd : old_opnds) { CHECK(clone_map.find(old_opnd) != clone_map.end()); new_opnds.push_back(clone_map[old_opnd]); } HloInstruction* new_instr = comp->AddInstruction( old_instr->CloneWithNewOperands(old_instr->shape(), new_opnds)); clone_map.insert({old_instr, new_instr}); metadata = &old_instr->metadata(); } } size_t fused_instr_output_size = GetOutputSizeOfFusible(*fused_fusion_instrs[0]); if (sliced_input_fusion) { std::vector<HloInstruction*> concated_outputs; for (size_t i = 0; i < fused_instr_output_size; ++i) { std::vector<HloInstruction*> instr_outputs(fused_fusion_instrs.size()); for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; HloInstruction* new_output = clone_map[old_output]; if (new_output->shape().dimensions_size() == 1) { instr_outputs[j] = new_output; } else { Shape new_shape = ShapeUtil::MakeShapeWithDenseLayout( new_output->shape().element_type(), {ShapeUtil::ElementsIn(new_output->shape())}, std::vector<int64_t>(1, 0)); TF_ASSIGN_OR_RETURN(instr_outputs[j], MakeReshapeHlo(new_shape, new_output)); } } TF_ASSIGN_OR_RETURN(HloInstruction * concated_output, MakeConcatHlo(instr_outputs, 0)); concated_outputs.push_back(concated_output); } std::vector<HloInstruction*> output_slices(concated_outputs.size() * fused_fusion_instrs.size()); for (size_t i = 0; i < concated_outputs.size(); ++i) { HloInstruction* concated_output = concated_outputs[i]; int64_t slice_start = 0; for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; Shape shape = old_output->shape(); int64_t slice_limit = slice_start + ShapeUtil::ElementsIn(shape); TF_ASSIGN_OR_RETURN( output_slices[concated_outputs.size() * j + i], MakeSliceHlo(concated_output, {slice_start}, {slice_limit}, {1})); slice_start = slice_limit; } } HloInstruction* tuple = comp->AddInstruction( HloInstruction::CreateTuple(output_slices), metadata); comp->set_root_instruction(tuple, true); TF_RETURN_IF_ERROR(comp->RemoveInstruction(dummy_root)); } else { std::vector<HloInstruction*> tuple_operands(fused_instr_output_size * fused_fusion_instrs.size()); for (size_t i = 0; i < fused_instr_output_size; ++i) { for (size_t j = 0; j < fused_fusion_instrs.size(); ++j) { const HloInstruction* old_output = GetOutputsOfFusible(*fused_fusion_instrs[j])[i]; HloInstruction* new_output = clone_map[old_output]; tuple_operands[fused_instr_output_size * j + i] = new_output; } } HloInstruction* tuple = comp->AddInstruction(HloInstruction::CreateTuple(tuple_operands)); comp->set_root_instruction(tuple, true); TF_RETURN_IF_ERROR(comp->RemoveInstruction(dummy_root)); } return absl::OkStatus(); } absl::Status HorizontalLoopFusionImpl::Fuse( absl::Span<HloInstruction*> fused_fusion_instrs, bool sliced_input_fusion, std::vector<HloInstruction*>& to_fuse_candidates) { std::unique_ptr<HloComputation> uniq_computation; std::vector<HloInstruction*> bound_operands; TF_RETURN_IF_ERROR(CreateFusedComputation(fused_fusion_instrs, &uniq_computation, &bound_operands, sliced_input_fusion)); HloComputation* fused_comp = computation_->parent()->AddEmbeddedComputation( std::move(uniq_computation)); HloInstruction* hori_fusion_instr = computation_->AddInstruction( HloInstruction::CreateFusion(fused_comp->root_instruction()->shape(), sliced_input_fusion ? HloInstruction::FusionKind::kInput : HloInstruction::FusionKind::kLoop, bound_operands, fused_comp, prefix_), &fused_comp->root_instruction()->metadata()); fused_comp->SetFusionInstruction(hori_fusion_instr); to_fuse_candidates.push_back(hori_fusion_instr); size_t total_output_id = 0; for (size_t i = 0; i < fused_fusion_instrs.size(); ++i) { std::vector<HloInstruction*> bitcasts_or_gte; HloInstruction* fused_instr = fused_fusion_instrs[i]; size_t num_outputs = GetOutputSizeOfFusible(*fused_instr); for (size_t j = 0; j < num_outputs; ++j) { const HloInstruction* output = GetOutputsOfFusible(*fused_instr)[j]; TF_ASSIGN_OR_RETURN( HloInstruction * gep, MakeGetTupleElementHlo(hori_fusion_instr, total_output_id++)); if (output->shape().dimensions_size() == 1) { bitcasts_or_gte.push_back(gep); } else { bitcasts_or_gte.push_back(computation_->AddInstruction( HloInstruction::CreateBitcast(output->shape(), gep))); } } HloInstruction* bitcast_or_tuple = (bitcasts_or_gte.size() == 1) ? bitcasts_or_gte.at(0) : computation_->AddInstruction( HloInstruction::CreateTuple(bitcasts_or_gte)); HloComputation* old_computation = fused_instr->fused_instructions_computation(); HloModule* module = old_computation->parent(); TF_RETURN_IF_ERROR( computation_->ReplaceInstruction(fused_instr, bitcast_or_tuple)); TF_RETURN_IF_ERROR(module->RemoveEmbeddedComputation(old_computation)); } TF_RETURN_IF_ERROR(Cast<HloFusionInstruction>(hori_fusion_instr) ->DeduplicateFusionOperands()); VLOG(1) << "Fused " << fused_fusion_instrs.size() << " instructions into: " << hori_fusion_instr->ToString(); return absl::OkStatus(); } absl::StatusOr<bool> HorizontalLoopFusionImpl::Run() { bool changed = false; XLA_VLOG_LINES(3, computation_->ToString()); std::vector<HloInstruction*> to_fuse_candidates = computation_->MakeInstructionPostOrder(); while (!to_fuse_candidates.empty()) { HloInstruction* consumer = to_fuse_candidates.back(); to_fuse_candidates.pop_back(); if (consumer->IsDead()) { continue; } TF_ASSIGN_OR_RETURN( bool loop_fusion_changed, FuseConsumerOperands(consumer, false, to_fuse_candidates)); TF_ASSIGN_OR_RETURN( bool sliced_input_fusion_changed, FuseConsumerOperands(consumer, true, to_fuse_candidates)); changed = changed || loop_fusion_changed || sliced_input_fusion_changed; } return changed; } } absl::StatusOr<bool> HorizontalLoopFusion::RunOnComputation( HloComputation* computation) { HorizontalLoopFusionImpl horizontal_fusion_impl(computation, prefix_); return horizontal_fusion_impl.Run(); } absl::StatusOr<bool> HorizontalLoopFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Run horizontal fusion."; TF_ASSIGN_OR_RETURN(bool changed, RunOnComputation(module->entry_computation())); if (changed) { TF_ASSIGN_OR_RETURN( [[maybe_unused]] bool unused, SubByteNormalization{SubByteNormalization::SET_ELEMENT_SIZE}.Run( module)); } return changed; } } }
#include "xla/service/gpu/transforms/horizontal_loop_fusion.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/log/log.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/pass/hlo_pass_fix.h" #include "xla/hlo/pass/hlo_pass_pipeline.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/transforms/instruction_fusion.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class HorizontalLoopFusionTest : public HloTestBase { public: static bool IsFusion(const HloInstruction* instr) { return instr->opcode() == HloOpcode::kFusion; } }; TEST_F(HorizontalLoopFusionTest, BasicTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) ROOT mul.1 = f16[1024]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) fusion.1 = f16[1024]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[123]{0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[1024]{0}, f16[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(m::Fusion())))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Slice(m::Concatenate()), m::Slice(m::Concatenate())))); } TEST_F(HorizontalLoopFusionTest, NegativeTestForCycle) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForCycle fused_computation.1 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT mul.1 = f16[123]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) fusion.1 = f16[123]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 add.2 = f16[123]{0} add(fusion.1, arg.4) fusion.2 = f16[123]{0} fusion(add.2, arg.3), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[123]{0}, f16[123]{0}, f16[123]{0}) tuple(fusion.1, fusion.2, add.2) } )") .value(); EXPECT_FALSE(HorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, NegativeTestForIncompatibleTypes) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForIncompatibleTypes fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) ROOT mul.1 = f16[1024]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = s32[123]{0} parameter(0) arg.2 = s32[123]{0} parameter(1) ROOT add.1 = s32[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = s32[123]{0} parameter(2) arg.4 = s32[123]{0} parameter(3) fusion.1 = f16[1024]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = s32[123]{0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[1024]{0}, s32[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_FALSE(HorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, FusingIntoKLoopAndKInputTogether) { auto module = ParseAndReturnVerifiedModule(R"( HloModule FusingIntoKLoopAndKInputTogether fused_computation.1 { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[129,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[129,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.3 { arg.1 = f16[130, 2048]{1, 0} parameter(0) arg.2 = f16[130, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[130,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.4 { arg.1 = f16[130, 2048]{1, 0} parameter(0) arg.2 = f16[130, 2048]{1, 0} parameter(1) ROOT mul.1 = f16[130,2048]{1, 0} multiply(arg.1, arg.2) } fused_computation.5 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } fused_computation.6 { arg.1 = f16[128]{0} parameter(0) arg.2 = f16[128]{0} parameter(1) ROOT add.1 = f16[128]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[129, 2048]{1, 0} parameter(0) arg.2 = f16[129, 2048]{1, 0} parameter(1) arg.3 = f16[129, 2048]{1, 0} parameter(2) arg.4 = f16[129, 2048]{1, 0} parameter(3) arg.5 = f16[130, 2048]{1, 0} parameter(4) arg.6 = f16[130, 2048]{1, 0} parameter(5) arg.7 = f16[130, 2048]{1, 0} parameter(6) arg.8 = f16[130, 2048]{1, 0} parameter(7) arg.9 = f16[123]{0} parameter(8) arg.10 = f16[123]{0} parameter(9) arg.11 = f16[128]{0} parameter(10) arg.12 = f16[128]{0} parameter(11) fusion.1 = f16[129,2048]{1, 0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[129,2048]{1, 0} fusion(arg.3, arg.4), kind=kLoop, calls=fused_computation.2 fusion.3 = f16[130,2048]{1, 0} fusion(arg.5, arg.6), kind=kLoop, calls=fused_computation.3 fusion.4 = f16[130,2048]{1, 0} fusion(arg.7, arg.8), kind=kLoop, calls=fused_computation.4 fusion.5 = f16[123]{0} fusion(arg.9, arg.10), kind=kLoop, calls=fused_computation.5 fusion.6 = f16[128]{0} fusion(arg.11, arg.12), kind=kLoop, calls=fused_computation.6 ROOT tuple.1 = (f16[129,2048]{1, 0}, f16[129,2048]{1, 0}, f16[130,2048]{1, 0}, f16[130,2048]{1, 0}, f16[123]{0}, f16[128]{0}) tuple(fusion.1, fusion.2, fusion.3, fusion.4, fusion.5, fusion.6) } )") .value(); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); int input_fusion_count = 0; int loop_fusion_count = 0; for (auto inst : module->entry_computation()->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kFusion) { input_fusion_count += (inst->fusion_kind() == HloInstruction::FusionKind::kInput) ? 1 : 0; loop_fusion_count += (inst->fusion_kind() == HloInstruction::FusionKind::kLoop) ? 1 : 0; } } EXPECT_EQ(input_fusion_count, 1); EXPECT_EQ(loop_fusion_count, 2); } TEST_F(HorizontalLoopFusionTest, HorizontalLoopFusionAfterVerticalFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule MergeSharedFusionInstruction ENTRY MergeSharedFusionInstruction.Computation0 { param.1.1 = f32[4,1024]{1,0} parameter(0) param.1.2 = f32[4,1024]{1,0} parameter(1) param.1.3 = f32[4,1024]{1,0} parameter(2) param.2.1 = f32[321,5]{1,0} parameter(3) param.2.2 = f32[321,5]{1,0} parameter(4) param.2.3 = f32[321,5]{1,0} parameter(5) const.1 = f32[] constant(3) const.2 = f32[] constant(3) broadcast.1 = f32[4,1024]{1,0} broadcast(const.1), dimensions={} broadcast.2 = f32[321,5]{1,0} broadcast(const.2), dimensions={} mul.1.1 = f32[4,1024]{1,0} multiply(param.1.1, param.1.2) mul.1.2 = f32[4,1024]{1,0} multiply(param.1.3, broadcast.1) add.1 = f32[4,1024]{1,0} add(mul.1.1, mul.1.2) mul.2.1 = f32[321,5]{1,0} multiply(param.2.1, param.2.2) mul.2.2 = f32[321,5]{1,0} multiply(param.2.3, broadcast.2) add.2 = f32[321,5]{1,0} add(mul.2.1, mul.2.2) ROOT tuple = (f32[4,1024]{1,0}, f32[321,5]{1,0}) tuple(add.1, add.2) })") .value(); HloPassPipeline fusion("fusion"); const se::DeviceDescription device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); fusion.AddPass<xla::gpu::GpuInstructionFusion>(false, device_info); fusion.AddPass<xla::gpu::GpuInstructionFusion>(true, device_info); EXPECT_TRUE(fusion.Run(module.get()).value()); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion_instr = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple( m::Bitcast(m::GetTupleElement(m::Fusion(&fusion_instr))), m::Bitcast(m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion_instr->IsMultiOutputFusion()); EXPECT_THAT(fusion_instr->fused_expression_root(), GmockMatch(m::Tuple( m::Slice(m::Concatenate(m::Reshape(), m::Reshape())), m::Slice(m::Concatenate(m::Reshape(), m::Reshape()))))); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, GradientDescentOptimizerLike) { HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> var_outs; for (int64_t i = 0; i < 128; ++i) { Shape shape = ShapeUtil::MakeShape(F32, {i + 1, 1024}); HloInstruction* param_var_in = builder.AddInstruction( HloInstruction::CreateParameter(i * 3 + 0, shape, "var.in")); HloInstruction* param_alpha = builder.AddInstruction(HloInstruction::CreateParameter( i * 3 + 1, ShapeUtil::MakeShape(F32, {}), "alpha")); HloInstruction* param_delta = builder.AddInstruction( HloInstruction::CreateParameter(i * 3 + 2, shape, "delta")); HloInstruction* alpha_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, param_alpha, {})); HloInstruction* alpha_delta = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, alpha_broadcasted, param_delta)); HloInstruction* var_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, param_var_in, alpha_delta)); var_outs.push_back(var_out); } builder.AddInstruction(HloInstruction::CreateTuple(var_outs)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, FusingDifferentOutputs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule HeterogeneousMultiOutputFusions fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[1024]{0} parameter(2) arg.4 = f16[1024]{0} parameter(3) mul.1 = f16[1024]{0} multiply(arg.1, arg.2) mul.2 = f16[1024]{0} multiply(arg.3, arg.4) add.1 = f16[1024]{0} add(mul.1, mul.2) ROOT tuple.1 = (f16[1024]{0}, f16[1024]{0}) tuple(add.1, mul.1) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) arg.4 = f16[123]{0} parameter(3) add.1 = f16[123]{0} add(arg.1, arg.2) add.2 = f16[123]{0} add(arg.3, arg.4) mul.1 = f16[123]{0} multiply(add.1, add.2) ROOT tuple.1 = (f16[123]{0}, f16[123]{0}) tuple(mul.1, add.1) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) arg.3 = f16[1024]{0} parameter(2) arg.4 = f16[1024]{0} parameter(3) arg.5 = f16[123]{0} parameter(4) arg.6 = f16[123]{0} parameter(5) arg.7 = f16[123]{0} parameter(6) arg.8 = f16[123]{0} parameter(7) fusion.1 = (f16[1024]{0}, f16[1024]{0}) fusion(arg.1, arg.2, arg.3, arg.4), kind=kLoop, calls=fused_computation.1 fusion.2 = (f16[123]{0}, f16[123]{0}) fusion(arg.5, arg.6, arg.7, arg.8), kind=kLoop, calls=fused_computation.2 gte.1 = f16[1024]{0} get-tuple-element(fusion.1), index=0 gte.2 = f16[1024]{0} get-tuple-element(fusion.1), index=1 gte.3 = f16[123]{0} get-tuple-element(fusion.2), index=0 gte.4 = f16[123]{0} get-tuple-element(fusion.2), index=1 ROOT tuple.1 = (f16[1024]{0}, f16[1024]{0}, f16[123]{0}, f16[123]{0}) tuple(gte.1, gte.2, gte.3, gte.4) } )") .value(); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, RMSPropLike) { HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> all_outputs; for (int64_t i = 0; i < 48; ++i) { Shape shape = ShapeUtil::MakeShape(F32, {2, 1024 + i}); HloInstruction* grad = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 0, shape, "grad")); HloInstruction* ms = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 1, shape, "ms")); HloInstruction* rho = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 2, ShapeUtil::MakeShape(F32, {}), "rho")); HloInstruction* one_minus_rho = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 3, ShapeUtil::MakeShape(F32, {}), "one_minus_rho")); HloInstruction* rho_broadcasted = builder.AddInstruction(HloInstruction::CreateBroadcast(shape, rho, {})); HloInstruction* one_mins_rho_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, one_minus_rho, {})); HloInstruction* grad_squared = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, grad, grad)); HloInstruction* ms_1st_term = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, grad_squared, one_mins_rho_broadcasted)); HloInstruction* ms_2nd_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, ms, rho_broadcasted)); HloInstruction* ms_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, ms_1st_term, ms_2nd_term)); HloInstruction* momentum = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 4, shape, "momemtum")); HloInstruction* mom = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 5, shape, "mom")); HloInstruction* lr = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 6, ShapeUtil::MakeShape(F32, {}), "lr")); HloInstruction* epsilon = builder.AddInstruction(HloInstruction::CreateParameter( i * 9 + 7, ShapeUtil::MakeShape(F32, {}), "epsilon")); HloInstruction* lr_broadcasted = builder.AddInstruction(HloInstruction::CreateBroadcast(shape, lr, {})); HloInstruction* epsilon_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(shape, epsilon, {})); HloInstruction* mom_1st_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, momentum, mom)); HloInstruction* ms_eps = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, ms_out, epsilon_broadcasted)); HloInstruction* ms_eps_rsq = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kRsqrt, ms_eps)); HloInstruction* grad_ms_eps_rsq = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, grad, ms_eps_rsq)); HloInstruction* mom_2nd_term = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, lr_broadcasted, grad_ms_eps_rsq)); HloInstruction* mom_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, mom_1st_term, mom_2nd_term)); HloInstruction* var = builder.AddInstruction( HloInstruction::CreateParameter(i * 9 + 8, shape, "var")); HloInstruction* var_out = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kSubtract, var, mom_out)); all_outputs.push_back(ms_out); all_outputs.push_back(mom_out); all_outputs.push_back(var_out); } builder.AddInstruction(HloInstruction::CreateTuple(all_outputs)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{1.0e-5, 1.0e-5})); } TEST_F(HorizontalLoopFusionTest, DynamicUpdateSlice) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NegativeTestForDynamicUpdateSlice fusion.1 { p.0 = f16[5,9,10]{2,1,0} parameter(0) p.1 = s32[] parameter(1) p.2 = f16[1,9,10]{2,1,0} parameter(2) c.0 = s32[] constant(0) ROOT %dynamic-update-slice = f16[5,9,10]{2,1,0} dynamic-update-slice(p.0, p.2, p.1, c.0, c.0) } fusion.2 { p.0 = f16[5,9,10]{2,1,0} parameter(0) p.1 = s32[] parameter(1) p.2 = f16[1,9,10]{2,1,0} parameter(2) c.0 = s32[] constant(0) ROOT %dynamic-update-slice = f16[5,9,10]{2,1,0} dynamic-update-slice(p.0, p.2, p.1, c.0, c.0) } ENTRY entry { p.00 = f16[5,9,10]{2,1,0} parameter(0) p.01 = f16[5,9,10]{2,1,0} parameter(1) p.10 = s32[] parameter(2) p.11 = s32[] parameter(3) p.20 = f16[1,9,10]{2,1,0} parameter(4) p.21 = f16[1,9,10]{2,1,0} parameter(5) f1 = f16[5,9,10] fusion(p.00, p.10, p.20), kind=kLoop, calls=fusion.1 f2 = f16[5,9,10] fusion(p.01, p.11, p.21), kind=kLoop, calls=fusion.2 ROOT tuple = (f16[5,9,10],f16[5,9,10]) tuple(f1, f2) })") .value(); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); TF_ASSERT_OK(verifier().Run(module.get()).status()); EXPECT_FALSE(HloDCE().Run(module.get()).value()); VLOG(2) << "Dump after horizontal fusion:"; VLOG(2) << module->ToString(); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), ErrorSpec{0, 0})); } TEST_F(HorizontalLoopFusionTest, NegativeTestForSharedParam) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest fused_computation.1 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT mul.1 = f16[123]{0} multiply(arg.1, arg.2) } fused_computation.2 { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) ROOT add.1 = f16[123]{0} add(arg.1, arg.2) } ENTRY entry_computation { arg.1 = f16[123]{0} parameter(0) arg.2 = f16[123]{0} parameter(1) arg.3 = f16[123]{0} parameter(2) fusion.1 = f16[123]{0} fusion(arg.1, arg.2), kind=kLoop, calls=fused_computation.1 fusion.2 = f16[123]{0} fusion(arg.3, arg.2), kind=kLoop, calls=fused_computation.2 ROOT tuple.1 = (f16[123]{0}, f16[123]{0}) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_FALSE(HorizontalLoopFusion().Run(module.get()).value()); } TEST_F(HorizontalLoopFusionTest, IterativeHorizontalFusion) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NonfusionInstrs fused_computation.0 { arg.0 = f16[] parameter(0) arg.1 = f16[123]{0} parameter(1) broadcast.0 = f16[123]{0} broadcast(arg.0), dimensions={} ROOT mul.1 = f16[123]{0} multiply(broadcast.0, arg.1) } fused_computation.1 { arg.0 = f16[] parameter(0) arg.1 = f16[456]{0} parameter(1) broadcast.0 = f16[456]{0} broadcast(arg.0), dimensions={} ROOT add.1 = f16[456]{0} add(broadcast.0, arg.1) } ENTRY entry_computation { arg.0 = f16[] parameter(0) arg.1 = f16[] parameter(1) arg.2 = f16[123]{0} parameter(2) arg.3 = f16[456]{0} parameter(3) sqrt.0 = f16[] sqrt(arg.0) sqrt.1 = f16[] sqrt(arg.1) fusion.0 = f16[123]{0} fusion(sqrt.0, arg.2), kind=kLoop, calls=fused_computation.0 fusion.1 = f16[456]{0} fusion(sqrt.1, arg.3), kind=kLoop, calls=fused_computation.1 ROOT tuple.1 = (f16[123]{0}, f16[456]{0}) tuple(fusion.0, fusion.1) } )") .value(); HloPassFix<HloPassPipeline> iterative_h_fusion("iterative_h_fusion"); iterative_h_fusion.AddPass<HorizontalLoopFusion>(); iterative_h_fusion.AddPass<HloDCE>(); EXPECT_TRUE(iterative_h_fusion.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(m::Fusion())))); EXPECT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 2); } TEST_F(HorizontalLoopFusionTest, TraversalOrder) { auto module = ParseAndReturnVerifiedModule(R"( HloModule cluster %fused_computation (param_0: f32[256,256], param_1: f32[], param_2: f32[]) -> f32[256,256] { %param_0 = f32[256,256]{1,0} parameter(0) %param_1 = f32[] parameter(1) %param_2 = f32[] parameter(2) %multiply.0 = f32[] multiply(f32[] %param_1, f32[] %param_2) %broadcast.0 = f32[256,256]{1,0} broadcast(f32[] %multiply.0), dimensions={} ROOT %multiply.1 = f32[256,256]{1,0} multiply(f32[256,256]{1,0} %param_0, f32[256,256]{1,0} %broadcast.0) } %fused_computation.1 (param_0: f32[256,256], param_1: f32[], param_2: f32[]) -> f32[256,256] { %param_0 = f32[256,256]{1,0} parameter(0) %param_1 = f32[] parameter(1) %param_2 = f32[] parameter(2) %multiply.0 = f32[] multiply(f32[] %param_1, f32[] %param_2) %broadcast.0 = f32[256,256]{1,0} broadcast(f32[] %multiply.0), dimensions={} ROOT %multiply.1 = f32[256,256]{1,0} multiply(f32[256,256]{1,0} %param_0, f32[256,256]{1,0} %broadcast.0) } ENTRY %entry_computation (arg0: f32[256,256], arg1: f32[256,256], arg2: f32[], arg3: f32[], arg4: f32[], arg5: f32[]) -> (f32[256,256], f32[256,256]) { %arg0 = f32[256,256]{1,0} parameter(0), parameter_replication={false} %arg1 = f32[256,256]{1,0} parameter(1), parameter_replication={false} %arg2 = f32[] parameter(2), parameter_replication={false} %arg3 = f32[] parameter(3), parameter_replication={false} %arg4 = f32[] parameter(4), parameter_replication={false} %arg5 = f32[] parameter(5), parameter_replication={false} %sqrt = f32[] sqrt(f32[] %arg2) %sqrt.1 = f32[] sqrt(f32[] %arg3) %fusion = f32[256,256]{1,0} fusion(f32[256,256]{1,0} %arg0, f32[] %sqrt, f32[] %sqrt.1), kind=kLoop, calls=%fused_computation %sqrt.2 = f32[] sqrt(f32[] %arg4) %sqrt.3 = f32[] sqrt(f32[] %arg5) %fusion.1 = f32[256,256]{1,0} fusion(f32[256,256]{1,0} %arg1, f32[] %sqrt.2, f32[] %sqrt.3), kind=kLoop, calls=%fused_computation.1 ROOT %tuple.163 = (f32[256,256]{1,0}, f32[256,256]{1,0}) tuple(f32[256,256]{1,0} %fusion.1, f32[256,256]{1,0} %fusion) } )") .value(); HloPassFix<HloPassPipeline> iterative_h_fusion("iterative_h_fusion"); iterative_h_fusion.AddPass<HorizontalLoopFusion>(); EXPECT_TRUE(iterative_h_fusion.Run(module.get()).value()); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 2); } TEST_F(HorizontalLoopFusionTest, NoBufferAliasingOfDuplicateParameter) { const char* hlo_text = R"( HloModule m branch_a { p0 = s32[] parameter(0) c0 = s32[] constant(1) c1 = s32[] constant(2) b0 = s32[4096] broadcast(c0), dimensions={} b1 = s32[4096] broadcast(c1), dimensions={} ROOT r = (s32[4096], s32[4096]) tuple(b0, b1) } branch_b { p0 = s32[] parameter(0) c0 = s32[] constant(1) c1 = s32[] constant(2) b0 = s32[4096] broadcast(c0), dimensions={} b1 = s32[4096] broadcast(c1), dimensions={} ROOT r = (s32[4096], s32[4096]) tuple(b0, b1) } ENTRY e { p0 = s32[] parameter(0) c0 = s32[] constant(0) cond = (s32[4096], s32[4096]) conditional(p0, c0, c0), branch_computations={branch_a, branch_b} p1 = s32[4096] parameter(1) gte0 = s32[4096] get-tuple-element(cond), index=0 gte1 = s32[4096] get-tuple-element(cond), index=1 a0 = s32[4096] add(gte1, gte0) m0 = s32[4096] multiply(gte1, gte0) ROOT r = (s32[4096], s32[4096]) tuple(m0, a0) } )"; EXPECT_TRUE(RunAndCompare(hlo_text, std::nullopt)); } TEST_F(HorizontalLoopFusionTest, CopyInsertionFusionControlFlow) { const char* hlo_text = R"( HloModule cluster ENTRY main { cst = f32[1]{0} constant({0}) cp1 = f32[1]{0} copy(cst) cp2 = f32[1]{0} copy(cst) cp3 = f32[1]{0} copy(cst) cp4 = f32[1]{0} copy(cst), control-predecessors={cp1} ROOT tuple_out = (f32[1]{0}, f32[1]{0}, f32[1]{0}, f32[1]{0}) tuple(cp1, cp2, cp3, cp4) } )"; auto module = ParseAndReturnUnverifiedModule(hlo_text).value(); EXPECT_TRUE(HorizontalLoopFusion().Run(module.get()).value()); VLOG(2) << module->ToString(); EXPECT_EQ( absl::c_count_if(module->entry_computation()->instructions(), IsFusion), 1); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); EXPECT_THAT(entry_root, GmockMatch(m::Tuple(m::Copy(), m::GetTupleElement(m::Fusion()), m::GetTupleElement(m::Fusion()), m::Copy()))); } TEST_F(HorizontalLoopFusionTest, DoNotMergeVariadicReductions) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m fused_computation.94 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(1) tmp_2 = pred[] compare(tmp_0, tmp_1), direction=GE tmp_3 = f32[] select(tmp_2, tmp_0, tmp_1) tmp_4 = pred[] compare(tmp_0, tmp_1), direction=EQ tmp_5 = s32[] parameter(2) tmp_6 = s32[] parameter(3) tmp_7 = s32[] minimum(tmp_5, tmp_6) tmp_8 = s32[] select(tmp_2, tmp_5, tmp_6) tmp_9 = s32[] select(tmp_4, tmp_7, tmp_8) ROOT tmp_10 = (f32[], s32[]) tuple(tmp_3, tmp_9) } minmax_func.1536 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(2) tmp_2 = s32[] parameter(1) tmp_3 = s32[] parameter(3) ROOT tmp_4 = (f32[], s32[]) fusion(tmp_0, tmp_1, tmp_2, tmp_3), kind=kLoop, calls=fused_computation.94 } fused_computation { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(-inf) tmp_3 = s32[] constant(0) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } fused_computation2 { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(inf) tmp_3 = s32[] constant(1) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } ENTRY e { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation tmp_2 = s32[554112]{0} get-tuple-element(tmp_1), index=1 tmp_3 = f32[554112,10]{1,0} parameter(1) tmp_4 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_3), kind=kLoop, calls=fused_computation2 tmp_5 = s32[554112]{0} get-tuple-element(tmp_4), index=1 ROOT tmp_6 = s32[554112]{0} add(tmp_2, tmp_5) })") .value(); EXPECT_FALSE(HorizontalLoopFusion().Run(module.get()).value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/horizontal_loop_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e9360b62-e10d-4dc4-b8bd-f135d545de17
cpp
tensorflow/tensorflow
tfprof_advisor
tensorflow/core/profiler/internal/advisor/tfprof_advisor.h
tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc
#ifndef TENSORFLOW_CORE_PROFILER_INTERNAL_ADVISOR_TFPROF_ADVISOR_H_ #define TENSORFLOW_CORE_PROFILER_INTERNAL_ADVISOR_TFPROF_ADVISOR_H_ #include <vector> #include "absl/strings/str_format.h" #include "tensorflow/core/profiler/internal/advisor/accelerator_utilization_checker.h" #include "tensorflow/core/profiler/internal/advisor/checker.h" #include "tensorflow/core/profiler/internal/advisor/expensive_operation_checker.h" #include "tensorflow/core/profiler/internal/advisor/internal_checker_runner.h" #include "tensorflow/core/profiler/internal/advisor/operation_checker.h" #include "tensorflow/core/profiler/tfprof_options.pb.h" namespace tensorflow { namespace tfprof { class Advisor { public: Advisor(const TFStats* stats) : stats_(stats) {} static AdvisorOptionsProto DefaultOptions() { AdvisorOptionsProto options; std::vector<string> checkers( kCheckers, kCheckers + sizeof(kCheckers) / sizeof(*kCheckers)); for (const string& checker : checkers) { (*options.mutable_checkers())[checker]; } return options; } AdviceProto Advise(const AdvisorOptionsProto& options) { AdviceProto ret = RunInternalCheckers(options, stats_); if (options.checkers().find(kCheckers[0]) != options.checkers().end()) { AcceleratorUtilizationChecker au_checker; (*ret.mutable_checkers())[kCheckers[0]].MergeFrom( au_checker.Run(options.checkers().at(kCheckers[0]), stats_)); } if (options.checkers().find(kCheckers[1]) != options.checkers().end()) { OperationChecker op_checker; (*ret.mutable_checkers())[kCheckers[1]].MergeFrom( op_checker.Run(options.checkers().at(kCheckers[1]), stats_)); } if (options.checkers().find(kCheckers[2]) != options.checkers().end()) { ExpensiveOperationChecker expensive_op_checker; (*ret.mutable_checkers())[kCheckers[2]].MergeFrom( expensive_op_checker.Run(options.checkers().at(kCheckers[2]), stats_)); } for (const auto& checker : ret.checkers()) { absl::FPrintF(stdout, "\n%s:\n", checker.first); for (const string& r : checker.second.reports()) { absl::FPrintF(stdout, "%s\n", r); } } fflush(stdout); return ret; } private: const TFStats* stats_; }; } } #endif
#include "tensorflow/core/profiler/internal/advisor/tfprof_advisor.h" #include <map> #include <memory> #include <vector> #include "absl/strings/match.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/internal/advisor/checker.h" #include "tensorflow/core/profiler/internal/tfprof_node.h" #include "tensorflow/core/profiler/internal/tfprof_stats.h" #include "tensorflow/core/profiler/tfprof_options.pb.h" #include "tensorflow/core/profiler/tfprof_output.pb.h" namespace tensorflow { namespace tfprof { class TFProfAdvisorTest : public ::testing::Test { protected: TFProfAdvisorTest() { stats_ = std::make_unique<TFStats>(std::make_unique<GraphDef>(), nullptr, nullptr, nullptr); stats_->AddNodeForTest( 0, CreateNode("n1", "Conv2D", {{"data_format", "NHWC"}}, 0, 10, 2)); stats_->AddNodeForTest(0, CreateNode("n2", "Conv2D", {}, 0, 20, 2)); stats_->BuildAllViews(); advisor_ = std::make_unique<Advisor>(stats_.get()); } std::unique_ptr<TFGraphNode> CreateNode(const string& name, const string& type, std::map<string, string> attrs, int64_t step, int64_t start_miros, int64_t end_rel_micros) { node_defs_.push_back(std::make_unique<NodeDef>()); NodeDef* def = node_defs_.back().get(); def->set_name(name); def->set_op(type); for (const auto& attr : attrs) { (*def->mutable_attr())[attr.first].set_s(attr.second); } std::unique_ptr<TFGraphNode> node(new TFGraphNode(def, -1, nullptr)); NodeExecStats node_stat; node_stat.set_all_start_micros(start_miros); node_stat.set_op_end_rel_micros(end_rel_micros); node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0", node_stat); node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0:stream:all", node_stat); node->AddStepStat(step, "/job:localhost/replica:0/task:0/device:GPU:0:stream:0", node_stat); return node; } std::unique_ptr<TFStats> stats_; std::unique_ptr<Advisor> advisor_; std::vector<std::unique_ptr<NodeDef>> node_defs_; }; TEST_F(TFProfAdvisorTest, Basics) { AdvisorOptionsProto options = Advisor::DefaultOptions(); AdviceProto advice = advisor_->Advise(options); EXPECT_TRUE(advice.checkers().find(kCheckers[0]) != advice.checkers().end()); EXPECT_TRUE(advice.checkers().find(kCheckers[1]) != advice.checkers().end()); EXPECT_TRUE(advice.checkers().find(kCheckers[2]) != advice.checkers().end()); } TEST_F(TFProfAdvisorTest, OperationChecker) { AdvisorOptionsProto options; (*options.mutable_checkers())[kCheckers[1]]; AdviceProto advice = advisor_->Advise(options); EXPECT_EQ(advice.checkers().at(kCheckers[1]).reports_size(), 1); EXPECT_TRUE( absl::StrContains(advice.checkers().at(kCheckers[1]).reports(0), "NCHW")); } TEST_F(TFProfAdvisorTest, UtilizationChecker) { AdvisorOptionsProto options; (*options.mutable_checkers())[kCheckers[0]]; AdviceProto advice = advisor_->Advise(options); EXPECT_EQ(advice.checkers().at(kCheckers[0]).reports_size(), 1); EXPECT_TRUE(absl::StrContains(advice.checkers().at(kCheckers[0]).reports(0), "low utilization")); } TEST_F(TFProfAdvisorTest, ExpensiveOperationChecker) { AdvisorOptionsProto options; (*options.mutable_checkers())[kCheckers[2]]; AdviceProto advice = advisor_->Advise(options); EXPECT_TRUE(absl::StrContains(advice.checkers().at(kCheckers[2]).reports(0), "top 1 operation type: Conv2D")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/advisor/tfprof_advisor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/internal/advisor/tfprof_advisor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
98b84864-4604-4f7e-9c73-6891124d7ebb
cpp
google/cel-cpp
time
internal/time.cc
internal/time_test.cc
#include "internal/time.h" #include <cstdint> #include <string> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "internal/status_macros.h" namespace cel::internal { namespace { std::string RawFormatTimestamp(absl::Time timestamp) { return absl::FormatTime("%Y-%m-%d%ET%H:%M:%E*SZ", timestamp, absl::UTCTimeZone()); } } absl::Status ValidateDuration(absl::Duration duration) { if (duration < MinDuration()) { return absl::InvalidArgumentError( absl::StrCat("Duration \"", absl::FormatDuration(duration), "\" below minimum allowed duration \"", absl::FormatDuration(MinDuration()), "\"")); } if (duration > MaxDuration()) { return absl::InvalidArgumentError( absl::StrCat("Duration \"", absl::FormatDuration(duration), "\" above maximum allowed duration \"", absl::FormatDuration(MaxDuration()), "\"")); } return absl::OkStatus(); } absl::StatusOr<absl::Duration> ParseDuration(absl::string_view input) { absl::Duration duration; if (!absl::ParseDuration(input, &duration)) { return absl::InvalidArgumentError("Failed to parse duration from string"); } return duration; } absl::StatusOr<std::string> FormatDuration(absl::Duration duration) { CEL_RETURN_IF_ERROR(ValidateDuration(duration)); return absl::FormatDuration(duration); } std::string DebugStringDuration(absl::Duration duration) { return absl::FormatDuration(duration); } absl::Status ValidateTimestamp(absl::Time timestamp) { if (timestamp < MinTimestamp()) { return absl::InvalidArgumentError( absl::StrCat("Timestamp \"", RawFormatTimestamp(timestamp), "\" below minimum allowed timestamp \"", RawFormatTimestamp(MinTimestamp()), "\"")); } if (timestamp > MaxTimestamp()) { return absl::InvalidArgumentError( absl::StrCat("Timestamp \"", RawFormatTimestamp(timestamp), "\" above maximum allowed timestamp \"", RawFormatTimestamp(MaxTimestamp()), "\"")); } return absl::OkStatus(); } absl::StatusOr<absl::Time> ParseTimestamp(absl::string_view input) { absl::Time timestamp; std::string err; if (!absl::ParseTime(absl::RFC3339_full, input, absl::UTCTimeZone(), &timestamp, &err)) { return err.empty() ? absl::InvalidArgumentError( "Failed to parse timestamp from string") : absl::InvalidArgumentError(absl::StrCat( "Failed to parse timestamp from string: ", err)); } CEL_RETURN_IF_ERROR(ValidateTimestamp(timestamp)); return timestamp; } absl::StatusOr<std::string> FormatTimestamp(absl::Time timestamp) { CEL_RETURN_IF_ERROR(ValidateTimestamp(timestamp)); return RawFormatTimestamp(timestamp); } std::string FormatNanos(int32_t nanos) { constexpr int32_t kNanosPerMillisecond = 1000000; constexpr int32_t kNanosPerMicrosecond = 1000; if (nanos % kNanosPerMillisecond == 0) { return absl::StrFormat("%03d", nanos / kNanosPerMillisecond); } else if (nanos % kNanosPerMicrosecond == 0) { return absl::StrFormat("%06d", nanos / kNanosPerMicrosecond); } return absl::StrFormat("%09d", nanos); } absl::StatusOr<std::string> EncodeDurationToJson(absl::Duration duration) { CEL_RETURN_IF_ERROR(ValidateDuration(duration)); std::string result; int64_t seconds = absl::IDivDuration(duration, absl::Seconds(1), &duration); int64_t nanos = absl::IDivDuration(duration, absl::Nanoseconds(1), &duration); if (seconds < 0 || nanos < 0) { result = "-"; seconds = -seconds; nanos = -nanos; } absl::StrAppend(&result, seconds); if (nanos != 0) { absl::StrAppend(&result, ".", FormatNanos(nanos)); } absl::StrAppend(&result, "s"); return result; } absl::StatusOr<std::string> EncodeTimestampToJson(absl::Time timestamp) { static constexpr absl::string_view kTimestampFormat = "%E4Y-%m-%dT%H:%M:%S"; CEL_RETURN_IF_ERROR(ValidateTimestamp(timestamp)); absl::Time unix_seconds = absl::FromUnixSeconds(absl::ToUnixSeconds(timestamp)); int64_t n = (timestamp - unix_seconds) / absl::Nanoseconds(1); std::string result = absl::FormatTime(kTimestampFormat, unix_seconds, absl::UTCTimeZone()); if (n > 0) { absl::StrAppend(&result, ".", FormatNanos(n)); } absl::StrAppend(&result, "Z"); return result; } std::string DebugStringTimestamp(absl::Time timestamp) { return RawFormatTimestamp(timestamp); } }
#include "internal/time.h" #include <string> #include "google/protobuf/util/time_util.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "internal/testing.h" namespace cel::internal { namespace { using ::absl_testing::StatusIs; TEST(MaxDuration, ProtoEquiv) { EXPECT_EQ(MaxDuration(), absl::Seconds(google::protobuf::util::TimeUtil::kDurationMaxSeconds) + absl::Nanoseconds(999999999)); } TEST(MinDuration, ProtoEquiv) { EXPECT_EQ(MinDuration(), absl::Seconds(google::protobuf::util::TimeUtil::kDurationMinSeconds) + absl::Nanoseconds(-999999999)); } TEST(MaxTimestamp, ProtoEquiv) { EXPECT_EQ(MaxTimestamp(), absl::UnixEpoch() + absl::Seconds(google::protobuf::util::TimeUtil::kTimestampMaxSeconds) + absl::Nanoseconds(999999999)); } TEST(MinTimestamp, ProtoEquiv) { EXPECT_EQ(MinTimestamp(), absl::UnixEpoch() + absl::Seconds(google::protobuf::util::TimeUtil::kTimestampMinSeconds)); } TEST(ParseDuration, Conformance) { absl::Duration parsed; ASSERT_OK_AND_ASSIGN(parsed, internal::ParseDuration("1s")); EXPECT_EQ(parsed, absl::Seconds(1)); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseDuration("0.010s")); EXPECT_EQ(parsed, absl::Milliseconds(10)); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseDuration("0.000010s")); EXPECT_EQ(parsed, absl::Microseconds(10)); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseDuration("0.000000010s")); EXPECT_EQ(parsed, absl::Nanoseconds(10)); EXPECT_THAT(internal::ParseDuration("abc"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(internal::ParseDuration("1c"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(FormatDuration, Conformance) { std::string formatted; ASSERT_OK_AND_ASSIGN(formatted, internal::FormatDuration(absl::Seconds(1))); EXPECT_EQ(formatted, "1s"); ASSERT_OK_AND_ASSIGN(formatted, internal::FormatDuration(absl::Milliseconds(10))); EXPECT_EQ(formatted, "10ms"); ASSERT_OK_AND_ASSIGN(formatted, internal::FormatDuration(absl::Microseconds(10))); EXPECT_EQ(formatted, "10us"); ASSERT_OK_AND_ASSIGN(formatted, internal::FormatDuration(absl::Nanoseconds(10))); EXPECT_EQ(formatted, "10ns"); EXPECT_THAT(internal::FormatDuration(absl::InfiniteDuration()), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(internal::FormatDuration(-absl::InfiniteDuration()), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ParseTimestamp, Conformance) { absl::Time parsed; ASSERT_OK_AND_ASSIGN(parsed, internal::ParseTimestamp("1-01-01T00:00:00Z")); EXPECT_EQ(parsed, MinTimestamp()); ASSERT_OK_AND_ASSIGN( parsed, internal::ParseTimestamp("9999-12-31T23:59:59.999999999Z")); EXPECT_EQ(parsed, MaxTimestamp()); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseTimestamp("1970-01-01T00:00:00Z")); EXPECT_EQ(parsed, absl::UnixEpoch()); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseTimestamp("1970-01-01T00:00:00.010Z")); EXPECT_EQ(parsed, absl::UnixEpoch() + absl::Milliseconds(10)); ASSERT_OK_AND_ASSIGN(parsed, internal::ParseTimestamp("1970-01-01T00:00:00.000010Z")); EXPECT_EQ(parsed, absl::UnixEpoch() + absl::Microseconds(10)); ASSERT_OK_AND_ASSIGN( parsed, internal::ParseTimestamp("1970-01-01T00:00:00.000000010Z")); EXPECT_EQ(parsed, absl::UnixEpoch() + absl::Nanoseconds(10)); EXPECT_THAT(internal::ParseTimestamp("abc"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(internal::ParseTimestamp("10000-01-01T00:00:00Z"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(FormatTimestamp, Conformance) { std::string formatted; ASSERT_OK_AND_ASSIGN(formatted, internal::FormatTimestamp(MinTimestamp())); EXPECT_EQ(formatted, "1-01-01T00:00:00Z"); ASSERT_OK_AND_ASSIGN(formatted, internal::FormatTimestamp(MaxTimestamp())); EXPECT_EQ(formatted, "9999-12-31T23:59:59.999999999Z"); ASSERT_OK_AND_ASSIGN(formatted, internal::FormatTimestamp(absl::UnixEpoch())); EXPECT_EQ(formatted, "1970-01-01T00:00:00Z"); ASSERT_OK_AND_ASSIGN( formatted, internal::FormatTimestamp(absl::UnixEpoch() + absl::Milliseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.01Z"); ASSERT_OK_AND_ASSIGN( formatted, internal::FormatTimestamp(absl::UnixEpoch() + absl::Microseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.00001Z"); ASSERT_OK_AND_ASSIGN( formatted, internal::FormatTimestamp(absl::UnixEpoch() + absl::Nanoseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.00000001Z"); EXPECT_THAT(internal::FormatTimestamp(absl::InfiniteFuture()), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(internal::FormatTimestamp(absl::InfinitePast()), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(EncodeDurationToJson, Conformance) { std::string formatted; ASSERT_OK_AND_ASSIGN(formatted, EncodeDurationToJson(absl::Seconds(1))); EXPECT_EQ(formatted, "1s"); ASSERT_OK_AND_ASSIGN(formatted, EncodeDurationToJson(absl::Milliseconds(10))); EXPECT_EQ(formatted, "0.010s"); ASSERT_OK_AND_ASSIGN(formatted, EncodeDurationToJson(absl::Microseconds(10))); EXPECT_EQ(formatted, "0.000010s"); ASSERT_OK_AND_ASSIGN(formatted, EncodeDurationToJson(absl::Nanoseconds(10))); EXPECT_EQ(formatted, "0.000000010s"); EXPECT_THAT(EncodeDurationToJson(absl::InfiniteDuration()), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(EncodeDurationToJson(-absl::InfiniteDuration()), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(EncodeTimestampToJson, Conformance) { std::string formatted; ASSERT_OK_AND_ASSIGN(formatted, EncodeTimestampToJson(MinTimestamp())); EXPECT_EQ(formatted, "0001-01-01T00:00:00Z"); ASSERT_OK_AND_ASSIGN(formatted, EncodeTimestampToJson(MaxTimestamp())); EXPECT_EQ(formatted, "9999-12-31T23:59:59.999999999Z"); ASSERT_OK_AND_ASSIGN(formatted, EncodeTimestampToJson(absl::UnixEpoch())); EXPECT_EQ(formatted, "1970-01-01T00:00:00Z"); ASSERT_OK_AND_ASSIGN( formatted, EncodeTimestampToJson(absl::UnixEpoch() + absl::Milliseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.010Z"); ASSERT_OK_AND_ASSIGN( formatted, EncodeTimestampToJson(absl::UnixEpoch() + absl::Microseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.000010Z"); ASSERT_OK_AND_ASSIGN(formatted, EncodeTimestampToJson(absl::UnixEpoch() + absl::Nanoseconds(10))); EXPECT_EQ(formatted, "1970-01-01T00:00:00.000000010Z"); EXPECT_THAT(EncodeTimestampToJson(absl::InfiniteFuture()), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(EncodeTimestampToJson(absl::InfinitePast()), StatusIs(absl::StatusCode::kInvalidArgument)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/time.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/time_test.cc
4552db5798fb0853b131b783d8875794334fae7f
255b3361-bf35-4cb8-8d6d-b19ad06cd67a
cpp
google/quiche
tun_device_controller
quiche/quic/qbone/bonnet/tun_device_controller.cc
quiche/quic/qbone/bonnet/tun_device_controller_test.cc
#include "quiche/quic/qbone/bonnet/tun_device_controller.h" #include <linux/rtnetlink.h> #include <utility> #include <vector> #include "absl/flags/flag.h" #include "absl/time/clock.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/qbone/qbone_constants.h" #include "quiche/common/quiche_callbacks.h" ABSL_FLAG(bool, qbone_tun_device_replace_default_routing_rules, true, "If true, will define a rule that points packets sourced from the " "qbone interface to the qbone table. This is unnecessary in " "environments with no other ipv6 route."); ABSL_RETIRED_FLAG(int, qbone_route_init_cwnd, 0, "Deprecated. Code no longer modifies initcwnd."); namespace quic { bool TunDeviceController::UpdateAddress(const IpRange& desired_range) { if (!setup_tun_) { return true; } NetlinkInterface::LinkInfo link_info{}; if (!netlink_->GetLinkInfo(ifname_, &link_info)) { return false; } std::vector<NetlinkInterface::AddressInfo> addresses; if (!netlink_->GetAddresses(link_info.index, 0, &addresses, nullptr)) { return false; } QuicIpAddress desired_address = desired_range.FirstAddressInRange(); for (const auto& address : addresses) { if (!netlink_->ChangeLocalAddress( link_info.index, NetlinkInterface::Verb::kRemove, address.interface_address, address.prefix_length, 0, 0, {})) { return false; } } bool address_updated = netlink_->ChangeLocalAddress( link_info.index, NetlinkInterface::Verb::kAdd, desired_address, desired_range.prefix_length(), IFA_F_PERMANENT | IFA_F_NODAD, RT_SCOPE_LINK, {}); if (address_updated) { current_address_ = desired_address; for (const auto& cb : address_update_cbs_) { cb(current_address_); } } return address_updated; } bool TunDeviceController::UpdateRoutes( const IpRange& desired_range, const std::vector<IpRange>& desired_routes) { if (!setup_tun_) { return true; } NetlinkInterface::LinkInfo link_info{}; if (!netlink_->GetLinkInfo(ifname_, &link_info)) { QUIC_LOG(ERROR) << "Could not get link info for interface <" << ifname_ << ">"; return false; } std::vector<NetlinkInterface::RoutingRule> routing_rules; if (!netlink_->GetRouteInfo(&routing_rules)) { QUIC_LOG(ERROR) << "Unable to get route info"; return false; } for (const auto& rule : routing_rules) { if (rule.out_interface == link_info.index && rule.table == QboneConstants::kQboneRouteTableId) { if (!netlink_->ChangeRoute(NetlinkInterface::Verb::kRemove, rule.table, rule.destination_subnet, rule.scope, rule.preferred_source, rule.out_interface)) { QUIC_LOG(ERROR) << "Unable to remove old route to <" << rule.destination_subnet.ToString() << ">"; return false; } } } if (!UpdateRules(desired_range)) { return false; } QuicIpAddress desired_address = desired_range.FirstAddressInRange(); std::vector<IpRange> routes(desired_routes.begin(), desired_routes.end()); routes.emplace_back(*QboneConstants::TerminatorLocalAddressRange()); for (const auto& route : routes) { if (!netlink_->ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, route, RT_SCOPE_LINK, desired_address, link_info.index)) { QUIC_LOG(ERROR) << "Unable to add route <" << route.ToString() << ">"; return false; } } return true; } bool TunDeviceController::UpdateRoutesWithRetries( const IpRange& desired_range, const std::vector<IpRange>& desired_routes, int retries) { while (retries-- > 0) { if (UpdateRoutes(desired_range, desired_routes)) { return true; } absl::SleepFor(absl::Milliseconds(100)); } return false; } bool TunDeviceController::UpdateRules(IpRange desired_range) { if (!absl::GetFlag(FLAGS_qbone_tun_device_replace_default_routing_rules)) { return true; } std::vector<NetlinkInterface::IpRule> ip_rules; if (!netlink_->GetRuleInfo(&ip_rules)) { QUIC_LOG(ERROR) << "Unable to get rule info"; return false; } for (const auto& rule : ip_rules) { if (rule.table == QboneConstants::kQboneRouteTableId) { if (!netlink_->ChangeRule(NetlinkInterface::Verb::kRemove, rule.table, rule.source_range)) { QUIC_LOG(ERROR) << "Unable to remove old rule for table <" << rule.table << "> from source <" << rule.source_range.ToString() << ">"; return false; } } } if (!netlink_->ChangeRule(NetlinkInterface::Verb::kAdd, QboneConstants::kQboneRouteTableId, desired_range)) { QUIC_LOG(ERROR) << "Unable to add rule for <" << desired_range.ToString() << ">"; return false; } return true; } QuicIpAddress TunDeviceController::current_address() { return current_address_; } void TunDeviceController::RegisterAddressUpdateCallback( quiche::MultiUseCallback<void(QuicIpAddress)> cb) { address_update_cbs_.push_back(std::move(cb)); } }
#include "quiche/quic/qbone/bonnet/tun_device_controller.h" #include <linux/if_addr.h> #include <linux/rtnetlink.h> #include <string> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/platform/mock_netlink.h" #include "quiche/quic/qbone/qbone_constants.h" ABSL_DECLARE_FLAG(bool, qbone_tun_device_replace_default_routing_rules); ABSL_DECLARE_FLAG(int, qbone_route_init_cwnd); namespace quic::test { namespace { using ::testing::Eq; constexpr int kIfindex = 42; constexpr char kIfname[] = "qbone0"; const IpRange kIpRange = []() { IpRange range; QCHECK(range.FromString("2604:31c0:2::/64")); return range; }(); constexpr char kOldAddress[] = "1.2.3.4"; constexpr int kOldPrefixLen = 24; using ::testing::_; using ::testing::Invoke; using ::testing::Return; using ::testing::StrictMock; MATCHER_P(IpRangeEq, range, absl::StrCat("expected IpRange to equal ", range.ToString())) { return arg == range; } class TunDeviceControllerTest : public QuicTest { public: TunDeviceControllerTest() : controller_(kIfname, true, &netlink_), link_local_range_(*QboneConstants::TerminatorLocalAddressRange()) { controller_.RegisterAddressUpdateCallback( [this](QuicIpAddress address) { notified_address_ = address; }); } protected: void ExpectLinkInfo(const std::string& interface_name, int ifindex) { EXPECT_CALL(netlink_, GetLinkInfo(interface_name, _)) .WillOnce(Invoke([ifindex](absl::string_view ifname, NetlinkInterface::LinkInfo* link_info) { link_info->index = ifindex; return true; })); } MockNetlink netlink_; TunDeviceController controller_; QuicIpAddress notified_address_; IpRange link_local_range_; }; TEST_F(TunDeviceControllerTest, AddressAppliedWhenNoneExisted) { ExpectLinkInfo(kIfname, kIfindex); EXPECT_CALL(netlink_, GetAddresses(kIfindex, _, _, _)).WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeLocalAddress( kIfindex, NetlinkInterface::Verb::kAdd, kIpRange.FirstAddressInRange(), kIpRange.prefix_length(), IFA_F_PERMANENT | IFA_F_NODAD, RT_SCOPE_LINK, _)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateAddress(kIpRange)); EXPECT_THAT(notified_address_, Eq(kIpRange.FirstAddressInRange())); } TEST_F(TunDeviceControllerTest, OldAddressesAreRemoved) { ExpectLinkInfo(kIfname, kIfindex); EXPECT_CALL(netlink_, GetAddresses(kIfindex, _, _, _)) .WillOnce(Invoke([](int interface_index, uint8_t unwanted_flags, std::vector<NetlinkInterface::AddressInfo>* addresses, int* num_ipv6_nodad_dadfailed_addresses) { NetlinkInterface::AddressInfo info{}; info.interface_address.FromString(kOldAddress); info.prefix_length = kOldPrefixLen; addresses->emplace_back(info); return true; })); QuicIpAddress old_address; old_address.FromString(kOldAddress); EXPECT_CALL(netlink_, ChangeLocalAddress(kIfindex, NetlinkInterface::Verb::kRemove, old_address, kOldPrefixLen, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeLocalAddress( kIfindex, NetlinkInterface::Verb::kAdd, kIpRange.FirstAddressInRange(), kIpRange.prefix_length(), IFA_F_PERMANENT | IFA_F_NODAD, RT_SCOPE_LINK, _)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateAddress(kIpRange)); EXPECT_THAT(notified_address_, Eq(kIpRange.FirstAddressInRange())); } TEST_F(TunDeviceControllerTest, UpdateRoutesRemovedOldRoutes) { ExpectLinkInfo(kIfname, kIfindex); const int num_matching_routes = 3; EXPECT_CALL(netlink_, GetRouteInfo(_)) .WillOnce( Invoke([](std::vector<NetlinkInterface::RoutingRule>* routing_rules) { NetlinkInterface::RoutingRule non_matching_route{}; non_matching_route.table = QboneConstants::kQboneRouteTableId; non_matching_route.out_interface = kIfindex + 1; routing_rules->push_back(non_matching_route); NetlinkInterface::RoutingRule matching_route{}; matching_route.table = QboneConstants::kQboneRouteTableId; matching_route.out_interface = kIfindex; for (int i = 0; i < num_matching_routes; i++) { routing_rules->push_back(matching_route); } NetlinkInterface::RoutingRule non_matching_table{}; non_matching_table.table = QboneConstants::kQboneRouteTableId + 1; non_matching_table.out_interface = kIfindex; routing_rules->push_back(non_matching_table); return true; })); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kRemove, QboneConstants::kQboneRouteTableId, _, _, _, kIfindex)) .Times(num_matching_routes) .WillRepeatedly(Return(true)); EXPECT_CALL(netlink_, GetRuleInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRule(NetlinkInterface::Verb::kAdd, QboneConstants::kQboneRouteTableId, IpRangeEq(kIpRange))) .WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(link_local_range_), _, _, kIfindex)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateRoutes(kIpRange, {})); } TEST_F(TunDeviceControllerTest, UpdateRoutesAddsNewRoutes) { ExpectLinkInfo(kIfname, kIfindex); EXPECT_CALL(netlink_, GetRouteInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, GetRuleInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(kIpRange), _, _, kIfindex)) .Times(2) .WillRepeatedly(Return(true)) .RetiresOnSaturation(); EXPECT_CALL(netlink_, ChangeRule(NetlinkInterface::Verb::kAdd, QboneConstants::kQboneRouteTableId, IpRangeEq(kIpRange))) .WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(link_local_range_), _, _, kIfindex)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateRoutes(kIpRange, {kIpRange, kIpRange})); } TEST_F(TunDeviceControllerTest, EmptyUpdateRouteKeepsLinkLocalRoute) { ExpectLinkInfo(kIfname, kIfindex); EXPECT_CALL(netlink_, GetRouteInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, GetRuleInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRule(NetlinkInterface::Verb::kAdd, QboneConstants::kQboneRouteTableId, IpRangeEq(kIpRange))) .WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(link_local_range_), _, _, kIfindex)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateRoutes(kIpRange, {})); } TEST_F(TunDeviceControllerTest, DisablingRoutingRulesSkipsRuleCreation) { absl::SetFlag(&FLAGS_qbone_tun_device_replace_default_routing_rules, false); ExpectLinkInfo(kIfname, kIfindex); EXPECT_CALL(netlink_, GetRouteInfo(_)).WillOnce(Return(true)); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(kIpRange), _, _, kIfindex)) .Times(2) .WillRepeatedly(Return(true)) .RetiresOnSaturation(); EXPECT_CALL(netlink_, ChangeRoute(NetlinkInterface::Verb::kReplace, QboneConstants::kQboneRouteTableId, IpRangeEq(link_local_range_), _, _, kIfindex)) .WillOnce(Return(true)); EXPECT_TRUE(controller_.UpdateRoutes(kIpRange, {kIpRange, kIpRange})); } class DisabledTunDeviceControllerTest : public QuicTest { public: DisabledTunDeviceControllerTest() : controller_(kIfname, false, &netlink_), link_local_range_(*QboneConstants::TerminatorLocalAddressRange()) {} StrictMock<MockNetlink> netlink_; TunDeviceController controller_; IpRange link_local_range_; }; TEST_F(DisabledTunDeviceControllerTest, UpdateRoutesIsNop) { EXPECT_THAT(controller_.UpdateRoutes(kIpRange, {}), Eq(true)); } TEST_F(DisabledTunDeviceControllerTest, UpdateAddressIsNop) { EXPECT_THAT(controller_.UpdateAddress(kIpRange), Eq(true)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/tun_device_controller.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/bonnet/tun_device_controller_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
dfb8b94c-5fdf-4d12-a88c-7babeb7d3253
cpp
abseil/abseil-cpp
charset
absl/strings/charset.h
absl/strings/charset_test.cc
#ifndef ABSL_STRINGS_CHARSET_H_ #define ABSL_STRINGS_CHARSET_H_ #include <cstddef> #include <cstdint> #include <cstring> #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/strings/string_view.h" namespace absl { class CharSet { public: constexpr CharSet() : m_() {} constexpr explicit CharSet(absl::string_view str) : m_() { for (char c : str) { SetChar(static_cast<unsigned char>(c)); } } constexpr bool contains(char c) const { return ((m_[static_cast<unsigned char>(c) / 64] >> (static_cast<unsigned char>(c) % 64)) & 0x1) == 0x1; } constexpr bool empty() const { for (uint64_t c : m_) { if (c != 0) return false; } return true; } static constexpr CharSet Char(char x) { return CharSet(CharMaskForWord(x, 0), CharMaskForWord(x, 1), CharMaskForWord(x, 2), CharMaskForWord(x, 3)); } static constexpr CharSet Range(char lo, char hi) { return CharSet(RangeForWord(lo, hi, 0), RangeForWord(lo, hi, 1), RangeForWord(lo, hi, 2), RangeForWord(lo, hi, 3)); } friend constexpr CharSet operator&(const CharSet& a, const CharSet& b) { return CharSet(a.m_[0] & b.m_[0], a.m_[1] & b.m_[1], a.m_[2] & b.m_[2], a.m_[3] & b.m_[3]); } friend constexpr CharSet operator|(const CharSet& a, const CharSet& b) { return CharSet(a.m_[0] | b.m_[0], a.m_[1] | b.m_[1], a.m_[2] | b.m_[2], a.m_[3] | b.m_[3]); } friend constexpr CharSet operator~(const CharSet& a) { return CharSet(~a.m_[0], ~a.m_[1], ~a.m_[2], ~a.m_[3]); } static constexpr CharSet AsciiUppercase() { return CharSet::Range('A', 'Z'); } static constexpr CharSet AsciiLowercase() { return CharSet::Range('a', 'z'); } static constexpr CharSet AsciiDigits() { return CharSet::Range('0', '9'); } static constexpr CharSet AsciiAlphabet() { return AsciiLowercase() | AsciiUppercase(); } static constexpr CharSet AsciiAlphanumerics() { return AsciiDigits() | AsciiAlphabet(); } static constexpr CharSet AsciiHexDigits() { return AsciiDigits() | CharSet::Range('A', 'F') | CharSet::Range('a', 'f'); } static constexpr CharSet AsciiPrintable() { return CharSet::Range(0x20, 0x7e); } static constexpr CharSet AsciiWhitespace() { return CharSet("\t\n\v\f\r "); } static constexpr CharSet AsciiPunctuation() { return AsciiPrintable() & ~AsciiWhitespace() & ~AsciiAlphanumerics(); } private: constexpr CharSet(uint64_t b0, uint64_t b1, uint64_t b2, uint64_t b3) : m_{b0, b1, b2, b3} {} static constexpr uint64_t RangeForWord(char lo, char hi, uint64_t word) { return OpenRangeFromZeroForWord(static_cast<unsigned char>(hi) + 1, word) & ~OpenRangeFromZeroForWord(static_cast<unsigned char>(lo), word); } static constexpr uint64_t OpenRangeFromZeroForWord(uint64_t upper, uint64_t word) { return (upper <= 64 * word) ? 0 : (upper >= 64 * (word + 1)) ? ~static_cast<uint64_t>(0) : (~static_cast<uint64_t>(0) >> (64 - upper % 64)); } static constexpr uint64_t CharMaskForWord(char x, uint64_t word) { return (static_cast<unsigned char>(x) / 64 == word) ? (static_cast<uint64_t>(1) << (static_cast<unsigned char>(x) % 64)) : 0; } constexpr void SetChar(unsigned char c) { m_[c / 64] |= static_cast<uint64_t>(1) << (c % 64); } uint64_t m_[4]; }; } #endif
#include "absl/strings/charset.h" #include <stdio.h> #include <stdlib.h> #include <string> #include <vector> #include "gtest/gtest.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" namespace { constexpr absl::CharSet everything_map = ~absl::CharSet(); constexpr absl::CharSet nothing_map = absl::CharSet(); TEST(Charmap, AllTests) { const absl::CharSet also_nothing_map(""); EXPECT_TRUE(everything_map.contains('\0')); EXPECT_FALSE(nothing_map.contains('\0')); EXPECT_FALSE(also_nothing_map.contains('\0')); for (unsigned char ch = 1; ch != 0; ++ch) { SCOPED_TRACE(ch); EXPECT_TRUE(everything_map.contains(ch)); EXPECT_FALSE(nothing_map.contains(ch)); EXPECT_FALSE(also_nothing_map.contains(ch)); } const absl::CharSet symbols(absl::string_view("&@#@^!@?", 5)); EXPECT_TRUE(symbols.contains('&')); EXPECT_TRUE(symbols.contains('@')); EXPECT_TRUE(symbols.contains('#')); EXPECT_TRUE(symbols.contains('^')); EXPECT_FALSE(symbols.contains('!')); EXPECT_FALSE(symbols.contains('?')); int cnt = 0; for (unsigned char ch = 1; ch != 0; ++ch) cnt += symbols.contains(ch); EXPECT_EQ(cnt, 4); const absl::CharSet lets(absl::string_view("^abcde", 3)); const absl::CharSet lets2(absl::string_view("fghij\0klmnop", 10)); const absl::CharSet lets3("fghij\0klmnop"); EXPECT_TRUE(lets2.contains('k')); EXPECT_FALSE(lets3.contains('k')); EXPECT_FALSE((symbols & lets).empty()); EXPECT_TRUE((lets2 & lets).empty()); EXPECT_FALSE((lets & symbols).empty()); EXPECT_TRUE((lets & lets2).empty()); EXPECT_TRUE(nothing_map.empty()); EXPECT_FALSE(lets.empty()); } std::string Members(const absl::CharSet& m) { std::string r; for (size_t i = 0; i < 256; ++i) if (m.contains(i)) r.push_back(i); return r; } std::string ClosedRangeString(unsigned char lo, unsigned char hi) { std::string s; while (true) { s.push_back(lo); if (lo == hi) break; ++lo; } return s; } TEST(Charmap, Constexpr) { constexpr absl::CharSet kEmpty = absl::CharSet(); EXPECT_EQ(Members(kEmpty), ""); constexpr absl::CharSet kA = absl::CharSet::Char('A'); EXPECT_EQ(Members(kA), "A"); constexpr absl::CharSet kAZ = absl::CharSet::Range('A', 'Z'); EXPECT_EQ(Members(kAZ), "ABCDEFGHIJKLMNOPQRSTUVWXYZ"); constexpr absl::CharSet kIdentifier = absl::CharSet::Range('0', '9') | absl::CharSet::Range('A', 'Z') | absl::CharSet::Range('a', 'z') | absl::CharSet::Char('_'); EXPECT_EQ(Members(kIdentifier), "0123456789" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "_" "abcdefghijklmnopqrstuvwxyz"); constexpr absl::CharSet kAll = ~absl::CharSet(); for (size_t i = 0; i < 256; ++i) { SCOPED_TRACE(i); EXPECT_TRUE(kAll.contains(i)); } constexpr absl::CharSet kHello = absl::CharSet("Hello, world!"); EXPECT_EQ(Members(kHello), " !,Hdelorw"); constexpr absl::CharSet kABC = absl::CharSet::Range('A', 'Z') & ~absl::CharSet::Range('D', 'Z'); EXPECT_EQ(Members(kABC), "ABC"); constexpr bool kContainsA = absl::CharSet("abc").contains('a'); EXPECT_TRUE(kContainsA); constexpr bool kContainsD = absl::CharSet("abc").contains('d'); EXPECT_FALSE(kContainsD); constexpr bool kEmptyIsEmpty = absl::CharSet().empty(); EXPECT_TRUE(kEmptyIsEmpty); constexpr bool kNotEmptyIsEmpty = absl::CharSet("abc").empty(); EXPECT_FALSE(kNotEmptyIsEmpty); } TEST(Charmap, Range) { std::vector<size_t> poi = {0, 1, 2, 3, 4, 7, 8, 9, 15, 16, 17, 30, 31, 32, 33, 63, 64, 65, 127, 128, 129, 223, 224, 225, 254, 255}; for (auto lo = poi.begin(); lo != poi.end(); ++lo) { SCOPED_TRACE(*lo); for (auto hi = lo; hi != poi.end(); ++hi) { SCOPED_TRACE(*hi); EXPECT_EQ(Members(absl::CharSet::Range(*lo, *hi)), ClosedRangeString(*lo, *hi)); } } } TEST(Charmap, NullByteWithStringView) { char characters[5] = {'a', 'b', '\0', 'd', 'x'}; absl::string_view view(characters, 5); absl::CharSet tester(view); EXPECT_TRUE(tester.contains('a')); EXPECT_TRUE(tester.contains('b')); EXPECT_TRUE(tester.contains('\0')); EXPECT_TRUE(tester.contains('d')); EXPECT_TRUE(tester.contains('x')); EXPECT_FALSE(tester.contains('c')); } TEST(CharmapCtype, Match) { for (int c = 0; c < 256; ++c) { SCOPED_TRACE(c); SCOPED_TRACE(static_cast<char>(c)); EXPECT_EQ(absl::ascii_isupper(c), absl::CharSet::AsciiUppercase().contains(c)); EXPECT_EQ(absl::ascii_islower(c), absl::CharSet::AsciiLowercase().contains(c)); EXPECT_EQ(absl::ascii_isdigit(c), absl::CharSet::AsciiDigits().contains(c)); EXPECT_EQ(absl::ascii_isalpha(c), absl::CharSet::AsciiAlphabet().contains(c)); EXPECT_EQ(absl::ascii_isalnum(c), absl::CharSet::AsciiAlphanumerics().contains(c)); EXPECT_EQ(absl::ascii_isxdigit(c), absl::CharSet::AsciiHexDigits().contains(c)); EXPECT_EQ(absl::ascii_isprint(c), absl::CharSet::AsciiPrintable().contains(c)); EXPECT_EQ(absl::ascii_isspace(c), absl::CharSet::AsciiWhitespace().contains(c)); EXPECT_EQ(absl::ascii_ispunct(c), absl::CharSet::AsciiPunctuation().contains(c)); } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/charset.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/charset_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
afbf6f4d-13ff-4467-a905-6b6f60822eb7
cpp
abseil/abseil-cpp
cord_rep_btree_navigator
absl/strings/internal/cord_rep_btree_navigator.cc
absl/strings/internal/cord_rep_btree_navigator_test.cc
#include "absl/strings/internal/cord_rep_btree_navigator.h" #include <cassert> #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { using ReadResult = CordRepBtreeNavigator::ReadResult; namespace { inline CordRep* Substring(CordRep* rep, size_t offset, size_t n) { assert(n <= rep->length); assert(offset < rep->length); assert(offset <= rep->length - n); assert(IsDataEdge(rep)); if (n == 0) return nullptr; if (n == rep->length) return CordRep::Ref(rep); if (rep->tag == SUBSTRING) { offset += rep->substring()->start; rep = rep->substring()->child; } assert(rep->IsExternal() || rep->IsFlat()); CordRepSubstring* substring = new CordRepSubstring(); substring->length = n; substring->tag = SUBSTRING; substring->start = offset; substring->child = CordRep::Ref(rep); return substring; } inline CordRep* Substring(CordRep* rep, size_t offset) { return Substring(rep, offset, rep->length - offset); } } CordRepBtreeNavigator::Position CordRepBtreeNavigator::Skip(size_t n) { int height = 0; size_t index = index_[0]; CordRepBtree* node = node_[0]; CordRep* edge = node->Edge(index); while (n >= edge->length) { n -= edge->length; while (++index == node->end()) { if (++height > height_) return {nullptr, n}; node = node_[height]; index = index_[height]; } edge = node->Edge(index); } while (height > 0) { node = edge->btree(); index_[height] = static_cast<uint8_t>(index); node_[--height] = node; index = node->begin(); edge = node->Edge(index); while (n >= edge->length) { n -= edge->length; ++index; assert(index != node->end()); edge = node->Edge(index); } } index_[0] = static_cast<uint8_t>(index); return {edge, n}; } ReadResult CordRepBtreeNavigator::Read(size_t edge_offset, size_t n) { int height = 0; size_t length = edge_offset + n; size_t index = index_[0]; CordRepBtree* node = node_[0]; CordRep* edge = node->Edge(index); assert(edge_offset < edge->length); if (length < edge->length) { return {Substring(edge, edge_offset, n), length}; } CordRepBtree* subtree = CordRepBtree::New(Substring(edge, edge_offset)); size_t subtree_end = 1; do { length -= edge->length; while (++index == node->end()) { index_[height] = static_cast<uint8_t>(index); if (++height > height_) { subtree->set_end(subtree_end); if (length == 0) return {subtree, 0}; CordRep::Unref(subtree); return {nullptr, length}; } if (length != 0) { subtree->set_end(subtree_end); subtree = CordRepBtree::New(subtree); subtree_end = 1; } node = node_[height]; index = index_[height]; } edge = node->Edge(index); if (length >= edge->length) { subtree->length += edge->length; subtree->edges_[subtree_end++] = CordRep::Ref(edge); } } while (length >= edge->length); CordRepBtree* tree = subtree; subtree->length += length; while (height > 0) { node = edge->btree(); index_[height] = static_cast<uint8_t>(index); node_[--height] = node; index = node->begin(); edge = node->Edge(index); if (length != 0) { CordRepBtree* right = CordRepBtree::New(height); right->length = length; subtree->edges_[subtree_end++] = right; subtree->set_end(subtree_end); subtree = right; subtree_end = 0; while (length >= edge->length) { subtree->edges_[subtree_end++] = CordRep::Ref(edge); length -= edge->length; edge = node->Edge(++index); } } } if (length != 0) { subtree->edges_[subtree_end++] = Substring(edge, 0, length); } subtree->set_end(subtree_end); index_[0] = static_cast<uint8_t>(index); return {tree, length}; } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/cord_rep_btree_navigator.h" #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_test_util.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { using ::testing::Eq; using ::testing::Ne; using ::absl::cordrep_testing::CordRepBtreeFromFlats; using ::absl::cordrep_testing::CordToString; using ::absl::cordrep_testing::CreateFlatsFromString; using ::absl::cordrep_testing::CreateRandomString; using ::absl::cordrep_testing::MakeFlat; using ::absl::cordrep_testing::MakeSubstring; using ReadResult = CordRepBtreeNavigator::ReadResult; using Position = CordRepBtreeNavigator::Position; class CordRepBtreeNavigatorTest : public testing::TestWithParam<size_t> { public: using Flats = std::vector<CordRep*>; static constexpr size_t kCharsPerFlat = 3; CordRepBtreeNavigatorTest() { data_ = CreateRandomString(count() * kCharsPerFlat); flats_ = CreateFlatsFromString(data_, kCharsPerFlat); if (count() > 1) { CordRep::Unref(flats_[1]); flats_[1] = MakeSubstring(kCharsPerFlat, kCharsPerFlat, MakeFlat(data_)); } else { CordRep::Unref(flats_[0]); flats_[0] = MakeSubstring(0, kCharsPerFlat, MakeFlat(data_)); } tree_ = CordRepBtreeFromFlats(flats_); } ~CordRepBtreeNavigatorTest() override { CordRep::Unref(tree_); } size_t count() const { return GetParam(); } CordRepBtree* tree() { return tree_; } const std::string& data() const { return data_; } const std::vector<CordRep*>& flats() const { return flats_; } static std::string ToString(testing::TestParamInfo<size_t> param) { return absl::StrCat(param.param, "_Flats"); } private: std::string data_; Flats flats_; CordRepBtree* tree_; }; INSTANTIATE_TEST_SUITE_P( WithParam, CordRepBtreeNavigatorTest, testing::Values(1, CordRepBtree::kMaxCapacity - 1, CordRepBtree::kMaxCapacity, CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity - 1, CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity, CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity + 1, CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity * 2 + 17), CordRepBtreeNavigatorTest::ToString); TEST(CordRepBtreeNavigatorTest, Uninitialized) { CordRepBtreeNavigator nav; EXPECT_FALSE(nav); EXPECT_THAT(nav.btree(), Eq(nullptr)); #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) EXPECT_DEATH(nav.Current(), ".*"); #endif } TEST_P(CordRepBtreeNavigatorTest, InitFirst) { CordRepBtreeNavigator nav; CordRep* edge = nav.InitFirst(tree()); EXPECT_TRUE(nav); EXPECT_THAT(nav.btree(), Eq(tree())); EXPECT_THAT(nav.Current(), Eq(flats().front())); EXPECT_THAT(edge, Eq(flats().front())); } TEST_P(CordRepBtreeNavigatorTest, InitLast) { CordRepBtreeNavigator nav; CordRep* edge = nav.InitLast(tree()); EXPECT_TRUE(nav); EXPECT_THAT(nav.btree(), Eq(tree())); EXPECT_THAT(nav.Current(), Eq(flats().back())); EXPECT_THAT(edge, Eq(flats().back())); } TEST_P(CordRepBtreeNavigatorTest, NextPrev) { CordRepBtreeNavigator nav; nav.InitFirst(tree()); const Flats& flats = this->flats(); EXPECT_THAT(nav.Previous(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.front())); for (size_t i = 1; i < flats.size(); ++i) { ASSERT_THAT(nav.Next(), Eq(flats[i])); EXPECT_THAT(nav.Current(), Eq(flats[i])); } EXPECT_THAT(nav.Next(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.back())); for (size_t i = flats.size() - 1; i > 0; --i) { ASSERT_THAT(nav.Previous(), Eq(flats[i - 1])); EXPECT_THAT(nav.Current(), Eq(flats[i - 1])); } EXPECT_THAT(nav.Previous(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.front())); } TEST_P(CordRepBtreeNavigatorTest, PrevNext) { CordRepBtreeNavigator nav; nav.InitLast(tree()); const Flats& flats = this->flats(); EXPECT_THAT(nav.Next(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.back())); for (size_t i = flats.size() - 1; i > 0; --i) { ASSERT_THAT(nav.Previous(), Eq(flats[i - 1])); EXPECT_THAT(nav.Current(), Eq(flats[i - 1])); } EXPECT_THAT(nav.Previous(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.front())); for (size_t i = 1; i < flats.size(); ++i) { ASSERT_THAT(nav.Next(), Eq(flats[i])); EXPECT_THAT(nav.Current(), Eq(flats[i])); } EXPECT_THAT(nav.Next(), Eq(nullptr)); EXPECT_THAT(nav.Current(), Eq(flats.back())); } TEST(CordRepBtreeNavigatorTest, Reset) { CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc")); CordRepBtreeNavigator nav; nav.InitFirst(tree); nav.Reset(); EXPECT_FALSE(nav); EXPECT_THAT(nav.btree(), Eq(nullptr)); #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) EXPECT_DEATH(nav.Current(), ".*"); #endif CordRep::Unref(tree); } TEST_P(CordRepBtreeNavigatorTest, Skip) { size_t count = this->count(); const Flats& flats = this->flats(); CordRepBtreeNavigator nav; nav.InitFirst(tree()); for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) { Position pos = nav.Skip(char_offset); EXPECT_THAT(pos.edge, Eq(nav.Current())); EXPECT_THAT(pos.edge, Eq(flats[0])); EXPECT_THAT(pos.offset, Eq(char_offset)); } for (size_t index1 = 0; index1 < count; ++index1) { for (size_t index2 = index1; index2 < count; ++index2) { for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) { CordRepBtreeNavigator nav; nav.InitFirst(tree()); size_t length1 = index1 * kCharsPerFlat; Position pos1 = nav.Skip(length1 + char_offset); ASSERT_THAT(pos1.edge, Eq(flats[index1])); ASSERT_THAT(pos1.edge, Eq(nav.Current())); ASSERT_THAT(pos1.offset, Eq(char_offset)); size_t length2 = index2 * kCharsPerFlat; Position pos2 = nav.Skip(length2 - length1 + char_offset); ASSERT_THAT(pos2.edge, Eq(flats[index2])); ASSERT_THAT(pos2.edge, Eq(nav.Current())); ASSERT_THAT(pos2.offset, Eq(char_offset)); } } } } TEST_P(CordRepBtreeNavigatorTest, Seek) { size_t count = this->count(); const Flats& flats = this->flats(); CordRepBtreeNavigator nav; nav.InitFirst(tree()); for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) { Position pos = nav.Seek(char_offset); EXPECT_THAT(pos.edge, Eq(nav.Current())); EXPECT_THAT(pos.edge, Eq(flats[0])); EXPECT_THAT(pos.offset, Eq(char_offset)); } for (size_t index = 0; index < count; ++index) { for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) { size_t offset = index * kCharsPerFlat + char_offset; Position pos1 = nav.Seek(offset); ASSERT_THAT(pos1.edge, Eq(flats[index])); ASSERT_THAT(pos1.edge, Eq(nav.Current())); ASSERT_THAT(pos1.offset, Eq(char_offset)); } } } TEST(CordRepBtreeNavigatorTest, InitOffset) { CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc")); tree = CordRepBtree::Append(tree, MakeFlat("def")); CordRepBtreeNavigator nav; Position pos = nav.InitOffset(tree, 5); EXPECT_TRUE(nav); EXPECT_THAT(nav.btree(), Eq(tree)); EXPECT_THAT(pos.edge, Eq(tree->Edges()[1])); EXPECT_THAT(pos.edge, Eq(nav.Current())); EXPECT_THAT(pos.offset, Eq(2u)); CordRep::Unref(tree); } TEST(CordRepBtreeNavigatorTest, InitOffsetAndSeekBeyondLength) { CordRepBtree* tree1 = CordRepBtree::Create(MakeFlat("abc")); CordRepBtree* tree2 = CordRepBtree::Create(MakeFlat("def")); CordRepBtreeNavigator nav; nav.InitFirst(tree1); EXPECT_THAT(nav.Seek(3).edge, Eq(nullptr)); EXPECT_THAT(nav.Seek(100).edge, Eq(nullptr)); EXPECT_THAT(nav.btree(), Eq(tree1)); EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front())); EXPECT_THAT(nav.InitOffset(tree2, 3).edge, Eq(nullptr)); EXPECT_THAT(nav.InitOffset(tree2, 100).edge, Eq(nullptr)); EXPECT_THAT(nav.btree(), Eq(tree1)); EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front())); CordRep::Unref(tree1); CordRep::Unref(tree2); } TEST_P(CordRepBtreeNavigatorTest, Read) { const Flats& flats = this->flats(); const std::string& data = this->data(); for (size_t offset = 0; offset < data.size(); ++offset) { for (size_t length = 1; length <= data.size() - offset; ++length) { CordRepBtreeNavigator nav; nav.InitFirst(tree()); size_t edge_offset = nav.Skip(offset).offset; ReadResult result = nav.Read(edge_offset, length); ASSERT_THAT(result.tree, Ne(nullptr)); EXPECT_THAT(result.tree->length, Eq(length)); if (result.tree->tag == BTREE) { ASSERT_TRUE(CordRepBtree::IsValid(result.tree->btree())); } std::string value = CordToString(result.tree); EXPECT_THAT(value, Eq(data.substr(offset, length))); size_t partial = (offset + length) % kCharsPerFlat; ASSERT_THAT(result.n, Eq(partial)); if (offset + length < data.size()) { size_t index = (offset + length) / kCharsPerFlat; EXPECT_THAT(nav.Current(), Eq(flats[index])); } CordRep::Unref(result.tree); } } } TEST_P(CordRepBtreeNavigatorTest, ReadBeyondLengthOfTree) { CordRepBtreeNavigator nav; nav.InitFirst(tree()); ReadResult result = nav.Read(2, tree()->length); ASSERT_THAT(result.tree, Eq(nullptr)); } TEST(CordRepBtreeNavigatorTest, NavigateMaximumTreeDepth) { CordRepFlat* flat1 = MakeFlat("Hello world"); CordRepFlat* flat2 = MakeFlat("World Hello"); CordRepBtree* node = CordRepBtree::Create(flat1); node = CordRepBtree::Append(node, flat2); while (node->height() < CordRepBtree::kMaxHeight) { node = CordRepBtree::New(node); } CordRepBtreeNavigator nav; CordRep* edge = nav.InitFirst(node); EXPECT_THAT(edge, Eq(flat1)); EXPECT_THAT(nav.Next(), Eq(flat2)); EXPECT_THAT(nav.Next(), Eq(nullptr)); EXPECT_THAT(nav.Previous(), Eq(flat1)); EXPECT_THAT(nav.Previous(), Eq(nullptr)); CordRep::Unref(node); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree_navigator.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree_navigator_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
8ba9fb26-5b1e-47d3-8a9e-005dcae536cb
cpp
tensorflow/tensorflow
executable
third_party/xla/xla/service/executable.cc
tensorflow/core/tfrt/mlrt/bytecode/executable_test.cc
#include "xla/service/executable.h" #include <memory> #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "xla/debug_options_flags.h" #include "xla/service/dump.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" namespace xla { ExecutionInput::~ExecutionInput() { for (auto& index : unowned_indices_) { auto buffer = buffers_.mutable_element(index)->Release(); if (buffer) { buffer->Release(); } } } absl::Status ExecutionInput::SetDynamicShape(Shape dynamic_shape) { const Shape& input_shape = shape(); if (!ShapeUtil::DynamicShapeIsCompatible(input_shape, dynamic_shape)) { return tsl::errors::InvalidArgument( "Cannot set dynamic shape: ", input_shape.DebugString(), " vs. ", dynamic_shape.DebugString()); } dynamic_shape_ = std::make_unique<Shape>(std::move(dynamic_shape)); return absl::OkStatus(); } void ExecutionInput::SetUnownedBuffer(const ShapeIndex& index, MaybeOwningDeviceMemory buffer) { *buffers_.mutable_element(index) = std::move(buffer); unowned_indices_.insert(index); } absl::StatusOr<ShapedBuffer> ExecutionInput::ToShapedBuffer( se::DeviceMemoryAllocator* allocator, int device_ordinal) const { const Shape& input_shape = shape(); ShapedBuffer shaped_buffer(input_shape, device_ordinal); for (const auto& index_buffer : Buffers()) { const tensorflow::se::OwningDeviceMemory* mem = index_buffer.second.AsOwningDeviceMemory(); if (mem != nullptr && (mem->allocator() != allocator || mem->device_ordinal() != device_ordinal)) { return tsl::errors::InvalidArgument("Device buffer at index ", index_buffer.first.ToString(), " has mismatching allocator/device"); } shaped_buffer.set_buffer(index_buffer.second.AsDeviceMemoryBase(), index_buffer.first); } return std::move(shaped_buffer); } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteOnStream( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments, HloExecutionProfile* hlo_execution_profile) { absl::StatusOr<ScopedShapedBuffer> result = ExecuteAsyncOnStream(run_options, arguments, hlo_execution_profile); absl::Status blocking_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(blocking_status); return result; } static ExecutionInput MakeMaybeOwningDeviceMemoryTree( const ShapedBuffer& shaped_buffer) { ExecutionInput result(shaped_buffer.on_device_shape()); shaped_buffer.buffers().ForEachElement( [&](const ShapeIndex& index, const se::DeviceMemoryBase& mem) { result.SetBuffer(index, MaybeOwningDeviceMemory(mem)); }); return result; } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteAsyncOnStream( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments, HloExecutionProfile* hlo_execution_profile) { std::vector<ExecutionInput> args; args.reserve(arguments.size()); for (const ShapedBuffer* arg : arguments) { args.emplace_back(MakeMaybeOwningDeviceMemoryTree(*arg)); } TF_ASSIGN_OR_RETURN(ExecutionOutput out, ExecuteAsyncOnStream(run_options, std::move(args), hlo_execution_profile)); return out.ConsumeResult(); } absl::StatusOr<ExecutionOutput> Executable::ExecuteOnStream( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments, HloExecutionProfile* hlo_execution_profile) { absl::StatusOr<ExecutionOutput> result = ExecuteAsyncOnStream( run_options, std::move(arguments), hlo_execution_profile); absl::Status blocking_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(blocking_status); return result; } absl::StatusOr<std::vector<ScopedShapedBuffer>> Executable::ExecuteOnStreams( absl::Span<const ServiceExecutableRunOptions> run_options, absl::Span<const absl::Span<const ShapedBuffer* const>> arguments) { TF_RET_CHECK(run_options.size() == arguments.size()); std::vector<ScopedShapedBuffer> return_values; return_values.reserve(run_options.size()); if (run_options.size() == 1) { TF_ASSIGN_OR_RETURN(auto rv, ExecuteOnStream(&run_options[0], arguments[0], nullptr)); return_values.push_back(std::move(rv)); return std::move(return_values); } for (size_t i = 0; i < run_options.size(); ++i) { TF_ASSIGN_OR_RETURN( auto rv, ExecuteAsyncOnStream(&run_options[i], arguments[i], nullptr)); return_values.push_back(std::move(rv)); } for (const auto& options : run_options) { TF_RET_CHECK(options.stream() != nullptr); TF_RETURN_IF_ERROR(options.stream()->BlockHostUntilDone()); } return std::move(return_values); } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteOnStreamWrapper( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments) { absl::StatusOr<ScopedShapedBuffer> result = ExecuteAsyncOnStreamWrapper(run_options, arguments); absl::Status block_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(block_status); return result; } absl::StatusOr<ExecutionOutput> Executable::ExecuteOnStreamWrapper( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments) { absl::StatusOr<ExecutionOutput> result = ExecuteAsyncOnStreamWrapper(run_options, std::move(arguments)); absl::Status block_status = run_options->stream()->BlockHostUntilDone(); TF_RETURN_IF_ERROR(result.status()); TF_RETURN_IF_ERROR(block_status); return result; } struct ExecuteAsyncOnStreamWrapperState { ExecutionProfile* profile; }; static ExecuteAsyncOnStreamWrapperState ExecuteWrapperBeforeExecution( const Executable& executable, const ServiceExecutableRunOptions* run_options) { ExecuteAsyncOnStreamWrapperState state; state.profile = run_options->run_options().execution_profile(); VLOG(1) << "enqueueing executable on stream..."; return state; } absl::Status ExecuteWrapperAfterExecution( Executable* executable, const ExecuteAsyncOnStreamWrapperState& state, absl::Status return_status, se::Stream* stream) { if (!return_status.ok()) { if (state.profile != nullptr) { absl::Status status = stream->BlockHostUntilDone(); if (!status.ok()) { LOG(ERROR) << "Failed to BlockHostUntilDone: " << status; } } return return_status; } if (state.profile != nullptr) { TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); const int64_t executable_size_in_bytes = executable->SizeOfGeneratedCodeInBytes(); if (state.profile->compute_time_ns() == 0) { state.profile->set_compute_time_ns( state.profile->compute_and_transfer_time_ns()); } if (executable_size_in_bytes != 0) { state.profile->set_executable_size_in_bytes(executable_size_in_bytes); } } return return_status; } absl::StatusOr<ScopedShapedBuffer> Executable::ExecuteAsyncOnStreamWrapper( const ServiceExecutableRunOptions* run_options, absl::Span<const ShapedBuffer* const> arguments) { auto state = ExecuteWrapperBeforeExecution(*this, run_options); absl::StatusOr<ScopedShapedBuffer> return_value = ExecuteAsyncOnStream(run_options, arguments, nullptr); TF_RETURN_IF_ERROR(ExecuteWrapperAfterExecution( this, state, return_value.status(), run_options->stream())); return return_value; } absl::StatusOr<ExecutionOutput> Executable::ExecuteAsyncOnStreamWrapper( const ServiceExecutableRunOptions* run_options, std::vector<ExecutionInput> arguments) { auto state = ExecuteWrapperBeforeExecution(*this, run_options); absl::StatusOr<ExecutionOutput> return_value = ExecuteAsyncOnStream(run_options, std::move(arguments), nullptr); TF_RETURN_IF_ERROR(ExecuteWrapperAfterExecution( this, state, return_value.status(), run_options->stream())); return return_value; } int64_t Executable::SizeOfGeneratedCodeInBytes() const { return -1; } void Executable::MarkToBeReleasedArguments(absl::Span<ExecutionInput> arguments, ExecutionOutput& result) { for (ExecutionInput& argument : arguments) { for (auto& index_buffer : *argument.MutableBuffers()) { if (std::optional<se::OwningDeviceMemory> maybe_owning_buffer = index_buffer.second.Release()) { result.AddToBeReleased(std::move(*maybe_owning_buffer)); } } } } }
#include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include <cstring> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" namespace mlrt { namespace bc { namespace { TEST(ExecutableTest, Executable) { bc::Buffer buffer; bc::Allocator allocator(&buffer); Executable::Constructor executable_ctor = bc::New<bc::Executable>(&allocator); Vector<String>::Constructor kernel_names_ctor = executable_ctor.construct_kernel_names(2); kernel_names_ctor.ConstructAt(0, "add"); kernel_names_ctor.ConstructAt(1, "return"); auto attributes_ctor = executable_ctor.construct_attributes(1); int32_t constant = 1; std::string constant_str(sizeof(int32_t), '\0'); std::memcpy(constant_str.data(), &constant, sizeof(int32_t)); attributes_ctor.ConstructAt(0, constant_str); executable_ctor.construct_functions(1); Executable executable(buffer.Get(executable_ctor.address())); EXPECT_THAT(executable.kernel_names(), ::testing::ElementsAreArray({"add", "return"})); EXPECT_EQ(executable.attributes().size(), 1); int32_t value; ASSERT_EQ(executable.attributes()[0].size(), sizeof(value)); std::memcpy(&value, executable.attributes()[0].data(), sizeof(int32_t)); EXPECT_EQ(value, constant); EXPECT_EQ(executable.functions().size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/executable.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/bytecode/executable_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
550b3692-2d88-4054-bf6c-3b1158ebeda3
cpp
tensorflow/tensorflow
filter_dataset_op
tensorflow/core/kernels/data/filter_dataset_op.cc
tensorflow/core/kernels/data/filter_dataset_op_test.cc
#include "tensorflow/core/kernels/data/filter_dataset_op.h" #include <memory> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/stats_utils.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/stats_aggregator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { namespace data { constexpr const char* const FilterDatasetOp::kDatasetType; constexpr const char* const FilterDatasetOp::kInputDataset; constexpr const char* const FilterDatasetOp::kOtherArguments; constexpr const char* const FilterDatasetOp::kPredicate; constexpr const char* const FilterDatasetOp::kTarguments; constexpr const char* const FilterDatasetOp::kOutputTypes; constexpr const char* const FilterDatasetOp::kOutputShapes; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kFilteredElements[] = "filtered_elements"; constexpr char kDroppedElements[] = "dropped_elements"; class FilterDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, std::unique_ptr<CapturedFunction> captured_func) : DatasetBase(DatasetContext(ctx)), input_(input), captured_func_(std::move(captured_func)) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); AttrValue f; b->BuildAttrValue(captured_func_->func(), &f); AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); TF_RETURN_IF_ERROR(b->AddDataset( this, {{0, input_graph_node}}, {{1, other_arguments}}, {{kPredicate, f}, {kTarguments, other_arguments_types_attr}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), filtered_elements_(0), dropped_elements_(0) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { TF_RETURN_IF_ERROR( dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { auto stats_aggregator = ctx->stats_aggregator(); bool matched; do { { tf_shared_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, out_tensors, end_of_sequence)); } if (*end_of_sequence) { mutex_lock l(mu_); input_impl_.reset(); return absl::OkStatus(); } std::vector<Tensor> result; auto status = instantiated_captured_func_->RunWithBorrowedArgs( ctx, *out_tensors, &result, model_node()); if (!status.ok()) { return AddErrorContext(status); } if (result.size() != 1 || result[0].dtype() != DT_BOOL || result[0].NumElements() != 1) { out_tensors->clear(); return errors::InvalidArgument( "Filter predicate `f` must return a scalar bool."); } matched = result[0].scalar<bool>()(); if (!matched) { out_tensors->clear(); { mutex_lock l(mu_); dropped_elements_++; } if (stats_aggregator) { mutex_lock l(mu_); stats_aggregator->AddScalar( stats_utils::DroppedElementsScalarName(dataset()->node_name()), static_cast<float>(dropped_elements_), num_elements()); stats_aggregator->IncrementCounter(dataset()->node_name(), stats_utils::kDroppedElements, static_cast<float>(1)); } } } while (!matched); { mutex_lock l(mu_); filtered_elements_++; } if (stats_aggregator) { mutex_lock l(mu_); stats_aggregator->AddScalar( stats_utils::FilterdElementsScalarName(dataset()->node_name()), static_cast<float>(filtered_elements_), num_elements()); stats_aggregator->IncrementCounter(dataset()->node_name(), stats_utils::kFilteredElements, static_cast<float>(1)); } *end_of_sequence = false; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeUnknownRatioNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kFilteredElements, filtered_elements_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kDroppedElements, dropped_elements_)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (static_cast<bool>(input_empty)) { input_impl_.reset(); } else { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kFilteredElements, &filtered_elements_)); TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kDroppedElements, &dropped_elements_)); return absl::OkStatus(); } data::TraceMeMetadata GetTraceMeMetadata() const override { tf_shared_lock l(mu_); data::TraceMeMetadata result; result.push_back(std::make_pair( "passed", strings::Printf("%lld", static_cast<long long>(filtered_elements_)))); result.push_back(std::make_pair( "filtered", strings::Printf("%lld", static_cast<long long>(dropped_elements_)))); return result; } private: mutable mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); int64_t filtered_elements_ TF_GUARDED_BY(mu_); int64_t dropped_elements_ TF_GUARDED_BY(mu_); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; }; const DatasetBase* const input_; const std::unique_ptr<CapturedFunction> captured_func_; }; FilterDatasetOp::FilterDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kPredicate, {}, &func_metadata_)); OP_REQUIRES(ctx, func_metadata_->short_circuit_info().indices.size() <= 1, errors::InvalidArgument( "predicate function has more than one return value.")); } void FilterDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); *output = new Dataset(ctx, input, std::move(captured_func)); } namespace { REGISTER_KERNEL_BUILDER(Name("FilterDataset").Device(DEVICE_CPU), FilterDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("FilterDataset"); } } }
#include "tensorflow/core/kernels/data/filter_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "filter_dataset"; class FilterDatasetParams : public DatasetParams { public: template <typename T> FilterDatasetParams(T input_dataset_params, std::vector<Tensor> other_arguments, FunctionDefHelper::AttrValueWrapper pred_func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), pred_func_(std::move(pred_func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return other_arguments_; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->reserve(input_dataset_params_.size() + other_arguments_.size()); input_names->emplace_back(FilterDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(FilterDatasetOp::kOtherArguments, "_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"predicate", pred_func_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"metadata", ""}}; return absl::OkStatus(); } std::vector<FunctionDef> func_lib() const override { return func_lib_; } string dataset_type() const override { return FilterDatasetOp::kDatasetType; } private: std::vector<Tensor> other_arguments_; FunctionDefHelper::AttrValueWrapper pred_func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class FilterDatasetOpTest : public DatasetOpsTestBase {}; FilterDatasetParams FilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } FilterDatasetParams FilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{0}, {})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("GetUnique", {{"T", DT_INT64}, {"out_idx", DT_INT32}}), {test::function::Unique()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("IsZero", {{"T", DT_INT64}}), {test::function::IsZero()}, {}, {DT_INT64}, {PartialTensorShape({3, 1})}, kNodeName); } FilterDatasetParams InvalidPredFuncFilterDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{9}, {0, 0, 0, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return FilterDatasetParams( std::move(tensor_slice_dataset_params), {}, FunctionDefHelper::FunctionRef("NonZero", {{"T", DT_INT64}}), {test::function::NonZero()}, {}, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<FilterDatasetParams>> GetNextTestCases() { return {{FilterDatasetParams1(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {FilterDatasetParams2(), {}}}; } ITERATOR_GET_NEXT_TEST_P(FilterDatasetOpTest, FilterDatasetParams, GetNextTestCases()) TEST_F(FilterDatasetOpTest, DatasetNodeName) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(FilterDatasetOpTest, DatasetTypeString) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(FilterDatasetOp::kDatasetType))); } TEST_F(FilterDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } std::vector<DatasetOutputShapesTestCase<FilterDatasetParams>> DatasetOutputShapesTestCases() { return {{FilterDatasetParams1(), {PartialTensorShape({1})}}, {FilterDatasetParams2(), {PartialTensorShape({})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(FilterDatasetOpTest, FilterDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<FilterDatasetParams>> CardinalityTestCases() { return {{FilterDatasetParams1(), kUnknownCardinality}, {FilterDatasetParams2(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(FilterDatasetOpTest, FilterDatasetParams, CardinalityTestCases()) TEST_F(FilterDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } std::vector<IteratorOutputShapesTestCase<FilterDatasetParams>> IteratorOutputShapesTestCases() { return {{FilterDatasetParams1(), {PartialTensorShape({1})}}, {FilterDatasetParams2(), {PartialTensorShape({})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(FilterDatasetOpTest, FilterDatasetParams, IteratorOutputShapesTestCases()) TEST_F(FilterDatasetOpTest, IteratorPrefix) { auto dataset_params = FilterDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( FilterDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<FilterDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{FilterDatasetParams1(), {0, 2, 6}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {0}, {0}})}, {FilterDatasetParams2(), {0, 2, 6}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(FilterDatasetOpTest, FilterDatasetParams, IteratorSaveAndRestoreTestCases()) class ParameterizedInvalidPredicateFuncTest : public FilterDatasetOpTest, public ::testing::WithParamInterface<FilterDatasetParams> {}; TEST_P(ParameterizedInvalidPredicateFuncTest, InvalidPredicateFunc) { auto dataset_params = GetParam(); TF_ASSERT_OK(Initialize(dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; EXPECT_EQ( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence) .code(), absl::StatusCode::kInvalidArgument); EXPECT_TRUE(out_tensors.empty()); } INSTANTIATE_TEST_SUITE_P( FilterDatasetOpTest, ParameterizedInvalidPredicateFuncTest, ::testing::ValuesIn({InvalidPredFuncFilterDatasetParams1(), InvalidPredFuncFilterDatasetParams2(), InvalidPredFuncFilterDatasetParams3()})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/filter_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/filter_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bd4ce84d-8c2b-4f27-a3b4-90b861b3d323
cpp
google/tensorstore
constant_bit_vector
tensorstore/util/constant_bit_vector.h
tensorstore/util/constant_bit_vector_test.cc
#ifndef TENSORSTORE_UTIL_CONSTANT_BIT_VECTOR_H_ #define TENSORSTORE_UTIL_CONSTANT_BIT_VECTOR_H_ #include <cstddef> #include <type_traits> #include "tensorstore/util/bit_span.h" #include "tensorstore/util/constant_vector.h" namespace tensorstore { template <typename Block, bool value, std::ptrdiff_t Length> constexpr BitSpan<const Block, Length> GetConstantBitVector( std::integral_constant<std::ptrdiff_t, Length> = {}) { return {GetConstantVector< Block, (value ? ~static_cast<Block>(0) : static_cast<Block>(0)), BitVectorSizeInBlocks<Block>(Length)>() .data(), 0, Length}; } template <typename Block, bool value> BitSpan<const Block> GetConstantBitVector(std::ptrdiff_t length) { return {GetConstantVector<Block, (value ? ~static_cast<Block>(0) : static_cast<Block>(0))>( BitVectorSizeInBlocks<Block>(length)) .data(), 0, length}; } } #endif
#include "tensorstore/util/constant_bit_vector.h" #include <cstdint> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/bit_span.h" namespace { using ::tensorstore::BitSpan; using ::tensorstore::GetConstantBitVector; TEST(GetConstantBitVectorTest, StaticExtentFalse) { constexpr auto v = GetConstantBitVector<uint64_t, false, 113>(); static_assert( std::is_same_v<decltype(v), const BitSpan<const uint64_t, 113>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, false))); } TEST(GetConstantBitVectorTest, StaticExtentTrue) { constexpr auto v = GetConstantBitVector<uint64_t, true, 113>(); static_assert( std::is_same_v<decltype(v), const BitSpan<const uint64_t, 113>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, true))); } TEST(GetConstantBitVectorTest, DynamicExtentFalse) { auto v = GetConstantBitVector<uint64_t, false>(113); static_assert(std::is_same_v<decltype(v), BitSpan<const uint64_t>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, false))); } TEST(GetConstantBitVectorTest, DynamicExtentTrue) { auto v = GetConstantBitVector<uint64_t, true>(113); static_assert(std::is_same_v<decltype(v), BitSpan<const uint64_t>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, true))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_bit_vector.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_bit_vector_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c7a66d7d-dadc-40c4-8d3c-c32222c567aa
cpp
tensorflow/tensorflow
xla_debug_info_manager
third_party/xla/xla/service/xla_debug_info_manager.cc
third_party/xla/xla/service/xla_debug_info_manager_test.cc
#include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_proto_util.h" namespace xla { void XlaDebugInfoManager::RegisterModule( std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { CHECK(hlo_module != nullptr); absl::MutexLock lock(&mutex_); auto result = modules_.try_emplace(hlo_module->unique_id()); CHECK(result.second); XlaModuleEntry& m = result.first->second; m.hlo_module = std::move(hlo_module); m.buffer_assignment = std::move(buffer_assignment); m.active = true; } void XlaDebugInfoManager::UnregisterModule(ModuleIdentifier module_id) { absl::MutexLock lock(&mutex_); auto it = modules_.find(module_id); CHECK(it != modules_.end()); if (!tracing_active_) { modules_.erase(it); } else { XlaModuleEntry& m = it->second; m.active = false; } } void XlaDebugInfoManager::StartTracing() { absl::MutexLock lock(&mutex_); tracing_active_ = true; } void XlaDebugInfoManager::StopTracing( std::vector<std::unique_ptr<HloProto>>* module_debug_info) { std::vector<XlaModuleEntry> modules_to_serialize; { absl::MutexLock lock(&mutex_); if (!tracing_active_) return; tracing_active_ = false; modules_to_serialize.reserve(modules_.size()); for (auto it = modules_.begin(); it != modules_.end();) { auto& m = it->second; auto cur_it = it++; if (!m.active) { modules_to_serialize.emplace_back(std::move(m)); modules_.erase(cur_it); } else { modules_to_serialize.emplace_back(m); } } } if (module_debug_info) { module_debug_info->clear(); for (const auto& m : modules_to_serialize) { auto hlo_proto = std::make_unique<HloProto>(MakeHloProto(*m.hlo_module)); *hlo_proto->mutable_buffer_assignment() = m.buffer_assignment; module_debug_info->emplace_back(std::move(hlo_proto)); } } } bool XlaDebugInfoManager::TracksModule(ModuleIdentifier module_id) const { absl::MutexLock lock(&mutex_); return modules_.find(module_id) != modules_.end(); } }
#include "xla/service/xla_debug_info_manager.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_module_config.h" #include "xla/tests/hlo_test_base.h" namespace xla { class XlaDebugInfoManagerTestPeer { public: void RegisterModule(std::shared_ptr<const HloModule> hlo_module, BufferAssignmentProto buffer_assignment) { return xla_debug_info_manager_.RegisterModule(hlo_module, std::move(buffer_assignment)); } void UnregisterModule(ModuleIdentifier module_id) { return xla_debug_info_manager_.UnregisterModule(module_id); } void StartTracing() { return xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTracing() { std::vector<std::unique_ptr<HloProto>> module_debug_info; xla_debug_info_manager_.StopTracing(&module_debug_info); absl::flat_hash_set<ModuleIdentifier> module_ids; for (const auto& hlo_proto : module_debug_info) { module_ids.insert(hlo_proto->hlo_module().id()); } return module_ids; } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { absl::flat_hash_set<ModuleIdentifier> module_ids; absl::MutexLock lock(&xla_debug_info_manager_.mutex_); for (const auto& it : xla_debug_info_manager_.modules_) { module_ids.insert(it.first); } return module_ids; } private: XlaDebugInfoManager xla_debug_info_manager_; }; namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; class XlaDebugInfoManagerTest : public HloTestBase { protected: struct DebugMetadata { ModuleIdentifier unique_id; std::shared_ptr<HloModule> module; }; ModuleIdentifier RegisterProgram(const std::string& module_name) { DebugMetadata debug_info; HloModuleConfig config; debug_info.module = std::make_shared<HloModule>(module_name, config); ModuleIdentifier unique_id = debug_info.module->unique_id(); debug_info.unique_id = unique_id; xla_debug_info_manager_.RegisterModule(debug_info.module, BufferAssignmentProto()); external_references_.push_back(std::move(debug_info)); return unique_id; } void UnregisterProgram(ModuleIdentifier unique_id) { for (int i = 0; i < external_references_.size(); i++) { if (external_references_[i].unique_id == unique_id) { xla_debug_info_manager_.UnregisterModule(unique_id); external_references_.erase(external_references_.begin() + i); break; } } } absl::flat_hash_set<ModuleIdentifier> GetModuleIds() { return xla_debug_info_manager_.GetModuleIds(); } void StartTrace() { xla_debug_info_manager_.StartTracing(); } absl::flat_hash_set<ModuleIdentifier> StopTrace() { return xla_debug_info_manager_.StopTracing(); } std::vector<DebugMetadata> external_references_; XlaDebugInfoManagerTestPeer xla_debug_info_manager_; }; TEST_F(XlaDebugInfoManagerTest, NoTraceBasic) { auto program0 = RegisterProgram("program0"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0)); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0, program1)); UnregisterProgram(program0); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_TRUE(GetModuleIds().empty()); } TEST_F(XlaDebugInfoManagerTest, NoTraceDuplicateIds) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, ActiveTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); auto program2 = RegisterProgram("program2"); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); StartTrace(); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1, program2)); UnregisterProgram(program2); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A, program0B, program1)); UnregisterProgram(program0A); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0B, program1)); UnregisterProgram(program0B); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program1)); UnregisterProgram(program1); EXPECT_THAT(GetModuleIds(), IsEmpty()); } TEST_F(XlaDebugInfoManagerTest, UnregisterDuringTrace) { auto program0A = RegisterProgram("program0"); auto program0B = RegisterProgram("program0"); auto program1 = RegisterProgram("program1"); StartTrace(); UnregisterProgram(program1); UnregisterProgram(program0B); EXPECT_THAT(StopTrace(), UnorderedElementsAre(program0A, program0B, program1)); EXPECT_THAT(GetModuleIds(), UnorderedElementsAre(program0A)); UnregisterProgram(program0A); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/xla_debug_info_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/xla_debug_info_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fd3e1b7e-aead-499d-bda0-cf8d606beb95
cpp
tensorflow/tensorflow
guarantee_const_op
tensorflow/core/kernels/guarantee_const_op.cc
tensorflow/core/kernels/guarantee_const_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { namespace { class GuaranteeConstOp : public OpKernel { public: explicit GuaranteeConstOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { const DataType input_dtype = ctx->input_dtype(0); OP_REQUIRES(ctx, input_dtype != DT_RESOURCE, errors::InvalidArgument( "Input tensor cannot be a resource variable handle.")); const Tensor& input_tensor = ctx->input(0); Tensor* output = nullptr; if (!ctx->forward_input_to_output_with_shape(0, 0, input_tensor.shape(), &output)) { ctx->set_output(0, input_tensor); } } bool IsExpensive() override { return false; } }; REGISTER_KERNEL_BUILDER(Name("GuaranteeConst").Device(DEVICE_CPU), GuaranteeConstOp); } }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/variable_ops.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class GuaranteeConstOpTest : public OpsTestBase { protected: Status Init(DataType input_type) { TF_CHECK_OK(NodeDefBuilder("op", "GuaranteeConst") .Input(FakeInput(input_type)) .Finalize(node_def())); return InitOp(); } }; TEST_F(GuaranteeConstOpTest, Int32Success_6) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({6})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(GuaranteeConstOpTest, Int32Success_2_3) { TF_ASSERT_OK(Init(DT_INT32)); AddInputFromArray<int32>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({2, 3})); test::FillValues<int32>(&expected, {1, 2, 3, 4, 5, 6}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(GuaranteeConstOpTest, StringSuccess) { TF_ASSERT_OK(Init(DT_STRING)); AddInputFromArray<tstring>(TensorShape({6}), {"A", "b", "C", "d", "E", "f"}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_STRING, TensorShape({6})); test::FillValues<tstring>(&expected, {"A", "b", "C", "d", "E", "f"}); test::ExpectTensorEqual<tstring>(expected, *GetOutput(0)); } TEST_F(GuaranteeConstOpTest, ResourceInputError) { TF_ASSERT_OK(Init(DT_RESOURCE)); AddResourceInput("", "resource", new Var(DT_INT32)); const auto status = RunOpKernel(); ASSERT_EQ(error::INVALID_ARGUMENT, status.code()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/guarantee_const_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/guarantee_const_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6d7c5496-6c39-4052-b4be-06ee7b55571d
cpp
google/cel-cpp
matchers
eval/public/testing/matchers.cc
eval/public/testing/matchers_test.cc
#include "eval/public/testing/matchers.h" #include <ostream> #include <utility> #include "google/protobuf/message.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/string_view.h" #include "eval/public/set_util.h" #include "internal/casts.h" namespace google::api::expr::runtime { void PrintTo(const CelValue& value, std::ostream* os) { *os << value.DebugString(); } namespace test { namespace { using ::testing::_; using ::testing::MatcherInterface; using ::testing::MatchResultListener; class CelValueEqualImpl : public MatcherInterface<CelValue> { public: explicit CelValueEqualImpl(const CelValue& v) : value_(v) {} bool MatchAndExplain(CelValue arg, MatchResultListener* listener) const override { return CelValueEqual(arg, value_); } void DescribeTo(std::ostream* os) const override { *os << value_.DebugString(); } private: const CelValue& value_; }; template <typename UnderlyingType> class CelValueMatcherImpl : public testing::MatcherInterface<const CelValue&> { public: explicit CelValueMatcherImpl(testing::Matcher<UnderlyingType> m) : underlying_type_matcher_(std::move(m)) {} bool MatchAndExplain(const CelValue& v, testing::MatchResultListener* listener) const override { UnderlyingType arg; return v.GetValue(&arg) && underlying_type_matcher_.Matches(arg); } void DescribeTo(std::ostream* os) const override { CelValue::Type type = static_cast<CelValue::Type>(CelValue::IndexOf<UnderlyingType>::value); *os << absl::StrCat("type is ", CelValue::TypeName(type), " and "); underlying_type_matcher_.DescribeTo(os); } private: const testing::Matcher<UnderlyingType> underlying_type_matcher_; }; template <> class CelValueMatcherImpl<const google::protobuf::Message*> : public testing::MatcherInterface<const CelValue&> { public: explicit CelValueMatcherImpl(testing::Matcher<const google::protobuf::Message*> m) : underlying_type_matcher_(std::move(m)) {} bool MatchAndExplain(const CelValue& v, testing::MatchResultListener* listener) const override { CelValue::MessageWrapper arg; return v.GetValue(&arg) && arg.HasFullProto() && underlying_type_matcher_.Matches( cel::internal::down_cast<const google::protobuf::Message*>( arg.message_ptr())); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("type is ", CelValue::TypeName(CelValue::Type::kMessage), " and "); underlying_type_matcher_.DescribeTo(os); } private: const testing::Matcher<const google::protobuf::Message*> underlying_type_matcher_; }; } CelValueMatcher EqualsCelValue(const CelValue& v) { return CelValueMatcher(new CelValueEqualImpl(v)); } CelValueMatcher IsCelNull() { return CelValueMatcher(new CelValueMatcherImpl<CelValue::NullType>(_)); } CelValueMatcher IsCelBool(testing::Matcher<bool> m) { return CelValueMatcher(new CelValueMatcherImpl<bool>(std::move(m))); } CelValueMatcher IsCelInt64(testing::Matcher<int64_t> m) { return CelValueMatcher(new CelValueMatcherImpl<int64_t>(std::move(m))); } CelValueMatcher IsCelUint64(testing::Matcher<uint64_t> m) { return CelValueMatcher(new CelValueMatcherImpl<uint64_t>(std::move(m))); } CelValueMatcher IsCelDouble(testing::Matcher<double> m) { return CelValueMatcher(new CelValueMatcherImpl<double>(std::move(m))); } CelValueMatcher IsCelString(testing::Matcher<absl::string_view> m) { return CelValueMatcher(new CelValueMatcherImpl<CelValue::StringHolder>( testing::Property(&CelValue::StringHolder::value, m))); } CelValueMatcher IsCelBytes(testing::Matcher<absl::string_view> m) { return CelValueMatcher(new CelValueMatcherImpl<CelValue::BytesHolder>( testing::Property(&CelValue::BytesHolder::value, m))); } CelValueMatcher IsCelMessage(testing::Matcher<const google::protobuf::Message*> m) { return CelValueMatcher( new CelValueMatcherImpl<const google::protobuf::Message*>(std::move(m))); } CelValueMatcher IsCelDuration(testing::Matcher<absl::Duration> m) { return CelValueMatcher(new CelValueMatcherImpl<absl::Duration>(std::move(m))); } CelValueMatcher IsCelTimestamp(testing::Matcher<absl::Time> m) { return CelValueMatcher(new CelValueMatcherImpl<absl::Time>(std::move(m))); } CelValueMatcher IsCelError(testing::Matcher<absl::Status> m) { return CelValueMatcher( new CelValueMatcherImpl<const google::api::expr::runtime::CelError*>( testing::AllOf(testing::NotNull(), testing::Pointee(m)))); } } }
#include "eval/public/testing/matchers.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/testutil/test_message.pb.h" #include "internal/testing.h" #include "testutil/util.h" namespace google::api::expr::runtime::test { namespace { using ::testing::Contains; using ::testing::DoubleEq; using ::testing::DoubleNear; using ::testing::ElementsAre; using ::testing::Gt; using ::testing::Lt; using ::testing::Not; using ::testing::UnorderedElementsAre; using testutil::EqualsProto; TEST(IsCelValue, EqualitySmoketest) { EXPECT_THAT(CelValue::CreateBool(true), EqualsCelValue(CelValue::CreateBool(true))); EXPECT_THAT(CelValue::CreateInt64(-1), EqualsCelValue(CelValue::CreateInt64(-1))); EXPECT_THAT(CelValue::CreateUint64(2), EqualsCelValue(CelValue::CreateUint64(2))); EXPECT_THAT(CelValue::CreateDouble(1.25), EqualsCelValue(CelValue::CreateDouble(1.25))); EXPECT_THAT(CelValue::CreateStringView("abc"), EqualsCelValue(CelValue::CreateStringView("abc"))); EXPECT_THAT(CelValue::CreateBytesView("def"), EqualsCelValue(CelValue::CreateBytesView("def"))); EXPECT_THAT(CelValue::CreateDuration(absl::Seconds(2)), EqualsCelValue(CelValue::CreateDuration(absl::Seconds(2)))); EXPECT_THAT( CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), EqualsCelValue(CelValue::CreateTimestamp(absl::FromUnixSeconds(1)))); EXPECT_THAT(CelValue::CreateInt64(-1), Not(EqualsCelValue(CelValue::CreateBool(true)))); EXPECT_THAT(CelValue::CreateUint64(2), Not(EqualsCelValue(CelValue::CreateInt64(-1)))); EXPECT_THAT(CelValue::CreateDouble(1.25), Not(EqualsCelValue(CelValue::CreateUint64(2)))); EXPECT_THAT(CelValue::CreateStringView("abc"), Not(EqualsCelValue(CelValue::CreateDouble(1.25)))); EXPECT_THAT(CelValue::CreateBytesView("def"), Not(EqualsCelValue(CelValue::CreateStringView("abc")))); EXPECT_THAT(CelValue::CreateDuration(absl::Seconds(2)), Not(EqualsCelValue(CelValue::CreateBytesView("def")))); EXPECT_THAT(CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), Not(EqualsCelValue(CelValue::CreateDuration(absl::Seconds(2))))); EXPECT_THAT( CelValue::CreateBool(true), Not(EqualsCelValue(CelValue::CreateTimestamp(absl::FromUnixSeconds(1))))); } TEST(PrimitiveMatchers, Smoketest) { EXPECT_THAT(CelValue::CreateNull(), IsCelNull()); EXPECT_THAT(CelValue::CreateBool(false), Not(IsCelNull())); EXPECT_THAT(CelValue::CreateBool(true), IsCelBool(true)); EXPECT_THAT(CelValue::CreateBool(false), IsCelBool(Not(true))); EXPECT_THAT(CelValue::CreateInt64(1), IsCelInt64(1)); EXPECT_THAT(CelValue::CreateInt64(-1), IsCelInt64(Not(Gt(0)))); EXPECT_THAT(CelValue::CreateUint64(1), IsCelUint64(1)); EXPECT_THAT(CelValue::CreateUint64(2), IsCelUint64(Not(Lt(2)))); EXPECT_THAT(CelValue::CreateDouble(1.5), IsCelDouble(DoubleEq(1.5))); EXPECT_THAT(CelValue::CreateDouble(1.0 + 0.8), IsCelDouble(DoubleNear(1.8, 1e-5))); EXPECT_THAT(CelValue::CreateStringView("abc"), IsCelString("abc")); EXPECT_THAT(CelValue::CreateStringView("abcdef"), IsCelString(testing::HasSubstr("def"))); EXPECT_THAT(CelValue::CreateBytesView("abc"), IsCelBytes("abc")); EXPECT_THAT(CelValue::CreateBytesView("abcdef"), IsCelBytes(testing::HasSubstr("def"))); EXPECT_THAT(CelValue::CreateDuration(absl::Seconds(2)), IsCelDuration(Lt(absl::Minutes(1)))); EXPECT_THAT(CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), IsCelTimestamp(Lt(absl::FromUnixSeconds(30)))); } TEST(PrimitiveMatchers, WrongType) { EXPECT_THAT(CelValue::CreateBool(true), Not(IsCelInt64(1))); EXPECT_THAT(CelValue::CreateInt64(1), Not(IsCelUint64(1))); EXPECT_THAT(CelValue::CreateUint64(1), Not(IsCelDouble(1.0))); EXPECT_THAT(CelValue::CreateDouble(1.5), Not(IsCelString("abc"))); EXPECT_THAT(CelValue::CreateStringView("abc"), Not(IsCelBytes("abc"))); EXPECT_THAT(CelValue::CreateBytesView("abc"), Not(IsCelDuration(Lt(absl::Minutes(1))))); EXPECT_THAT(CelValue::CreateDuration(absl::Seconds(2)), Not(IsCelTimestamp(Lt(absl::FromUnixSeconds(30))))); EXPECT_THAT(CelValue::CreateTimestamp(absl::FromUnixSeconds(20)), Not(IsCelBool(true))); } TEST(SpecialMatchers, SmokeTest) { auto status = absl::InternalError("error"); CelValue error = CelValue::CreateError(&status); EXPECT_THAT(error, IsCelError(testing::Eq( absl::Status(absl::StatusCode::kInternal, "error")))); TestMessage proto_message; proto_message.add_bool_list(true); proto_message.add_bool_list(false); proto_message.add_int64_list(1); proto_message.add_int64_list(-1); CelValue message = CelProtoWrapper::CreateMessage(&proto_message, nullptr); EXPECT_THAT(message, IsCelMessage(EqualsProto(proto_message))); } TEST(ListMatchers, NotList) { EXPECT_THAT(CelValue::CreateInt64(1), Not(IsCelList(Contains(IsCelInt64(1))))); } TEST(ListMatchers, All) { ContainerBackedListImpl list({ CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3), CelValue::CreateInt64(4), }); CelValue cel_list = CelValue::CreateList(&list); EXPECT_THAT(cel_list, IsCelList(Contains(IsCelInt64(3)))); EXPECT_THAT(cel_list, IsCelList(Not(Contains(IsCelInt64(0))))); EXPECT_THAT(cel_list, IsCelList(ElementsAre(IsCelInt64(1), IsCelInt64(2), IsCelInt64(3), IsCelInt64(4)))); EXPECT_THAT(cel_list, IsCelList(Not(ElementsAre(IsCelInt64(2), IsCelInt64(1), IsCelInt64(3), IsCelInt64(4))))); EXPECT_THAT(cel_list, IsCelList(UnorderedElementsAre(IsCelInt64(2), IsCelInt64(1), IsCelInt64(4), IsCelInt64(3)))); EXPECT_THAT( cel_list, IsCelList(Not(UnorderedElementsAre(IsCelInt64(2), IsCelInt64(1), IsCelInt64(4), IsCelInt64(0))))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/testing/matchers.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/testing/matchers_test.cc
4552db5798fb0853b131b783d8875794334fae7f
686813ec-b120-46dd-8c6e-b174ae9ae39a
cpp
tensorflow/tensorflow
op_converter_registry
tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.cc
tensorflow/compiler/tf2tensorrt/convert/op_converter_registry_test.cc
#include "tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.h" #include <set> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/util/env_var.h" #if GOOGLE_CUDA && GOOGLE_TENSORRT namespace tensorflow { namespace tensorrt { namespace convert { struct OpConverterRegistration { OpConverter converter; int priority; }; class OpConverterRegistry::Impl { public: ~Impl() = default; InitOnStartupMarker Register(const string& name, const int priority, OpConverter converter) { mutex_lock lock(mu_); auto item = registry_.find(name); if (item != registry_.end()) { const int existing_priority = item->second.priority; if (priority <= existing_priority) { LOG(WARNING) << absl::StrCat( "Ignoring TF->TRT ", name, " op converter with priority ", existing_priority, " due to another converter with priority ", priority); return {}; } else { LOG(WARNING) << absl::StrCat( "Overwriting TF->TRT ", name, " op converter with priority ", existing_priority, " using another converter with priority ", priority); registry_.erase(item); } } registry_.insert({name, OpConverterRegistration{converter, priority}}); return {}; } StatusOr<OpConverter> LookUp(string name) { static const absl::flat_hash_set<string> tftrt_op_fakelist = [] { string tftrt_op_fakelist_str; TF_CHECK_OK(ReadStringFromEnvVar("TF_TRT_OP_FAKELIST", "", &tftrt_op_fakelist_str)); absl::flat_hash_set<string> tftrt_op_fakelist{}; for (const auto& x : str_util::Split(tftrt_op_fakelist_str, ",")) { tftrt_op_fakelist.insert(x); } tftrt_op_fakelist.rehash(0); return tftrt_op_fakelist; }(); if (tftrt_op_fakelist.contains(name)) { LOG_FIRST_N(INFO, 2) << "Emulating OP Converter: `" << name << "`. It " << "will cause TRT engine building to fail. This " << "feature is only intended to be used for " << "TF-TRT graph segmentation experiments. This " << "feature is controlled using: " << "`TF_TRT_OP_FAKELIST=OpName1,OpName2`."; mutex_lock lock(mu_); return registry_.find("FakeOp")->second.converter; } mutex_lock lock(mu_); auto found = registry_.find(name); if (found != registry_.end()) { return found->second.converter; } return errors::NotFound("No converter for op ", name); } void Clear(const std::string& name) { mutex_lock lock(mu_); auto itr = registry_.find(name); if (itr == registry_.end()) { return; } registry_.erase(itr); } std::vector<std::string> ListRegisteredOps() const { mutex_lock lock(mu_); std::vector<std::string> result; result.reserve(registry_.size()); for (const auto& item : registry_) { result.push_back(item.first); } return result; } private: mutable mutex mu_; mutable std::unordered_map<std::string, OpConverterRegistration> registry_ TF_GUARDED_BY(mu_); }; OpConverterRegistry::OpConverterRegistry() : impl_(std::make_unique<Impl>()) {} StatusOr<OpConverter> OpConverterRegistry::LookUp(const string& name) { return impl_->LookUp(name); } InitOnStartupMarker OpConverterRegistry::Register(const string& name, const int priority, OpConverter converter) { return impl_->Register(name, priority, converter); } std::vector<std::string> OpConverterRegistry::ListRegisteredOps() const { return impl_->ListRegisteredOps(); } void OpConverterRegistry::Clear(const std::string& name) { impl_->Clear(name); } OpConverterRegistry* GetOpConverterRegistry() { static OpConverterRegistry* registry = new OpConverterRegistry(); return registry; } } } } #endif
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.h" #include <gtest/gtest.h> #include "tensorflow/compiler/tf2tensorrt/convert/op_converter.h" namespace tensorflow { namespace tensorrt { namespace convert { TEST(TestOpConverterRegistry, TestOpConverterRegistry) { bool flag{false}; auto set_true_func = [&flag](const OpConverterParams*) -> Status { flag = true; return OkStatus(); }; auto set_false_func = [&flag](const OpConverterParams*) -> Status { flag = false; return OkStatus(); }; GetOpConverterRegistry()->Register("FakeFunc", kDefaultConverterPriority, set_true_func); GetOpConverterRegistry()->Register("FakeFunc", kDefaultConverterPriority - 1, set_false_func); auto func = GetOpConverterRegistry()->LookUp("FakeFunc"); EXPECT_TRUE(func.ok()); EXPECT_TRUE(((*func)(nullptr)).ok()); EXPECT_TRUE(flag); GetOpConverterRegistry()->Register("FakeFunc", kDefaultConverterPriority + 1, set_false_func); func = GetOpConverterRegistry()->LookUp("FakeFunc"); EXPECT_TRUE(func.ok()); EXPECT_TRUE((*func)(nullptr).ok()); EXPECT_FALSE(flag); GetOpConverterRegistry()->Clear("FakeFunc"); EXPECT_FALSE(GetOpConverterRegistry()->LookUp("FakeFunc").ok()); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/op_converter_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/op_converter_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
21b3659f-bb74-437c-825a-b25b1a5f2f54
cpp
google/arolla
operator_repr_functions
arolla/expr/operator_repr_functions.cc
arolla/expr/operator_repr_functions_test.cc
#include "arolla/expr/operator_repr_functions.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/unspecified_qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/string.h" #include "arolla/util/text.h" namespace arolla::expr { namespace { struct InfixOp { enum Kind : int8_t { kUnary, kBinary } kind; ReprToken::Precedence precedence; absl::string_view symbol; }; static const auto* const kUnaryInfixOps = new absl::flat_hash_map<absl::string_view, InfixOp>{ {"math.pos", {InfixOp::kUnary, {1, 1}, "+"}}, {"math.neg", {InfixOp::kUnary, {1, 1}, "-"}}, {"core.presence_not", {InfixOp::kUnary, {1, 1}, "~"}}, }; static const auto* const kBinaryInfixOps = new absl::flat_hash_map<absl::string_view, InfixOp>{ {"math.pow", {InfixOp::kBinary, {1, 2}, " ** "}}, {"math.multiply", {InfixOp::kBinary, {3, 2}, " * "}}, {"math.divide", {InfixOp::kBinary, {3, 2}, " / "}}, {"math.floordiv", {InfixOp::kBinary, {3, 2}, " {"math.mod", {InfixOp::kBinary, {3, 2}, " % "}}, {"math.add", {InfixOp::kBinary, {5, 4}, " + "}}, {"math.subtract", {InfixOp::kBinary, {5, 4}, " - "}}, {"core.presence_and", {InfixOp::kBinary, {7, 6}, " & "}}, {"core.presence_or", {InfixOp::kBinary, {9, 8}, " | "}}, {"core.less", {InfixOp::kBinary, {10, 10}, " < "}}, {"core.less_equal", {InfixOp::kBinary, {10, 10}, " <= "}}, {"core.equal", {InfixOp::kBinary, {10, 10}, " == "}}, {"core.not_equal", {InfixOp::kBinary, {10, 10}, " != "}}, {"core.greater_equal", {InfixOp::kBinary, {10, 10}, " >= "}}, {"core.greater", {InfixOp::kBinary, {10, 10}, " > "}}, }; std::vector<const ReprToken*> GetNodeDepsTokens( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { std::vector<const ReprToken*> inputs(node->node_deps().size()); for (size_t i = 0; i < node->node_deps().size(); ++i) { inputs[i] = &node_tokens.at(node->node_deps()[i]->fingerprint()); } return inputs; } std::optional<ReprToken> UnaryReprFn( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { auto it = kUnaryInfixOps->find(node->op()->display_name()); const auto inputs = GetNodeDepsTokens(node, node_tokens); if (it == kUnaryInfixOps->end() || inputs.size() != 1) { return std::nullopt; } const auto& infix_op = it->second; ReprToken result; if (inputs[0]->precedence.left < infix_op.precedence.right) { result.str = absl::StrCat(infix_op.symbol, inputs[0]->str); } else { result.str = absl::StrCat(infix_op.symbol, "(", inputs[0]->str, ")"); } result.precedence.left = infix_op.precedence.left; result.precedence.right = infix_op.precedence.right; return result; } std::optional<ReprToken> BinaryReprFn( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { auto it = kBinaryInfixOps->find(node->op()->display_name()); const auto inputs = GetNodeDepsTokens(node, node_tokens); if (it == kBinaryInfixOps->end() || inputs.size() != 2) { return std::nullopt; } const auto& infix_op = it->second; ReprToken result; const bool left_precedence = (inputs[0]->precedence.right < infix_op.precedence.left); const bool right_precedence = (inputs[1]->precedence.left < infix_op.precedence.right); if (left_precedence && right_precedence) { result.str = absl::StrCat(inputs[0]->str, infix_op.symbol, inputs[1]->str); } else if (left_precedence && !right_precedence) { result.str = absl::StrCat(inputs[0]->str, infix_op.symbol, "(", inputs[1]->str, ")"); } else if (!left_precedence && right_precedence) { result.str = absl::StrCat("(", inputs[0]->str, ")", infix_op.symbol, inputs[1]->str); } else { result.str = absl::StrCat("(", inputs[0]->str, ")", infix_op.symbol, "(", inputs[1]->str, ")"); } result.precedence.left = infix_op.precedence.left; result.precedence.right = infix_op.precedence.right; return result; } std::optional<ReprToken> GetAttrReprFn( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { DCHECK_EQ(node->op()->display_name(), "core.getattr"); constexpr ReprToken::Precedence kGetAttrPrecedence{0, -1}; const auto& node_deps = node->node_deps(); if (node_deps.size() != 2 || !node_deps[1]->is_literal()) { return std::nullopt; } const auto& attr = node_deps[1]->qvalue(); if (!attr.has_value() || attr->GetType() != GetQType<Text>() || !IsIdentifier(attr->UnsafeAs<Text>().view())) { return std::nullopt; } ReprToken result; const auto inputs = GetNodeDepsTokens(node, node_tokens); DCHECK_EQ(inputs.size(), 2); if (inputs[0]->precedence.right < kGetAttrPrecedence.left) { result.str = absl::StrCat(inputs[0]->str, ".", attr->UnsafeAs<Text>().view()); } else { result.str = absl::StrCat("(", inputs[0]->str, ").", attr->UnsafeAs<Text>().view()); } result.precedence = kGetAttrPrecedence; return result; } std::optional<std::string> MakeSliceRepr( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { if (!IsRegisteredOperator(node->op()) || node->op()->display_name() != "core.make_slice") { return std::nullopt; } auto is_unspecified = [](const ExprNodePtr& node) { return node->is_literal() && node->qtype() == GetUnspecifiedQType(); }; constexpr ReprToken::Precedence kSlicePrecedence{11, 11}; const auto& node_deps = node->node_deps(); if (node_deps.size() != 3) { return std::nullopt; } std::string result; const auto inputs = GetNodeDepsTokens(node, node_tokens); DCHECK_EQ(inputs.size(), 3); if (is_unspecified(node_deps[0])) { result = ":"; } else if (inputs[0]->precedence.right < kSlicePrecedence.left) { result = absl::StrCat(inputs[0]->str, ":"); } else { result = absl::StrCat("(", inputs[0]->str, "):"); } if (!is_unspecified(node_deps[1])) { if (inputs[1]->precedence.left < kSlicePrecedence.right && (inputs[1]->precedence.right < kSlicePrecedence.left || is_unspecified(node_deps[2]))) { absl::StrAppend(&result, inputs[1]->str); } else { absl::StrAppend(&result, "(", inputs[1]->str, ")"); } } if (!is_unspecified(node_deps[2])) { if (inputs[2]->precedence.left < kSlicePrecedence.right) { absl::StrAppend(&result, ":", inputs[2]->str); } else { absl::StrAppend(&result, ":(", inputs[2]->str, ")"); } } return result; } std::optional<ReprToken> GetItemReprFn( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { DCHECK_EQ(node->op()->display_name(), "core.getitem"); constexpr ReprToken::Precedence kGetItemPrecedence{0, -1}; if (node->node_deps().size() != 2) { return std::nullopt; } const auto& lhs = node_tokens.at(node->node_deps()[0]->fingerprint()); const auto maybe_slice = MakeSliceRepr(node->node_deps()[1], node_tokens); const std::string& rhs_str = maybe_slice ? *maybe_slice : node_tokens.at(node->node_deps()[1]->fingerprint()).str; ReprToken result; if (lhs.precedence.right < kGetItemPrecedence.left) { result.str = absl::StrCat(lhs.str, "[", rhs_str, "]"); } else { result.str = absl::StrCat("(", lhs.str, ")[", rhs_str, "]"); } result.precedence = kGetItemPrecedence; return result; } class OpReprRegistry { public: void Set(std::string key, OperatorReprFn op_repr_fn) ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); registry_[std::move(key)] = std::move(op_repr_fn); } OperatorReprFn Get(absl::string_view key) const ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (const auto it = registry_.find(key); it != registry_.end()) { return it->second; } return nullptr; } private: mutable absl::Mutex mutex_; absl::flat_hash_map<std::string, OperatorReprFn> registry_ ABSL_GUARDED_BY(mutex_); }; OpReprRegistry* GetOpReprRegistryForRegisteredOp() { static OpReprRegistry* result = []() { auto* registry = new OpReprRegistry; for (const auto& [key, _] : *kUnaryInfixOps) { registry->Set(std::string(key), UnaryReprFn); } for (const auto& [key, _] : *kBinaryInfixOps) { registry->Set(std::string(key), BinaryReprFn); } registry->Set("core.getattr", GetAttrReprFn); registry->Set("core.getitem", GetItemReprFn); return registry; }(); return result; } std::optional<ReprToken> RegisteredOperatorReprFn( const ExprNodePtr& expr_node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { DCHECK(expr_node->is_op() && IsRegisteredOperator(expr_node->op())); if (auto op_repr_fn = GetOpReprRegistryForRegisteredOp()->Get( expr_node->op()->display_name()); op_repr_fn != nullptr) { return op_repr_fn(expr_node, node_tokens); } return std::nullopt; } OpReprRegistry* GetOpReprRegistryForQValueSpecialization() { static OpReprRegistry* result = []() { auto* registry = new OpReprRegistry; registry->Set("::arolla::expr::RegisteredOperator", RegisteredOperatorReprFn); return registry; }(); return result; } } void RegisterOpReprFnByQValueSpecializationKey( std::string qvalue_specialization_key, OperatorReprFn op_repr_fn) { GetOpReprRegistryForQValueSpecialization()->Set( std::move(qvalue_specialization_key), std::move(op_repr_fn)); } void RegisterOpReprFnByByRegistrationName(std::string op_name, OperatorReprFn op_repr_fn) { GetOpReprRegistryForRegisteredOp()->Set(std::move(op_name), std::move(op_repr_fn)); } std::optional<ReprToken> FormatOperatorNodePretty( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { if (auto op_repr_fn = GetOpReprRegistryForQValueSpecialization()->Get( node->op()->py_qvalue_specialization_key()); op_repr_fn != nullptr) { if (auto res = op_repr_fn(node, node_tokens)) { return *std::move(res); } } return std::nullopt; } }
#include "arolla/expr/operator_repr_functions.h" #include <memory> #include <optional> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/testing/test_operators.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla::expr { namespace { using ::arolla::expr::testing::DummyOp; using ::arolla::testing::ReprTokenEq; using ::testing::Optional; std::optional<ReprToken> AddRepr( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { const auto& x_token = node_tokens.at(node->node_deps()[0]->fingerprint()); const auto& y_token = node_tokens.at(node->node_deps()[1]->fingerprint()); return ReprToken{.str = absl::StrFormat("%s + %s", x_token.str, y_token.str), .precedence = ReprToken::kSafeForSubscription}; } std::optional<ReprToken> SubtractRepr( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { const auto& x_token = node_tokens.at(node->node_deps()[0]->fingerprint()); const auto& y_token = node_tokens.at(node->node_deps()[1]->fingerprint()); return ReprToken{.str = absl::StrFormat("%s - %s", x_token.str, y_token.str), .precedence = ReprToken::kSafeForArithmetic}; } TEST(OperatorReprFunctionsTest, OpClass) { auto x = Leaf("x"); auto y = Leaf("y"); auto expr = ExprNode::UnsafeMakeOperatorNode( std::make_shared<DummyOp>("custom.add", ExprOperatorSignature({{"x"}, {"y"}})), {x, y}, ExprAttributes()); absl::flat_hash_map<Fingerprint, ReprToken> node_tokens = { {x->fingerprint(), ReprToken{.str = "L.x"}}, {y->fingerprint(), ReprToken{.str = "L.y"}}, }; absl::string_view specialization_key = expr->op()->py_qvalue_specialization_key(); { EXPECT_EQ(FormatOperatorNodePretty(expr, node_tokens), std::nullopt); } { RegisterOpReprFnByQValueSpecializationKey(std::string(specialization_key), AddRepr); EXPECT_THAT( FormatOperatorNodePretty(expr, node_tokens), Optional(ReprTokenEq("L.x + L.y", ReprToken::kSafeForSubscription))); } { RegisterOpReprFnByQValueSpecializationKey(std::string(specialization_key), SubtractRepr); EXPECT_THAT( FormatOperatorNodePretty(expr, node_tokens), Optional(ReprTokenEq("L.x - L.y", ReprToken::kSafeForArithmetic))); } } TEST(OperatorReprFunctionsTest, RegisteredOp) { auto x = Leaf("x"); auto y = Leaf("y"); auto expr = ExprNode::UnsafeMakeOperatorNode( std::make_shared<RegisteredOperator>("test.add"), {x, y}, ExprAttributes()); absl::flat_hash_map<Fingerprint, ReprToken> node_tokens = { {x->fingerprint(), ReprToken{.str = "L.x"}}, {y->fingerprint(), ReprToken{.str = "L.y"}}, }; { EXPECT_EQ(FormatOperatorNodePretty(expr, node_tokens), std::nullopt); } { RegisterOpReprFnByByRegistrationName("test.add", AddRepr); EXPECT_THAT( FormatOperatorNodePretty(expr, node_tokens), Optional(ReprTokenEq("L.x + L.y", ReprToken::kSafeForSubscription))); } { RegisterOpReprFnByByRegistrationName("test.add", SubtractRepr); EXPECT_THAT( FormatOperatorNodePretty(expr, node_tokens), Optional(ReprTokenEq("L.x - L.y", ReprToken::kSafeForArithmetic))); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_repr_functions.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_repr_functions_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
0e5b51f5-887b-4bbd-86cf-cea50fe6fd3e
cpp
tensorflow/tensorflow
pjrt_future
third_party/xla/xla/pjrt/pjrt_future.cc
third_party/xla/xla/pjrt/pjrt_future_test.cc
#include "xla/pjrt/pjrt_future.h" #include <atomic> #include <cstdint> #include <memory> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "tsl/platform/logging.h" namespace xla { namespace { struct State { explicit State(int32_t size) : pending_count(size), promise(PjRtFuture<>::CreatePromise()) {} std::atomic<int32_t> pending_count; PjRtFuture<>::Promise promise; absl::Mutex mu; absl::Status status ABSL_GUARDED_BY(&mu); }; } PjRtFuture<> JoinFutures(absl::Span<const PjRtFuture<>> futures) { if (futures.empty()) { return PjRtFuture<>(absl::OkStatus()); } else if (futures.size() == 1) { return futures.front(); } auto state = std::make_shared<State>(futures.size()); for (const PjRtFuture<>& future : futures) { future.OnReady([state](absl::Status status) { if (!status.ok()) { absl::MutexLock lock(&state->mu); state->status.Update(status); } const int pending_count = state->pending_count.fetch_sub(1, std::memory_order_acq_rel); CHECK_GE(pending_count, 1) << "Pending count can't drop below 0"; if (pending_count == 1) { absl::MutexLock lock(&state->mu); state->promise.Set(std::move(state->status)); } }); } return PjRtFuture<>(state->promise); } }
#include "xla/pjrt/pjrt_future.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tsl/platform/test.h" namespace xla { TEST(PjRtFutureTest, StatelessFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(); EXPECT_TRUE(future.IsReady()); EXPECT_EQ(future.Await(), absl::OkStatus()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, CopyableFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); PjRtFuture<int32_t> copy_constructed(future); PjRtFuture<int32_t> copy_assigned = future; EXPECT_FALSE(copy_constructed.IsReady()); EXPECT_FALSE(copy_assigned.IsReady()); promise.Set(42); EXPECT_TRUE(copy_constructed.IsReady()); EXPECT_TRUE(copy_assigned.IsReady()); } TEST(PjRtFutureTest, MoveConstructedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_constructed(std::move(future)); EXPECT_FALSE(move_constructed.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_constructed.IsReady()); } TEST(PjRtFutureTest, MoveAssignedFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); PjRtFuture<std::unique_ptr<int32_t>> move_assigned = std::move(future); EXPECT_FALSE(move_assigned.IsReady()); promise.Set(std::make_unique<int32_t>(42)); EXPECT_TRUE(move_assigned.IsReady()); } TEST(PjRtFutureTest, AwaitMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); EXPECT_EQ(**future.Await(), 42); EXPECT_EQ(**std::move(future).Await(), 42); } TEST(PjRtFutureTest, OnReadyRvalueFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); promise.Set(42); std::move(future).OnReady( [](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, OnReadyMoveOnlyFuture) { auto promise = PjRtFuture<std::unique_ptr<int32_t>>::CreatePromise(); PjRtFuture<std::unique_ptr<int32_t>> future(promise); promise.Set(std::make_unique<int32_t>(42)); std::move(future).OnReady([](absl::StatusOr<std::unique_ptr<int32_t>> value) { EXPECT_EQ(**value, 42); }); } TEST(PjRtFutureTest, StatelessError) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::InternalError("test")); EXPECT_TRUE(future.IsReady()); absl::Status status = future.Await(); EXPECT_EQ(status, absl::InternalError("test")); future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatelessImmediate) { PjRtFuture<> ok_future(absl::OkStatus()); PjRtFuture<> error_future(absl::InternalError("test")); EXPECT_TRUE(ok_future.IsReady()); EXPECT_TRUE(error_future.IsReady()); EXPECT_EQ(ok_future.Await(), absl::OkStatus()); EXPECT_EQ(error_future.Await(), absl::InternalError("test")); ok_future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); error_future.OnReady([](absl::Status status) { EXPECT_EQ(status, absl::InternalError("test")); }); } TEST(PjRtFutureTest, StatefulFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, StatusFuture) { auto promise = PjRtFuture<>::CreatePromise(); PjRtFuture<> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(absl::OkStatus()); EXPECT_TRUE(future.IsReady()); future.OnReady( [](absl::Status status) { EXPECT_EQ(status, absl::OkStatus()); }); } TEST(PjRtFutureTest, StatusOrFuture) { auto promise = PjRtFuture<int32_t>::CreatePromise(); PjRtFuture<int32_t> future(promise); EXPECT_FALSE(future.IsReady()); promise.Set(42); EXPECT_TRUE(future.IsReady()); future.OnReady([](absl::StatusOr<int32_t> value) { EXPECT_EQ(*value, 42); }); } TEST(PjRtFutureTest, JoinFutures) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::OkStatus()); promise1.Set(); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::OkStatus()); } TEST(PjRtFutureTest, JoinErrors) { auto empty_join = JoinFutures({}); EXPECT_TRUE(empty_join.IsReady()); EXPECT_EQ(empty_join.Await(), absl::OkStatus()); auto promise0 = PjRtFuture<>::CreatePromise(); auto promise1 = PjRtFuture<>::CreatePromise(); std::vector<PjRtFuture<>> futures0 = {PjRtFuture<>(promise0)}; std::vector<PjRtFuture<>> futures1 = {PjRtFuture<>(promise0), PjRtFuture<>(promise1)}; auto join_one = JoinFutures(futures0); EXPECT_FALSE(join_one.IsReady()); auto join_two = JoinFutures(futures1); EXPECT_FALSE(join_two.IsReady()); promise0.Set(absl::InternalError("error #0")); EXPECT_TRUE(join_one.IsReady()); EXPECT_FALSE(join_two.IsReady()); EXPECT_EQ(join_one.Await(), absl::InternalError("error #0")); promise1.Set(absl::InternalError("error #1")); EXPECT_TRUE(join_two.IsReady()); EXPECT_EQ(join_two.Await(), absl::InternalError("error #0")); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_future.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_future_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8377d019-df08-42d2-95d1-41c6f8d85eb8
cpp
google/tensorstore
global_initializer
tensorstore/internal/global_initializer.h
tensorstore/internal/global_initializer_test.cc
#ifndef TENSORSTORE_INTERNAL_GLOBAL_INITIALIZER_H_ #define TENSORSTORE_INTERNAL_GLOBAL_INITIALIZER_H_ #include "tensorstore/internal/preprocessor/cat.h" #define TENSORSTORE_GLOBAL_INITIALIZER \ namespace { \ const struct TENSORSTORE_PP_CAT(TsGlobalInit, __LINE__) { \ TENSORSTORE_PP_CAT(TsGlobalInit, __LINE__) \ (); \ } TENSORSTORE_PP_CAT(tensorstore_global_init, __LINE__); \ } \ TENSORSTORE_PP_CAT(TsGlobalInit, __LINE__)::TENSORSTORE_PP_CAT( \ TsGlobalInit, __LINE__)() #endif
#include "tensorstore/internal/global_initializer.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { std::vector<int> vec; TENSORSTORE_GLOBAL_INITIALIZER { vec.push_back(1); } TENSORSTORE_GLOBAL_INITIALIZER { vec.push_back(2); } TENSORSTORE_GLOBAL_INITIALIZER { vec.push_back(3); } TEST(GlobalInitializerTest, Ordering) { EXPECT_THAT(vec, ::testing::ElementsAre(1, 2, 3)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/global_initializer.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/global_initializer_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6475b107-a6ce-4c24-b567-5dba680f88ba
cpp
google/libphonenumber
phonenumbermatch
cpp/src/phonenumbers/phonenumbermatch.cc
cpp/test/phonenumbers/phonenumbermatch_test.cc
#include "phonenumbers/phonenumbermatch.h" #include <string> #include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/stringutil.h" namespace i18n { namespace phonenumbers { PhoneNumberMatch::PhoneNumberMatch(int start, const string& raw_string, const PhoneNumber& number) : start_(start), raw_string_(raw_string), number_(number) { } PhoneNumberMatch::PhoneNumberMatch() : start_(-1), raw_string_(""), number_(PhoneNumber::default_instance()) { } const PhoneNumber& PhoneNumberMatch::number() const { return number_; } int PhoneNumberMatch::start() const { return start_; } int PhoneNumberMatch::end() const { return static_cast<int>(start_ + raw_string_.length()); } int PhoneNumberMatch::length() const { return static_cast<int>(raw_string_.length()); } const string& PhoneNumberMatch::raw_string() const { return raw_string_; } void PhoneNumberMatch::set_start(int start) { start_ = start; } void PhoneNumberMatch::set_raw_string(const string& raw_string) { raw_string_ = raw_string; } void PhoneNumberMatch::set_number(const PhoneNumber& number) { number_.CopyFrom(number); } string PhoneNumberMatch::ToString() const { return StrCat("PhoneNumberMatch [", start(), ",", end(), ") ", raw_string_.c_str()); } bool PhoneNumberMatch::Equals(const PhoneNumberMatch& match) const { return ExactlySameAs(match.number_, number_) && match.raw_string_.compare(raw_string_) == 0 && match.start_ == start_; } void PhoneNumberMatch::CopyFrom(const PhoneNumberMatch& match) { raw_string_ = match.raw_string(); start_ = match.start(); number_ = match.number(); } } }
#include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumbermatch.h" #include <gtest/gtest.h> #include "phonenumbers/phonenumber.pb.h" namespace i18n { namespace phonenumbers { TEST(PhoneNumberMatch, TestGetterMethods) { PhoneNumber number; const int start_index = 10; const string raw_phone_number("1 800 234 45 67"); PhoneNumberMatch match1(start_index, raw_phone_number, number); EXPECT_EQ(start_index, match1.start()); EXPECT_EQ(start_index + static_cast<int>(raw_phone_number.length()), match1.end()); EXPECT_EQ(static_cast<int>(raw_phone_number.length()), match1.length()); EXPECT_EQ(raw_phone_number, match1.raw_string()); EXPECT_EQ("PhoneNumberMatch [10,25) 1 800 234 45 67", match1.ToString()); } TEST(PhoneNumberMatch, TestEquals) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2(10, "1 800 234 45 67", number); match2.set_start(11); ASSERT_FALSE(match1.Equals(match2)); match2.set_start(match1.start()); EXPECT_TRUE(match1.Equals(match2)); PhoneNumber number2; number2.set_raw_input("123"); match2.set_number(number2); ASSERT_FALSE(match1.Equals(match2)); match2.set_number(match1.number()); EXPECT_TRUE(ExactlySameAs(match1.number(), match2.number())); EXPECT_TRUE(match1.Equals(match2)); match2.set_raw_string("123"); ASSERT_FALSE(match1.Equals(match2)); } TEST(PhoneNumberMatch, TestAssignmentOverload) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2; ASSERT_FALSE(match1.Equals(match2)); match2.CopyFrom(match1); ASSERT_TRUE(match1.Equals(match2)); PhoneNumberMatch match3; PhoneNumberMatch match4; match4.CopyFrom(match2); match3.CopyFrom(match2); ASSERT_TRUE(match3.Equals(match4)); ASSERT_TRUE(match4.Equals(match2)); } TEST(PhoneNumberMatch, TestCopyConstructor) { PhoneNumber number; PhoneNumberMatch match1(10, "1 800 234 45 67", number); PhoneNumberMatch match2; match2.CopyFrom(match1); ASSERT_TRUE(match1.Equals(match2)); } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/phonenumbermatch.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/phonenumbermatch_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
539747d9-ddc4-43ed-b586-0406c8dbf82e
cpp
google/tensorstore
context
tensorstore/context.cc
tensorstore/context_test.cc
#include "tensorstore/context.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context_impl.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/riegeli/delimited.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/json.h" #include "tensorstore/serialization/json_bindable.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_context { ResourceProviderImplBase::~ResourceProviderImplBase() = default; ResourceOrSpecBase::~ResourceOrSpecBase() = default; ResourceImplBase::~ResourceImplBase() = default; ResourceSpecImplBase::~ResourceSpecImplBase() = default; ContextImplPtr GetCreator(ResourceImplBase& resource) { absl::MutexLock lock(&resource.mutex_); auto* creator_ptr = resource.weak_creator_; if (!creator_ptr || !internal::IncrementReferenceCountIfNonZero(*creator_ptr)) { return {}; } return ContextImplPtr(creator_ptr, internal::adopt_object_ref); } void ResourceOrSpecPtrTraits::increment(ResourceOrSpecBase* p) { intrusive_ptr_increment(p); } void ResourceOrSpecPtrTraits::decrement(ResourceOrSpecBase* p) { intrusive_ptr_decrement(p); } void ResourceImplWeakPtrTraits::increment(ResourceOrSpecBase* p) { intrusive_ptr_increment(p); } void ResourceImplWeakPtrTraits::decrement(ResourceOrSpecBase* p) { intrusive_ptr_decrement(p); } void ResourceImplStrongPtrTraits::increment(ResourceImplBase* p) { intrusive_ptr_increment(p); p->spec_->provider_->AcquireContextReference(*p); } void ResourceImplStrongPtrTraits::decrement(ResourceImplBase* p) { p->spec_->provider_->ReleaseContextReference(*p); intrusive_ptr_decrement(p); } void intrusive_ptr_increment(ContextSpecImpl* p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<ContextSpecImpl>*>(p)); } void intrusive_ptr_decrement(ContextSpecImpl* p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<ContextSpecImpl>*>(p)); } void intrusive_ptr_increment(ContextImpl* p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<ContextImpl>*>(p)); } void intrusive_ptr_decrement(ContextImpl* p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<ContextImpl>*>(p)); } ContextImpl::ContextImpl() = default; ContextImpl::~ContextImpl() { for (const auto& resource_container : resources_) { auto& result = resource_container->result_; if (!result.ok()) continue; auto& resource = **result; absl::MutexLock lock(&resource.mutex_); if (resource.weak_creator_ == this) { resource.weak_creator_ = nullptr; } } } namespace { struct ContextProviderRegistry { absl::Mutex mutex_; internal::HeterogeneousHashSet< std::unique_ptr<const ResourceProviderImplBase>, std::string_view, &ResourceProviderImplBase::id_> providers_ ABSL_GUARDED_BY(mutex_); }; static ContextProviderRegistry& GetRegistry() { static absl::NoDestructor<ContextProviderRegistry> registrar; return *registrar; } ResourceContainer* FindCycle(ResourceContainer* container) { size_t power = 1; size_t lambda = 1; auto* tortoise = container; auto* hare = container->creation_blocked_on_; while (true) { if (!hare) return nullptr; if (tortoise == hare) return tortoise; if (power == lambda) { tortoise = hare; power *= 2; lambda = 0; } hare = hare->creation_blocked_on_; lambda += 1; } } void KillCycle(ResourceContainer* container) { std::vector<std::string> parts; auto* node = container; do { assert(node->spec_); std::string part; if (!node->spec_->key_.empty()) { tensorstore::StrAppend(&part, QuoteString(node->spec_->key_), ":"); } auto json_result = node->spec_->ToJson(IncludeDefaults{true}); if (json_result.has_value()) { tensorstore::StrAppend( &part, json_result->dump( -1, ' ', true, ::nlohmann::json::error_handler_t::ignore)); } else { tensorstore::StrAppend( &part, "unprintable spec for ", tensorstore::QuoteString(node->spec_->provider_->id_)); } parts.push_back(std::move(part)); node = node->creation_blocked_on_; } while (node != container); auto error = absl::InvalidArgumentError("Context resource reference cycle: " + absl::StrJoin(parts, " -> ")); do { auto* next = std::exchange(node->creation_blocked_on_, nullptr); node->result_ = error; node->condvar_.SignalAll(); node = next; } while (node != container); } void WaitForCompletion(absl::Mutex* mutex, ResourceContainer* container, ResourceContainer* trigger) { if (trigger) { assert(!trigger->creation_blocked_on_); trigger->creation_blocked_on_ = container; } if (!container->ready()) { container->condvar_.WaitWithTimeout(mutex, absl::Milliseconds(5)); if (!container->ready()) { if (auto* cycle_node = FindCycle(container)) { KillCycle(cycle_node); } while (!container->ready()) { container->condvar_.Wait(mutex); } } } if (trigger) { trigger->creation_blocked_on_ = nullptr; } } Result<ResourceImplStrongPtr> CreateResource(ContextImpl& context, ResourceSpecImplBase& spec, ResourceContainer* trigger) { std::unique_ptr<ResourceContainer> container(new ResourceContainer); auto* container_ptr = container.get(); container->spec_.reset(&spec); if (trigger) { assert(!trigger->creation_blocked_on_); trigger->creation_blocked_on_ = container.get(); } context.resources_.insert(std::move(container)); Result<ResourceImplStrongPtr> result{}; { internal::ScopedWriterUnlock unlock(context.root_->mutex_); result = spec.CreateResource({&context, container_ptr}); if (result.ok()) { auto& resource = **result; if (resource.spec_.get() == &spec) { absl::MutexLock lock(&resource.mutex_); assert(resource.weak_creator_ == nullptr); resource.weak_creator_ = &context; } } } container_ptr->result_ = std::move(result); if (trigger) { trigger->creation_blocked_on_ = nullptr; } container_ptr->condvar_.SignalAll(); return container_ptr->result_; } Result<ResourceImplStrongPtr> GetOrCreateResourceStrongPtr( ContextImpl& context, ResourceSpecImplBase& spec, ResourceContainer* trigger) { if (!spec.provider_) { ABSL_LOG(FATAL) << "Context resource provider not registered for: " << QuoteString(spec.key_); } const std::string_view key = spec.key_; if (key.empty()) { ResourceContainer container; container.spec_.reset(&spec); if (trigger) { absl::MutexLock lock(&context.root_->mutex_); assert(!trigger->creation_blocked_on_); trigger->creation_blocked_on_ = &container; } auto result = spec.CreateResource({&context, &container}); if (trigger) { absl::MutexLock lock(&context.root_->mutex_); trigger->creation_blocked_on_ = nullptr; } return result; } absl::MutexLock lock(&context.root_->mutex_); assert(context.spec_); #ifndef NDEBUG { auto it = context.spec_->resources_.find(key); assert(it != context.spec_->resources_.end() && it->get() == &spec); } #endif if (auto it = context.resources_.find(key); it != context.resources_.end()) { auto* container = it->get(); WaitForCompletion(&context.root_->mutex_, container, trigger); return container->result_; } return CreateResource(context, spec, trigger); } } Result<ResourceImplWeakPtr> GetOrCreateResource(ContextImpl& context, ResourceSpecImplBase& spec, ResourceContainer* trigger) { TENSORSTORE_ASSIGN_OR_RETURN( auto p, GetOrCreateResourceStrongPtr(context, spec, trigger)); p->spec_->provider_->ReleaseContextReference(*p); return ResourceImplWeakPtr(p.release(), internal::adopt_object_ref); } class ResourceReference : public ResourceSpecImplBase { public: ResourceReference(const std::string& referent) : referent_(referent) {} void EncodeCacheKey(std::string* out) const override { internal::EncodeCacheKey(out, ResourceSpecImplBase::kReference, referent_); } Result<ResourceImplStrongPtr> CreateResource( const internal::ContextResourceCreationContext& creation_context) override { std::string_view referent = referent_; auto* mutex = &creation_context.context_->root_->mutex_; absl::MutexLock lock(mutex); ContextImpl* c = creation_context.context_; if (referent.empty()) { assert(!key_.empty()); if (c->parent_) { c = c->parent_.get(); referent = provider_->id_; } else { auto default_spec = MakeDefaultResourceSpec(*provider_, key_); return internal_context::CreateResource(*c, *default_spec, creation_context.trigger_); } } while (true) { if (auto it = c->resources_.find(referent); it != c->resources_.end()) { ResourceContainer* container = it->get(); WaitForCompletion(mutex, container, creation_context.trigger_); return container->result_; } auto* context_spec = c->spec_.get(); if (context_spec) { if (auto it = context_spec->resources_.find(referent); it != context_spec->resources_.end()) { return internal_context::CreateResource(*c, **it, creation_context.trigger_); } } if (!c->parent_) { if (referent != provider_->id_) { return absl::InvalidArgumentError(tensorstore::StrCat( "Resource not defined: ", QuoteString(referent))); } auto default_spec = MakeDefaultResourceSpec(*provider_, provider_->id_); return internal_context::CreateResource(*c, *default_spec, creation_context.trigger_); } c = c->parent_.get(); } } Result<::nlohmann::json> ToJson(Context::ToJsonOptions options) override { if (referent_.empty()) return nullptr; return referent_; } ResourceSpecImplPtr UnbindContext( const internal::ContextSpecBuilder& spec_builder) final { auto& builder_impl = *internal_context::Access::impl(spec_builder); ++builder_impl.ids_[referent_]; return ResourceSpecImplPtr(this); } std::string referent_; }; void RegisterContextResourceProvider( std::unique_ptr<const ResourceProviderImplBase> provider) { auto& registry = GetRegistry(); absl::MutexLock lock(&registry.mutex_); auto id = provider->id_; if (!registry.providers_.insert(std::move(provider)).second) { ABSL_LOG(FATAL) << "Provider " << QuoteString(id) << " already registered"; } } const ResourceProviderImplBase* GetProvider(std::string_view id) { auto& registry = GetRegistry(); absl::ReaderMutexLock lock(&registry.mutex_); auto it = registry.providers_.find(id); if (it == registry.providers_.end()) return nullptr; return it->get(); } const ResourceProviderImplBase& GetProviderOrDie(std::string_view id) { auto* provider = GetProvider(id); if (!provider) { ABSL_LOG(FATAL) << "Context resource provider " << QuoteString(id) << " not registered"; } return *provider; } ResourceSpecImplPtr MakeDefaultResourceSpec( const ResourceProviderImplBase& provider, std::string_view key) { auto default_spec = provider.Default(); default_spec->provider_ = &provider; default_spec->key_ = key; default_spec->is_default_ = true; return default_spec; } std::string_view ParseResourceProvider(std::string_view key) { return key.substr(0, key.find('#')); } absl::Status ProviderNotRegisteredError(std::string_view key) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid context resource identifier: ", QuoteString(key))); } Result<ResourceSpecImplPtr> ResourceSpecFromJson( const ResourceProviderImplBase& provider, const ::nlohmann::json& j, JsonSerializationOptions options) { ResourceSpecImplPtr impl; if (j.is_null()) { impl.reset(new ResourceReference("")); } else if (auto* s = j.get_ptr<const std::string*>()) { auto provider_id = ParseResourceProvider(*s); if (provider_id != provider.id_) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid reference to ", QuoteString(provider.id_), " resource: ", QuoteString(*s))); } impl.reset(new ResourceReference(*s)); } else { TENSORSTORE_ASSIGN_OR_RETURN(impl, provider.FromJson(j, options)); } impl->provider_ = &provider; return impl; } Result<ResourceSpecImplPtr> ResourceSpecFromJsonWithKey( std::string_view key, const ::nlohmann::json& j, Context::FromJsonOptions options) { auto* provider = GetProvider(ParseResourceProvider(key)); ResourceSpecImplPtr impl; if (!provider) { return ProviderNotRegisteredError(key); } else { TENSORSTORE_ASSIGN_OR_RETURN(impl, ResourceSpecFromJson(*provider, j, options)); } impl->key_ = key; return impl; } Result<ResourceSpecImplPtr> ResourceSpecFromJson( std::string_view provider_id, const ::nlohmann::json& j, Context::FromJsonOptions options) { auto& provider = GetProviderOrDie(provider_id); if (j.is_null()) { return internal_json::ExpectedError(j, "non-null value"); } return ResourceSpecFromJson(provider, j, options); } ResourceOrSpecPtr DefaultResourceSpec(std::string_view provider_id) { return ToResourceOrSpecPtr( ResourceSpecFromJson(provider_id, std::string(provider_id), {}).value()); } } Context Context::Default() { Context context; context.impl_.reset(new internal_context::ContextImpl); context.impl_->root_ = context.impl_.get(); return context; } Context::Context(const Context::Spec& spec, Context parent) : impl_(new internal_context::ContextImpl) { impl_->spec_ = spec.impl_; impl_->parent_ = std::move(parent.impl_); if (impl_->parent_) { impl_->root_ = impl_->parent_->root_; } else { impl_->root_ = impl_.get(); } } Result<Context> Context::FromJson(::nlohmann::json json_spec, Context parent, FromJsonOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( auto spec, Spec::FromJson(std::move(json_spec), std::move(options))); return Context(spec, std::move(parent)); } Context::Spec Context::spec() const { if (!impl_) return {}; Context::Spec spec; internal_context::Access::impl(spec) = impl_->spec_; return spec; } Context Context::parent() const { if (!impl_) return {}; Context parent_context; parent_context.impl_ = impl_->parent_; return parent_context; } namespace jb = tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( Context::Spec, jb::Compose<::nlohmann::json::object_t>([](auto is_loading, const auto& options, auto* obj, auto* j_obj) -> absl::Status { if constexpr (is_loading) { obj->impl_.reset(new internal_context::ContextSpecImpl); obj->impl_->resources_.reserve(j_obj->size()); for (const auto& [key, value] : *j_obj) { TENSORSTORE_ASSIGN_OR_RETURN( auto resource, internal_context::ResourceSpecFromJsonWithKey( key, value, options)); obj->impl_->resources_.insert(std::move(resource)); } } else { if (!obj->impl_) return absl::OkStatus(); for (const auto& resource_spec : obj->impl_->resources_) { TENSORSTORE_ASSIGN_OR_RETURN(auto resource_spec_json, resource_spec->ToJson(options)); assert(!resource_spec_json.is_discarded()); j_obj->emplace(resource_spec->key_, std::move(resource_spec_json)); } } return absl::OkStatus(); })) namespace internal { TENSORSTORE_DEFINE_JSON_BINDER(ContextSpecDefaultableJsonBinder, [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::DefaultInitializedValue()( is_loading, options, obj, j); }) bool IsPartialBindingContext(const Context& context) { return internal_context::Access::impl(context)->root_->bind_partial_; } void SetRecordBindingState(internal::ContextSpecBuilder& builder, bool record_binding_state) { auto& impl = internal_context::Access::impl(builder); auto ptr = impl.release(); ptr.set_tag(record_binding_state); impl.reset(ptr, internal::adopt_object_ref); } } namespace internal_context { Result<::nlohmann::json> BuilderResourceSpec::ToJson( Context::ToJsonOptions options) { ::nlohmann::json json_spec; if (!underlying_spec_->key_.empty()) { return underlying_spec_->key_; } return underlying_spec_->ToJson(options); } Result<ResourceImplStrongPtr> BuilderResourceSpec::CreateResource( const internal::ContextResourceCreationContext& creation_context) { return underlying_spec_->CreateResource(creation_context); } ResourceSpecImplPtr BuilderResourceSpec::UnbindContext( const internal::ContextSpecBuilder& spec_builder) { if (!underlying_spec_->key_.empty() && !underlying_spec_->provider_->config_only_) { return ResourceSpecImplPtr(new ResourceReference(underlying_spec_->key_)); } return underlying_spec_->UnbindContext(spec_builder); } void BuilderResourceSpec::EncodeCacheKey(std::string* out) const { underlying_spec_->EncodeCacheKey(out); } BuilderImpl::~BuilderImpl() { auto& ids = ids_; using SharedEntry = std::pair<ResourceImplBase*, ResourceEntry*>; std::vector<SharedEntry> shared_entries; for (auto& p : resources_) { const auto& key = p.first->spec_->key_; if (!key.empty()) { ids[key]++; } if (p.second.shared) { shared_entries.emplace_back(p.first.get(), &p.second); } } std::sort(shared_entries.begin(), shared_entries.end(), [](const SharedEntry& a, const SharedEntry& b) { return a.second->id < b.second->id; }); for (auto [resource, entry] : shared_entries) { std::string key = resource->spec_->key_; if (key.empty() || ids.at(key) != 1) { size_t i = 0; while (true) { key = tensorstore::StrCat(resource->spec_->provider_->id_, "#", i); if (!ids.count(key)) break; ++i; } ids[key]++; } entry->spec->underlying_spec_->key_ = key; root_->resources_.insert(entry->spec->underlying_spec_); } } void BuilderImplPtrTraits::increment(BuilderImplTaggedPtr p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<BuilderImpl>*>(p.get())); } void BuilderImplPtrTraits::decrement(BuilderImplTaggedPtr p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<BuilderImpl>*>(p.get())); } } namespace internal { ContextSpecBuilder ContextSpecBuilder::Make(ContextSpecBuilder parent, Context::Spec existing_spec) { ContextSpecBuilder builder; if (existing_spec.impl_) { if (existing_spec.impl_->use_count() != 1) { existing_spec.impl_.reset( new internal_context::ContextSpecImpl(*existing_spec.impl_)); } } if (parent.impl_) { builder.impl_ = std::move(parent.impl_); builder.spec_impl_ = std::move(existing_spec.impl_); } else { builder.impl_.reset(internal_context::BuilderImplTaggedPtr( new internal_context::BuilderImpl, parent.impl_.get().tag())); if (!existing_spec.impl_) { builder.spec_impl_.reset(new internal_context::ContextSpecImpl); } else { builder.spec_impl_ = std::move(existing_spec.impl_); } builder.impl_->root_ = builder.spec_impl_; } if (builder.spec_impl_ && !builder.spec_impl_->resources_.empty()) { auto& ids = builder.impl_->ids_; for (const auto& resource_spec : builder.spec_impl_->resources_) { ids[resource_spec->key_]++; resource_spec->UnbindContext(builder); } } return builder; } Context::Spec ContextSpecBuilder::spec() const { Context::Spec spec; spec.impl_ = spec_impl_; return spec; } } namespace internal_context { ResourceSpecImplPtr ResourceImplBase::UnbindContext( const internal::ContextSpecBuilder& spec_builder) { auto spec = spec_->provider_->DoGetSpec(*this, spec_builder); spec->provider_ = spec_->provider_; spec->is_default_ = spec_->is_default_; spec->key_ = spec_->key_; return spec; } namespace { internal_context::ResourceSpecImplPtr AddResource( const internal::ContextSpecBuilder& builder, internal_context::ResourceImplBase* resource) { internal_context::ResourceImplWeakPtr resource_ptr(resource); auto* impl = internal_context::Access::impl(builder).get().get(); auto& entry = impl->resources_[resource_ptr]; if (!entry.spec) { entry.spec.reset(new internal_context::BuilderResourceSpec); auto new_spec = entry.spec; entry.spec->provider_ = resource->spec_->provider_; entry.id = impl->next_id_++; entry.shared = (resource->spec_->is_default_ || !resource->spec_->key_.empty()); auto underlying_spec = resource->UnbindContext(builder); new_spec->underlying_spec_ = std::move(underlying_spec); return new_spec; } else { entry.shared = true; return entry.spec; } } } ResourceOrSpecPtr AddResourceOrSpec(const internal::ContextSpecBuilder& builder, ResourceOrSpecTaggedPtr resource_or_spec) { assert(internal_context::Access::impl(builder)); if (!resource_or_spec) { resource_or_spec.set_tag<1>(false); return ResourceOrSpecPtr(resource_or_spec); } if (!IsResource(resource_or_spec)) { return ToResourceOrSpecPtr( static_cast<ResourceSpecImplBase*>(resource_or_spec.get()) ->UnbindContext(builder)); } else { auto new_ptr = ToResourceOrSpecPtr(AddResource( builder, static_cast<ResourceImplBase*>(resource_or_spec.get()))); if (internal::GetRecordBindingState(builder)) { auto new_tagged_ptr = new_ptr.release(); new_tagged_ptr.set_tag<1>(true); new_ptr = ResourceOrSpecPtr(new_tagged_ptr, internal::adopt_object_ref); } return new_ptr; } } absl::Status ResourceSpecFromJsonWithDefaults( std::string_view provider_id, const JsonSerializationOptions& options, ResourceOrSpecPtr& spec, ::nlohmann::json* j) { if (j->is_discarded()) { spec = internal_context::DefaultResourceSpec(provider_id); } else if (j->is_array()) { const auto& arr = j->get_ref<const ::nlohmann::json::array_t&>(); if (arr.size() != 1) { return internal_json::ExpectedError(*j, "single-element array"); } TENSORSTORE_ASSIGN_OR_RETURN( auto spec_ptr, ResourceSpecFromJson(provider_id, arr[0], options)); spec = ToResourceOrSpecPtr(std::move(spec_ptr)); if (options.preserve_bound_context_resources_) { auto tagged_ptr = spec.release(); tagged_ptr.set_tag<1>(true); spec = ResourceOrSpecPtr(tagged_ptr, internal::adopt_object_ref); } } else { TENSORSTORE_ASSIGN_OR_RETURN(auto spec_ptr, internal_context::ResourceSpecFromJson( provider_id, std::move(*j), options)); spec = ToResourceOrSpecPtr(std::move(spec_ptr)); } return absl::OkStatus(); } absl::Status ResourceSpecToJsonWithDefaults( const JsonSerializationOptions& options, ResourceOrSpecTaggedPtr spec, ::nlohmann::json* j) { if (!spec || IsResource(spec)) { *j = ::nlohmann::json(::nlohmann::json::value_t::discarded); } else { auto* spec_ptr = static_cast<ResourceSpecImplBase*>(spec.get()); TENSORSTORE_ASSIGN_OR_RETURN(*j, spec_ptr->ToJson(options)); if (options.preserve_bound_context_resources_ && IsImmediateBindingResourceSpec(spec)) { ::nlohmann::json::array_t arr(1); arr[0] = std::move(*j); *j = std::move(arr); } if (!IncludeDefaults(options).include_defaults() && j->is_string() && j->get_ref<const std::string&>() == spec_ptr->provider_->id_) { *j = ::nlohmann::json(::nlohmann::json::value_t::discarded); } } return absl::OkStatus(); } absl::Status GetOrCreateResource(ContextImpl* context, ResourceOrSpecTaggedPtr resource_or_spec, ResourceContainer* trigger, ResourceOrSpecPtr& resource) { assert(context); if (!resource_or_spec) { resource.reset(); return absl::OkStatus(); } if (IsResource(resource_or_spec)) { resource.reset(resource_or_spec); return absl::OkStatus(); } if (context->root_->bind_partial_ && !IsImmediateBindingResourceSpec(resource_or_spec)) { resource.reset(resource_or_spec); return absl::OkStatus(); } TENSORSTORE_ASSIGN_OR_RETURN( auto resource_ptr, internal_context::GetOrCreateResource( *context, static_cast<ResourceSpecImplBase&>(*resource_or_spec), trigger)); resource = ToResourceOrSpecPtr(std::move(resource_ptr)); return absl::OkStatus(); } void StripContext(ResourceOrSpecPtr& spec) { if (!spec) return; spec = internal_context::DefaultResourceSpec( IsResource(spec.get()) ? static_cast<ResourceImplBase&>(*spec).spec_->provider_->id_ : static_cast<ResourceSpecImplBase&>(*spec).provider_->id_); } namespace { [[nodiscard]] bool VerifyProviderIdMatch(serialization::DecodeSource& source, std::string_view provider_id, std::string_view key) { if (internal_context::ParseResourceProvider(key) == provider_id) { return true; } source.Fail(serialization::DecodeError(tensorstore::StrCat( "Context resource key ", tensorstore::QuoteString(key), " does not match expected provider ", tensorstore::QuoteString(provider_id)))); return false; } struct ContextResourceSpecImplSerializer { [[nodiscard]] static bool Encode( serialization::EncodeSink& sink, const internal_context::ResourceSpecImplPtr& value, JsonSerializationOptions json_serialization_options = {}) { if (!serialization::EncodeTuple(sink, value->is_default_, value->key_)) { return false; } if (value->is_default_) return true; ::nlohmann::json json; TENSORSTORE_ASSIGN_OR_RETURN( json, value->ToJson(json_serialization_options), (sink.Fail(_), false)); assert(!json.is_discarded()); return serialization::Encode(sink, json); } [[nodiscard]] bool Decode( serialization::DecodeSource& source, internal_context::ResourceSpecImplPtr& value, JsonSerializationOptions json_serialization_options = {}) { bool is_default; std::string_view key; if (!serialization::DecodeTuple(source, is_default, key)) return false; if (!key.empty() && !VerifyProviderIdMatch(source, provider_id, key)) { return false; } if (is_default) { auto& provider = internal_context::GetProviderOrDie(provider_id); value = MakeDefaultResourceSpec(provider, key); } else { std::string key_copy(key); ::nlohmann::json json_spec; if (!serialization::Decode(source, json_spec)) return false; TENSORSTORE_ASSIGN_OR_RETURN( value, internal_context::ResourceSpecFromJson(provider_id, json_spec, json_serialization_options), (source.Fail(_), false)); value->key_ = std::move(key_copy); } return true; } std::string_view provider_id; }; [[nodiscard]] bool EncodeContextSpecBuilder( serialization::EncodeSink& sink, internal::ContextSpecBuilder&& builder); [[nodiscard]] bool DecodeContextSpecBuilder( serialization::DecodeSource& source, internal_context::ContextImplPtr& context); struct ContextResourceImplSerializer { [[nodiscard]] static bool Encode( serialization::EncodeSink& sink, const internal_context::ResourceImplWeakPtr& value) { auto creator = internal_context::GetCreator(*value); if (!serialization::Encode(sink, creator)) return false; if (creator) { assert(!value->spec_->key_.empty()); return serialization::Encode(sink, value->spec_->key_); } auto builder = internal::ContextSpecBuilder::Make(); auto spec = value->UnbindContext(builder); if (!internal_context::EncodeContextSpecBuilder(sink, std::move(builder))) { return false; } return ContextResourceSpecImplSerializer::Encode(sink, spec); } [[nodiscard]] bool Decode( serialization::DecodeSource& source, internal_context::ResourceImplWeakPtr& value) const { internal_context::ContextImplPtr creator; if (!serialization::Decode(source, creator)) return false; if (creator) { return DecodeByReferenceToExistingContext(source, *creator, value); } internal_context::ContextImplPtr context_impl; if (!internal_context::DecodeContextSpecBuilder(source, context_impl)) { return false; } internal_context::ResourceSpecImplPtr resource_spec; if (!ContextResourceSpecImplSerializer{provider_id}.Decode(source, resource_spec)) { return false; } std::string key; std::swap(key, resource_spec->key_); TENSORSTORE_ASSIGN_OR_RETURN(value, internal_context::GetOrCreateResource( *context_impl, *resource_spec, nullptr), (source.Fail(_), false)); resource_spec->key_ = std::move(key); return true; } [[nodiscard]] bool DecodeByReferenceToExistingContext( serialization::DecodeSource& source, internal_context::ContextImpl& creator, internal_context::ResourceImplWeakPtr& value) const { std::string_view key; if (!serialization::Decode(source, key)) return false; if (!VerifyProviderIdMatch(source, provider_id, key)) return false; TENSORSTORE_ASSIGN_OR_RETURN( auto spec, internal_context::ResourceSpecFromJson(provider_id, key, {}), (source.Fail(_), false)); TENSORSTORE_ASSIGN_OR_RETURN( value, internal_context::GetOrCreateResource(creator, *spec, nullptr), (source.Fail(_), false)); return true; } std::string_view provider_id; }; bool EncodeContextSpecBuilder(serialization::EncodeSink& sink, internal::ContextSpecBuilder&& builder) { std::vector< std::pair<internal_context::ResourceImplWeakPtr, internal::IntrusivePtr<internal_context::BuilderResourceSpec>>> deps; auto& resources = internal_context::Access::impl(builder)->resources_; deps.reserve(resources.size()); for (auto& [resource, entry] : resources) { deps.emplace_back(resource, entry.spec); entry.shared = true; } ABSL_CHECK_EQ(internal_context::Access::impl(builder)->use_count(), 1); builder = internal::ContextSpecBuilder(); if (!serialization::WriteSize(sink.writer(), deps.size())) return false; for (size_t i = 0; i < deps.size(); ++i) { auto& [dep_resource, dep_spec] = deps[i]; if (!serialization::Encode(sink, dep_spec->underlying_spec_->key_)) { return false; } if (!sink.Indirect(dep_resource, ContextResourceImplSerializer{})) { return false; } } return true; } [[nodiscard]] bool DecodeContextResourceInContextSpecBuilder( serialization::DecodeSource& source, internal_context::ContextImpl& context_impl) { std::string key; if (!serialization::Decode(source, key)) return false; internal_context::ResourceImplWeakPtr resource; std::string_view provider_id = internal_context::ParseResourceProvider(key); if (!source.Indirect(resource, ContextResourceImplSerializer{provider_id})) { return false; } if (resource->spec_->provider_->id_ != provider_id) { source.Fail(serialization::DecodeError(tensorstore::StrCat( "Context resource has provider id ", tensorstore::QuoteString(resource->spec_->provider_->id_), " but expected ", tensorstore::QuoteString(provider_id)))); return false; } auto container = std::make_unique<internal_context::ResourceContainer>(); if (resource->spec_->key_ != key) { container->spec_.reset(new internal_context::BuilderResourceSpec); container->spec_->provider_ = resource->spec_->provider_; container->spec_->key_ = std::move(key); static_cast<internal_context::BuilderResourceSpec&>(*container->spec_) .underlying_spec_ = resource->spec_; } else { container->spec_ = resource->spec_; } container->result_.emplace(resource.get()); if (!context_impl.spec_->resources_.emplace(container->spec_).second) { source.Fail(absl::DataLossError( tensorstore::StrCat("Duplicate context resource key in Context spec ", tensorstore::QuoteString(container->spec_->key_)))); return false; } [[maybe_unused]] bool inserted_resource = context_impl.resources_.emplace(std::move(container)).second; assert(inserted_resource); return true; } bool DecodeContextSpecBuilder(serialization::DecodeSource& source, internal_context::ContextImplPtr& context) { size_t count; if (!serialization::ReadSize(source.reader(), count)) return false; internal_context::ContextImplPtr context_impl( new internal_context::ContextImpl); context_impl->spec_.reset(new internal_context::ContextSpecImpl); context_impl->root_ = context_impl.get(); while (count--) { if (!DecodeContextResourceInContextSpecBuilder(source, *context_impl)) { return false; } } context = std::move(context_impl); return true; } [[nodiscard]] bool EncodeContextResource( serialization::EncodeSink& sink, const internal_context::ResourceImplWeakPtr& resource) { return serialization::IndirectPointerSerializer< internal_context::ResourceImplWeakPtr, ContextResourceImplSerializer>() .Encode(sink, resource); } [[nodiscard]] bool DecodeContextResource( serialization::DecodeSource& source, std::string_view provider_id, internal_context::ResourceImplWeakPtr& resource) { return serialization::IndirectPointerSerializer< internal_context::ResourceImplWeakPtr, ContextResourceImplSerializer>{{provider_id}} .Decode(source, resource); } } bool EncodeContextResourceOrSpec( serialization::EncodeSink& sink, const internal_context::ResourceOrSpecPtr& resource) { const bool is_resource = internal_context::IsResource(resource.get()); if (!serialization::Encode(sink, is_resource)) return false; if (is_resource) { return EncodeContextResource( sink, internal_context::ResourceImplWeakPtr( static_cast<internal_context::ResourceImplBase*>( resource.get().get()))); } else { return ContextResourceSpecImplSerializer::Encode( sink, internal_context::ResourceSpecImplPtr( static_cast<internal_context::ResourceSpecImplBase*>( resource.get().get()))); } } bool DecodeContextResourceOrSpec( serialization::DecodeSource& source, std::string_view provider_id, internal_context::ResourceOrSpecPtr& resource) { bool is_resource; if (!serialization::Decode(source, is_resource)) return false; if (is_resource) { internal_context::ResourceImplWeakPtr resource_ptr; if (!DecodeContextResource(source, provider_id, resource_ptr)) return false; resource = internal_context::ToResourceOrSpecPtr(std::move(resource_ptr)); } else { internal_context::ResourceSpecImplPtr spec_ptr; if (!ContextResourceSpecImplSerializer{provider_id}.Decode(source, spec_ptr)) { return false; } resource = internal_context::ToResourceOrSpecPtr(std::move(spec_ptr)); } return true; } bool ContextSpecImplPtrNonNullDirectSerializer::Encode( serialization::EncodeSink& sink, const internal_context::ContextSpecImplPtr& value) { Context::Spec spec; internal_context::Access::impl(spec) = value; return serialization::JsonBindableSerializer<Context::Spec>::Encode(sink, spec); } bool ContextSpecImplPtrNonNullDirectSerializer::Decode( serialization::DecodeSource& source, internal_context::ContextSpecImplPtr& value) { Context::Spec spec; if (!serialization::JsonBindableSerializer<Context::Spec>::Decode(source, spec)) { return false; } value = internal_context::Access::impl(spec); return true; } bool ContextImplPtrNonNullDirectSerializer::Encode( serialization::EncodeSink& sink, const internal_context::ContextImplPtr& value) { return serialization::EncodeTuple(sink, value->spec_, value->parent_); } bool ContextImplPtrNonNullDirectSerializer::Decode( serialization::DecodeSource& source, internal_context::ContextImplPtr& value) { Context::Spec spec; Context parent; if (!serialization::DecodeTuple(source, spec, parent)) return false; Context context(std::move(spec), std::move(parent)); value = std::move(internal_context::Access::impl(context)); return true; } bool UntypedContextResourceImplPtrNonNullDirectSerializer::Encode( serialization::EncodeSink& sink, const internal_context::ResourceImplWeakPtr& value) { std::string_view provider_id = value->spec_->provider_->id_; if (!serialization::Encode(sink, provider_id)) return false; return ContextResourceImplSerializer{provider_id}.Encode(sink, value); } bool UntypedContextResourceImplPtrNonNullDirectSerializer::Decode( serialization::DecodeSource& source, internal_context::ResourceImplWeakPtr& value) { std::string provider_id; if (!serialization::Decode(source, provider_id)) return false; if (!internal_context::GetProvider(provider_id)) { source.Fail(internal_context::ProviderNotRegisteredError(provider_id)); return false; } return ContextResourceImplSerializer{provider_id}.Decode(source, value); } } namespace serialization { bool Serializer<Context::Spec>::Encode(EncodeSink& sink, const Context::Spec& value) { return serialization::Encode(sink, internal_context::Access::impl(value)); } bool Serializer<Context::Spec>::Decode(DecodeSource& source, Context::Spec& value) { return serialization::Decode(source, internal_context::Access::impl(value)); } bool Serializer<Context>::Encode(EncodeSink& sink, const Context& value) { return serialization::Encode(sink, internal_context::Access::impl(value)); } bool Serializer<Context>::Decode(DecodeSource& source, Context& value) { return serialization::Decode(source, internal_context::Access::impl(value)); } } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::internal_context::ContextSpecImplPtr, (tensorstore::serialization::IndirectPointerSerializer< tensorstore::internal_context::ContextSpecImplPtr, tensorstore::internal_context:: ContextSpecImplPtrNonNullDirectSerializer>{})) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::internal_context::ContextImplPtr, (tensorstore::serialization::IndirectPointerSerializer< tensorstore::internal_context::ContextImplPtr, tensorstore::internal_context:: ContextImplPtrNonNullDirectSerializer>{}))
#include "tensorstore/context.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context_impl.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_tuple.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace tensorstore { template <typename Provider> auto* GetRawPointer(const Context::Resource<Provider>& resource) { return resource.get(); } } namespace { namespace jb = tensorstore::internal_json_binding; using ::tensorstore::Context; using ::tensorstore::IncludeDefaults; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal::ContextResourceCreationContext; using ::tensorstore::internal::ContextResourceRegistration; using ::tensorstore::internal::ContextResourceTraits; using ::tensorstore::internal::ContextSpecBuilder; using ::tensorstore::internal_testing::TestConcurrent; using ::tensorstore::serialization::SerializationRoundTrip; struct IntResource : public ContextResourceTraits<IntResource> { struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; using Resource = std::int64_t; static constexpr char id[] = "int_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Object(jb::Member( "value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* v) { *v = 42; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v.value; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return {v}; } }; struct IntConfigResource : public ContextResourceTraits<IntConfigResource> { constexpr static bool config_only = true; struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; using Resource = std::int64_t; static constexpr char id[] = "int_config_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Projection(&Spec::value); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v.value; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return {v}; } }; struct StrongRefResource : public ContextResourceTraits<StrongRefResource> { struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; struct Resource { size_t num_strong_references = 0; }; static constexpr char id[] = "strongref"; static Spec Default() { return Spec{42}; } static constexpr auto JsonBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Object(jb::Member( "value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* obj) { *obj = 7; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return Resource{}; } static Spec GetSpec(const Resource& v, const ContextSpecBuilder& builder) { return {42}; } static void AcquireContextReference(Resource& v) { ++v.num_strong_references; } static void ReleaseContextReference(Resource& v) { --v.num_strong_references; } }; struct OptionalResource : public ContextResourceTraits<OptionalResource> { using Spec = std::optional<size_t>; using Resource = Spec; static constexpr char id[] = "optional_resource"; static Spec Default() { return {}; } static constexpr auto JsonBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Object(jb::Member( "limit", jb::DefaultInitializedValue(jb::Optional( jb::Integer<size_t>(1), [] { return "shared"; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return v; } }; const ContextResourceRegistration<IntResource> int_resource_registration; const ContextResourceRegistration<IntConfigResource> int_config_resource_registration; const ContextResourceRegistration<StrongRefResource> strong_ref_resource_registration; const ContextResourceRegistration<OptionalResource> optional_resource_registration; TEST(IntResourceTest, InvalidDirectSpec) { EXPECT_THAT(Context::Resource<IntResource>::FromJson(nullptr), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected non-null value, but received: null")); EXPECT_THAT(Context::Resource<IntResource>::FromJson(3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected object, but received: 3")); EXPECT_THAT( Context::Resource<IntResource>::FromJson("foo"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid reference to \"int_resource\" resource: \"foo\"")); } TEST(IntResourceTest, Default) { auto context = Context::Default(); EXPECT_EQ(context, context); EXPECT_FALSE(context.parent()); auto context2 = Context::Default(); EXPECT_NE(context, context2); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource3, context2.GetResource(resource_spec)); EXPECT_EQ(resource, resource); EXPECT_EQ(resource, resource2); EXPECT_NE(resource, resource3); EXPECT_THAT(context.GetResource<IntResource>(), ::testing::Optional(resource)); EXPECT_THAT(context.GetResource<IntResource>("int_resource"), ::testing::Optional(resource)); EXPECT_THAT(resource, ::testing::Pointee(42)); EXPECT_THAT(context.GetResource<IntResource>({{"value", 50}}), ::testing::Optional(::testing::Pointee(50))); } TEST(IntResourceTest, ValidDirectSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson({{"value", 7}})); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ValidIndirectSpecDefaultId) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", {{"value", 7}}}})); auto context = Context(spec); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ContextFromJson) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({{"int_resource", {{"value", 7}}}})); EXPECT_THAT(context.GetResource<IntResource>(), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ValidIndirectSpecDefault) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(42))); } TEST(IntResourceTest, ValidIndirectSpecIdentifier) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource#x", {{"value", 7}}}})); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#x")); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, UndefinedIndirectReference) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#x")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Resource not defined: \"int_resource#x\"")); } TEST(IntResourceTest, SimpleReference) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson({ {"int_resource#x", {{"value", 7}}}, {"int_resource#y", "int_resource#x"}, })); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#y")); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ReferenceCycle1) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", "int_resource"}})); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"int_resource\":\"int_resource\"")); } TEST(IntResourceTest, ReferenceCycle2) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson({ {"int_resource#a", "int_resource#b"}, {"int_resource#b", "int_resource#a"}, })); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#a")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"int_resource#b\":\"int_resource#a\" -> " "\"int_resource#a\":\"int_resource#b\"")); } TEST(IntResourceTest, Inherit) { const ::nlohmann::json json_spec1{ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec1, Context::Spec::FromJson(json_spec1)); EXPECT_THAT(spec1.ToJson(IncludeDefaults{false}), ::testing::Optional(MatchesJson({ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", ::nlohmann::json::object_t{}}, {"int_resource#c", nullptr}, }))); EXPECT_THAT(spec1.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson({ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }))); ::nlohmann::json json_spec2{ {"int_resource", {{"value", 8}}}, {"int_resource#b", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec2, Context::Spec::FromJson(json_spec2)); auto context1 = Context(spec1); auto context2 = Context(spec2, context1); EXPECT_EQ(context1, context2.parent()); EXPECT_THAT(context1.spec().ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson(json_spec1))); EXPECT_THAT(context2.spec().ToJson(), ::testing::Optional(MatchesJson(json_spec2))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource1, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#a").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource3, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#b").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource4, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#c").value())); EXPECT_EQ(8, *resource1); EXPECT_EQ(9, *resource2); EXPECT_EQ(7, *resource3); EXPECT_EQ(42, *resource4); } TEST(IntResourceTest, Unknown) { EXPECT_THAT(Context::Spec::FromJson({ {"foo", {{"value", 7}}}, }), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid context resource identifier: \"foo\"")); } TEST(IntConfigResourceTest, ContextSpec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({{"int_config_resource", 111}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context.GetResource<IntConfigResource>()); EXPECT_THAT(resource1, ::testing::Pointee(111)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context.GetResource<IntConfigResource>(222)); EXPECT_THAT(resource2, ::testing::Pointee(222)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource3, context.GetResource<IntConfigResource>(222)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource4, context.GetResource<IntConfigResource>(111)); std::string cache_key1, cache_key2, cache_key3, cache_key4; tensorstore::internal::EncodeCacheKey(&cache_key1, resource1); tensorstore::internal::EncodeCacheKey(&cache_key2, resource2); tensorstore::internal::EncodeCacheKey(&cache_key3, resource3); tensorstore::internal::EncodeCacheKey(&cache_key4, resource4); EXPECT_EQ(cache_key1, cache_key4); EXPECT_EQ(cache_key2, cache_key3); } TEST(StrongRefResourceTest, DirectSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<StrongRefResource>::FromJson( ::nlohmann::json::object_t{})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_EQ(0, resource->num_strong_references); } TEST(StrongRefResourceTest, IndirectSpec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"strongref", ::nlohmann::json::object_t{}}})); auto context = Context(spec); auto resource_spec = Context::Resource<StrongRefResource>::DefaultSpec(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_EQ(1, resource->num_strong_references); context = Context(); EXPECT_EQ(0, resource->num_strong_references); } TEST(ContextSpecBuilderTest, Simple) { auto spec = Context::Spec::FromJson({{"int_resource", {{"value", 5}}}}).value(); auto context = Context(spec); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT( new_spec.ToJson(), ::testing::Optional(MatchesJson({{"int_resource", {{"value", 5}}}}))); EXPECT_THAT(new_resource_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson("int_resource"))); auto new_context = Context(new_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_resource, new_context.GetResource(new_resource_spec)); EXPECT_EQ(5, *new_resource); } TEST(ContextSpecBuilderTest, Default) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource, Context::Default().GetResource<IntResource>()); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT( jb::ToJson(new_spec, tensorstore::internal::ContextSpecDefaultableJsonBinder, IncludeDefaults{false}), ::testing::Optional( MatchesJson({{"int_resource", ::nlohmann::json::object_t()}}))); EXPECT_THAT( new_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson({{"int_resource", {{"value", 42}}}}))); EXPECT_THAT(new_resource_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson("int_resource"))); auto new_context = Context(new_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_resource, new_context.GetResource(new_resource_spec)); EXPECT_THAT(new_resource, ::testing::Pointee(42)); } TEST(ContextSpecBuilderTest, MultipleContexts) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec1, Context::Spec::FromJson({{"int_resource", {{"value", 5}}}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec2, Context::Spec::FromJson({{"int_resource", {{"value", 6}}}})); auto context1 = Context(spec1); auto context2 = Context(spec2); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context1.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context2.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec1; Context::Resource<IntResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource1); new_resource_spec2 = builder.AddResource(resource2); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson({ {"int_resource#0", {{"value", 5}}}, {"int_resource#1", {{"value", 6}}}, }))); EXPECT_EQ("int_resource#0", new_resource_spec1.ToJson()); EXPECT_EQ("int_resource#1", new_resource_spec2.ToJson()); } TEST(ContextSpecBuilderTest, Inline) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson({{"value", 5}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson(::nlohmann::json::object_t()))); EXPECT_THAT(new_resource_spec.ToJson(), ::testing::Optional(MatchesJson({{"value", 5}}))); } TEST(ContextSpecBuilderTest, InlineEqualToDefault) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::FromJson({{"value", 42}}).value(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_EQ(::nlohmann::json({}), new_spec.ToJson()); EXPECT_EQ(::nlohmann::json::object_t{}, new_resource_spec.ToJson(IncludeDefaults{false})); } TEST(ContextSpecBuilderTest, InlineShared) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::FromJson({{"value", 5}}).value(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec1; Context::Resource<IntResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource); new_resource_spec2 = builder.AddResource(resource); } EXPECT_EQ(::nlohmann::json({{"int_resource#0", {{"value", 5}}}}), new_spec.ToJson()); EXPECT_EQ("int_resource#0", new_resource_spec1.ToJson()); EXPECT_EQ("int_resource#0", new_resource_spec2.ToJson()); } TEST(ContextSpecBuilderTest, ExcludeDefaultsJson) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({ {"optional_resource", {{"limit", "shared"}}}, {"optional_resource#a", {{"limit", 5}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context.GetResource<OptionalResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2, context.GetResource<OptionalResource>("optional_resource#a")); Context::Spec new_spec; Context::Resource<OptionalResource> new_resource_spec1; Context::Resource<OptionalResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource1); new_resource_spec2 = builder.AddResource(resource2); } EXPECT_THAT(new_spec.ToJson(tensorstore::IncludeDefaults{false}), ::testing::Optional(MatchesJson({ {"optional_resource#a", {{"limit", 5}}}, {"optional_resource", ::nlohmann::json::object_t()}, }))); EXPECT_THAT(new_spec.ToJson(tensorstore::IncludeDefaults{true}), ::testing::Optional(MatchesJson({ {"optional_resource#a", {{"limit", 5}}}, {"optional_resource", {{"limit", "shared"}}}, }))); } TEST(ContextTest, WeakCreator) { using ::tensorstore::internal_context::Access; using ::tensorstore::internal_context::GetCreator; using ::tensorstore::internal_context::ResourceImplBase; const ::nlohmann::json json_spec1{ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec1, Context::Spec::FromJson(json_spec1)); ::nlohmann::json json_spec2{ {"int_resource", {{"value", 8}}}, {"int_resource#b", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec2, Context::Spec::FromJson(json_spec2)); auto context1 = Context(spec1); auto context2 = Context(spec2, context1); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context1.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context2.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_a, context2.GetResource<IntResource>("int_resource#a")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_b, context2.GetResource<IntResource>("int_resource#b")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_c, context2.GetResource<IntResource>("int_resource#c")); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource1)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_a)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_b)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_c)))); EXPECT_EQ( Access::impl(context2), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2)))); context2 = Context(); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource1)))); EXPECT_FALSE( GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2)))); } struct NestedResource : public ContextResourceTraits<NestedResource> { struct Spec { int value; Context::Resource<NestedResource> parent; int GetTotal() const { int total = value; if (parent.has_resource()) total += parent->GetTotal(); return total; } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value, x.parent); }; }; using Resource = Spec; static constexpr char id[] = "nested_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Object( jb::Member("value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* v) { *v = 42; }))), jb::Member( "parent", jb::Projection( &Spec::parent, jb::DefaultInitializedPredicate<jb::kNeverIncludeDefaults>( [](auto* obj) { return !obj->valid(); })))); } static Result<Resource> Create(const Spec& spec, ContextResourceCreationContext context) { Resource resource = spec; TENSORSTORE_RETURN_IF_ERROR(resource.parent.BindContext(context)); return resource; } static Spec GetSpec(const Resource& resource, const ContextSpecBuilder& builder) { Spec spec = resource; UnbindContext(spec, builder); return spec; } static void UnbindContext(Spec& spec, const ContextSpecBuilder& builder) { spec.parent.UnbindContext(builder); } }; const ContextResourceRegistration<NestedResource> nested_resource_registration; TEST(NestedResourceTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({ {"nested_resource#a", {{"value", 1}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, {"nested_resource#c", {{"value", 5}, {"parent", "nested_resource#b"}}}, {"nested_resource#d", {{"value", 10}, {"parent", "nested_resource#e"}}}, {"nested_resource#e", {{"value", 15}, {"parent", "nested_resource#d"}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto a, context.GetResource<NestedResource>("nested_resource#a")); EXPECT_FALSE(a->parent.valid()); EXPECT_EQ(1, a->GetTotal()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto b, context.GetResource<NestedResource>("nested_resource#b")); EXPECT_EQ(a, b->parent); EXPECT_EQ(4, b->GetTotal()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto c, context.GetResource<NestedResource>("nested_resource#c")); EXPECT_EQ(b, c->parent); EXPECT_EQ(9, c->GetTotal()); EXPECT_THAT( context.GetResource<NestedResource>("nested_resource#d"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"nested_resource#d\" -> " "\"nested_resource#d\":" "\\{\"parent\":\"nested_resource#e\",\"value\":10\\} -> " "\"nested_resource#e\" -> " "\"nested_resource#e\":" "\\{\"parent\":\"nested_resource#d\",\"value\":15\\}")); EXPECT_THAT(context.GetResource<NestedResource>("nested_resource#e"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: .*")); } TEST(ContextSpecBuilderTest, PartiallyBound) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context_spec, Context::Spec::FromJson({ {"nested_resource#a", {{"value", 2}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, })); auto context = Context(context_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<NestedResource>::FromJson("nested_resource#b")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<NestedResource> new_resource_spec1; Context::Resource<NestedResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make({}, context_spec); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource_spec); new_resource_spec2 = builder.AddResource(resource); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson({ {"nested_resource#a", {{"value", 2}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, {"nested_resource#1", {{"value", 2}}}, {"nested_resource#0", {{"value", 3}, {"parent", "nested_resource#1"}}}, }))); EXPECT_THAT(new_resource_spec1.ToJson(), ::testing::Optional(MatchesJson("nested_resource#b"))); EXPECT_THAT(new_resource_spec2.ToJson(), ::testing::Optional(MatchesJson("nested_resource#0"))); } TEST(ContextSpecSerializationTest, Empty) { Context::Spec spec; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec_copy, SerializationRoundTrip(spec)); EXPECT_THAT(spec.ToJson(), ::testing::Optional(MatchesJson(::nlohmann::json::object_t()))); } TEST(ContextSpecSerializationTest, NonEmpty) { ::nlohmann::json json_spec{ {"int_resource", ::nlohmann::json::object_t()}, {"int_resource#a", "int_resource"}, {"int_resource#b", ::nlohmann::json::object_t()}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson(json_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec_copy, SerializationRoundTrip(spec)); EXPECT_THAT(spec.ToJson(), ::testing::Optional(MatchesJson(json_spec))); } TEST(ContextSerializationTest, Null) { Context context; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto context_copy, SerializationRoundTrip(context)); EXPECT_FALSE(context); } TEST(ContextSerializationTest, NonNull) { ::nlohmann::json parent_json_spec{ {"int_resource#c", ::nlohmann::json::object_t()}, }; ::nlohmann::json child_json_spec{ {"int_resource", ::nlohmann::json::object_t()}, {"int_resource#a", "int_resource"}, {"int_resource#b", ::nlohmann::json::object_t()}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto parent_spec, Context::Spec::FromJson(parent_json_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto child_spec, Context::Spec::FromJson(child_json_spec)); Context parent_context(parent_spec); Context child_context(child_spec, parent_context); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto child_context_copy, SerializationRoundTrip(child_context)); EXPECT_THAT(child_context_copy.spec().ToJson(), ::testing::Optional(child_json_spec)); EXPECT_THAT(child_context_copy.parent().spec().ToJson(), ::testing::Optional(parent_json_spec)); EXPECT_FALSE(child_context_copy.parent().parent()); } TEST(ContextSerializationTest, Shared) { ::nlohmann::json parent_json_spec{ {"int_resource#c", {{"value", 7}}}, }; ::nlohmann::json child_json_spec{ {"int_resource", {{"value", 5}}}, {"int_resource#a", "int_resource"}, {"int_resource#b", {{"value", 6}}}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto parent_spec, Context::Spec::FromJson(parent_json_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto child_spec, Context::Spec::FromJson(child_json_spec)); Context parent_context(parent_spec); Context child_context(child_spec, parent_context); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto res_parent, parent_context.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto res_child, child_context.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto res_a, child_context.GetResource<IntResource>("int_resource#a")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto res_b, child_context.GetResource<IntResource>("int_resource#b")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto res_c_child, child_context.GetResource<IntResource>("int_resource#c")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto res_c_parent, parent_context.GetResource<IntResource>("int_resource#c")); EXPECT_EQ(res_child, res_a); EXPECT_EQ(res_c_child, res_c_parent); EXPECT_NE(res_child, res_parent); EXPECT_NE(res_a, res_b); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto copy, SerializationRoundTrip(std::make_tuple( parent_context, child_context, res_parent, res_child, res_a, res_b, res_c_child, res_c_parent))); auto [copy_parent_context, copy_child_context, copy_res_parent, copy_res_child, copy_res_a, copy_res_b, copy_res_c_child, copy_res_c_parent] = copy; EXPECT_EQ(copy_parent_context, copy_child_context.parent()); EXPECT_THAT(copy_child_context.GetResource<IntResource>("int_resource#a"), ::testing::Optional(copy_res_a)); EXPECT_THAT(copy_child_context.GetResource<IntResource>("int_resource#b"), ::testing::Optional(copy_res_b)); EXPECT_THAT(copy_child_context.GetResource<IntResource>("int_resource#c"), ::testing::Optional(copy_res_c_child)); EXPECT_THAT(copy_parent_context.GetResource<IntResource>("int_resource#c"), ::testing::Optional(copy_res_c_parent)); } TEST(ContextTest, ConcurrentCreateSingleResource) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", {{"value", 5}}}})); Context context; TestConcurrent<3>( 100, [&] { context = Context(spec); }, [&] {}, [&](auto i) { TENSORSTORE_EXPECT_OK(context.GetResource<IntResource>()); }); } TEST(ContextTest, ConcurrentCreateMultipleResources) { std::vector<std::string> resource_keys{"int_resource#a", "int_resource#b"}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson({ {resource_keys[0], {{"value", 5}}}, {resource_keys[1], {{"value", 6}}}, })); Context context; TestConcurrent<4>( 100, [&] { context = Context(spec); }, [&] {}, [&](auto i) { TENSORSTORE_EXPECT_OK(context.GetResource<IntResource>( resource_keys[i % resource_keys.size()])); }); } TEST(ContextTest, ConcurrentCreateInParent) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", {{"value", 5}}}})); Context context; TestConcurrent<3>( 100, [&] { context = Context(spec); }, [&] {}, [&](auto i) { Context child({}, context); TENSORSTORE_EXPECT_OK(child.GetResource<IntResource>()); }); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/context.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/context_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4ada8775-bd63-45fb-95ee-e5da7caaac97
cpp
tensorflow/tensorflow
span
tensorflow/core/tfrt/mlrt/bytecode/span.h
tensorflow/core/tfrt/mlrt/bytecode/span_test.cc
#ifndef TENSORFLOW_CORE_TFRT_MLRT_BYTECODE_SPAN_H_ #define TENSORFLOW_CORE_TFRT_MLRT_BYTECODE_SPAN_H_ #include <cstdint> #include <vector> #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" namespace mlrt { namespace bc { template <typename T> class Span { public: using value_type = T; using iterator = ReadIterator<T>; using const_iterator = iterator; Span() = default; Span(const char* data, size_t size) : data_(data), size_(size) {} template <typename SizeType> Span(const Vector<T, SizeType>& vec) : Span(vec.data(), vec.size()) {} Span(const String& vec) : Span(vec.data(), vec.size()) {} Span(const std::vector<T>& vec) : Span(reinterpret_cast<const char*>(vec.data()), vec.size()) {} const char* data() const { return data_; } const char* data(size_t index) const { return data_ + index * sizeof(T); } iterator begin() const { return iterator(data_); } iterator end() const { return iterator(data_ + size_ * sizeof(T)); } T back() const { DCHECK_GT(size_, 0); return *iterator(data_ + (size_ - 1) * sizeof(T)); } T operator[](size_t index) const { DCHECK_LT(index, size()); auto iter = begin(); iter += index; return *iter; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } Span drop_front(size_t num = 1) const { auto beg = begin(); beg += num; DCHECK_GE(size(), num); return Span(beg.data(), size() - num); } Span drop_back(size_t num = 1) const { DCHECK_GE(size(), num); return Span(data(), size() - num); } private: const char* data_ = nullptr; size_t size_ = 0; }; } } #endif
#include "tensorflow/core/tfrt/mlrt/bytecode/span.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" namespace mlrt { namespace bc { namespace { TEST(SpanTest, SpanOfTrivial) { Buffer buffer; Allocator alloc(&buffer); auto ctor = New<Vector<uint32_t>>(&alloc, 4); for (int i = 0; i < 4; ++i) { ctor.ConstructAt(i, i); } Vector<uint32_t> vec(buffer.Get(ctor.address())); Span<uint32_t> span(vec); ASSERT_EQ(span.size(), 4); EXPECT_EQ(span[0], 0); EXPECT_EQ(span[1], 1); EXPECT_EQ(span[2], 2); EXPECT_EQ(span[3], 3); EXPECT_THAT(span, testing::ElementsAreArray({0, 1, 2, 3})); } TEST(BefTest, SpanOfVector) { Buffer buffer; Allocator alloc(&buffer); using T = Vector<uint32_t>; using V = Vector<T>; auto vctor = New<V>(&alloc, 3); { auto tctor = vctor.ConstructAt(0, 2); tctor.ConstructAt(0, 0); tctor.ConstructAt(1, 1); } { auto tctor = vctor.ConstructAt(1, 1); tctor.ConstructAt(0, 2); } vctor.ConstructAt(2, 0); V v(buffer.Get(vctor.address())); Span<T> span(v); T t0 = span[0]; ASSERT_EQ(t0.size(), 2); EXPECT_EQ(t0[0], 0); EXPECT_EQ(t0[1], 1); EXPECT_THAT(t0, testing::ElementsAreArray({0, 1})); T t1 = span[1]; ASSERT_EQ(t1.size(), 1); EXPECT_EQ(t1[0], 2); EXPECT_THAT(t1, testing::ElementsAreArray({2})); T t2 = span[2]; ASSERT_EQ(t2.size(), 0); } TEST(SpanTest, SpanOfStdVectorTrivial) { std::vector<uint32_t> vec = {0, 1, 2, 3}; Span<uint32_t> span(vec); EXPECT_THAT(span, testing::ElementsAreArray({0, 1, 2, 3})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/bytecode/span.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/mlrt/bytecode/span_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6506a74-564b-4421-9121-be913bba8ef3
cpp
tensorflow/tensorflow
dfs_hlo_visitor_with_default
third_party/xla/xla/hlo/ir/dfs_hlo_visitor_with_default.h
third_party/xla/xla/service/dfs_hlo_visitor_with_default_test.cc
#ifndef XLA_HLO_IR_DFS_HLO_VISITOR_WITH_DEFAULT_H_ #define XLA_HLO_IR_DFS_HLO_VISITOR_WITH_DEFAULT_H_ #include <memory> #include <utility> #include "absl/base/optimization.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "tsl/platform/status.h" namespace xla { template <typename HloInstructionPtr> class DfsHloVisitorWithDefaultBase : public DfsHloVisitorBase<HloInstructionPtr> { public: DfsHloVisitorWithDefaultBase() = default; ~DfsHloVisitorWithDefaultBase() override = default; virtual absl::Status DefaultAction(HloInstructionPtr hlo_instruction) = 0; absl::Status HandleElementwiseUnary(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleElementwiseBinary(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormTraining(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormInference(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleBatchNormGrad(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleClamp(HloInstructionPtr clamp) override { return DefaultAction(clamp); } absl::Status HandleConcatenate(HloInstructionPtr concatenate) override { return DefaultAction(concatenate); } absl::Status HandleSelect(HloInstructionPtr select) override { return DefaultAction(select); } absl::Status HandleDot(HloInstructionPtr dot) override { return DefaultAction(dot); } absl::Status HandleConvolution(HloInstructionPtr convolution) override { return DefaultAction(convolution); } absl::Status HandleFft(HloInstructionPtr fft) override { return DefaultAction(fft); } absl::Status HandleTriangularSolve(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCholesky(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleOptimizationBarrier(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllGather(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllGatherStart(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllGatherDone(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleAllReduce(HloInstructionPtr crs) override { return DefaultAction(crs); } absl::Status HandleReduceScatter(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllReduceStart(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllReduceDone(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleAllToAll(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectiveBroadcast(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermute(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermuteStart(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleCollectivePermuteDone(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleReplicaId(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandlePartitionId(HloInstructionPtr hlo) override { return DefaultAction(hlo); } absl::Status HandleRng(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleRngBitGenerator(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleRngGetAndUpdateState(HloInstructionPtr random) override { return DefaultAction(random); } absl::Status HandleInfeed(HloInstructionPtr infeed) override { return DefaultAction(infeed); } absl::Status HandleOutfeed(HloInstructionPtr outfeed) override { return DefaultAction(outfeed); } absl::Status HandleReverse(HloInstructionPtr reverse) override { return DefaultAction(reverse); } absl::Status HandleSort(HloInstructionPtr sort) override { return DefaultAction(sort); } absl::Status HandleConstant(HloInstructionPtr constant) override { return DefaultAction(constant); } absl::Status HandleIota(HloInstructionPtr iota) override { return DefaultAction(iota); } absl::Status HandleGetTupleElement( HloInstructionPtr get_tuple_element) override { return DefaultAction(get_tuple_element); } absl::Status HandleParameter(HloInstructionPtr parameter) override { return DefaultAction(parameter); } absl::Status HandleFusion(HloInstructionPtr fusion) override { return DefaultAction(fusion); } absl::Status HandleCall(HloInstructionPtr call) override { return DefaultAction(call); } absl::Status HandleCustomCall(HloInstructionPtr custom_call) override { return DefaultAction(custom_call); } absl::Status HandleSlice(HloInstructionPtr slice) override { return DefaultAction(slice); } absl::Status HandleDynamicSlice(HloInstructionPtr dynamic_slice) override { return DefaultAction(dynamic_slice); } absl::Status HandleDynamicUpdateSlice( HloInstructionPtr dynamic_update_slice) override { return DefaultAction(dynamic_update_slice); } absl::Status HandleTuple(HloInstructionPtr tuple) override { return DefaultAction(tuple); } absl::Status HandleMap(HloInstructionPtr map) override { return DefaultAction(map); } absl::Status HandleReduce(HloInstructionPtr reduce) override { return DefaultAction(reduce); } absl::Status HandleReduceWindow(HloInstructionPtr reduce_window) override { return DefaultAction(reduce_window); } absl::Status HandleSelectAndScatter( HloInstructionPtr select_and_scatter) override { return DefaultAction(select_and_scatter); } absl::Status HandleBitcast(HloInstructionPtr bitcast) override { return DefaultAction(bitcast); } absl::Status HandleBroadcast(HloInstructionPtr broadcast) override { return DefaultAction(broadcast); } absl::Status HandlePad(HloInstructionPtr pad) override { return DefaultAction(pad); } absl::Status HandleDynamicReshape( HloInstructionPtr dynamic_reshape) override { return DefaultAction(dynamic_reshape); } absl::Status HandleReshape(HloInstructionPtr reshape) override { return DefaultAction(reshape); } absl::Status HandleTranspose(HloInstructionPtr transpose) override { return DefaultAction(transpose); } absl::Status HandleWhile(HloInstructionPtr xla_while) override { return DefaultAction(xla_while); } absl::Status HandleConditional(HloInstructionPtr conditional) override { return DefaultAction(conditional); } absl::Status HandleAsyncStart(HloInstructionPtr async_start) override { return DefaultAction(async_start); } absl::Status HandleAsyncUpdate(HloInstructionPtr async_update) override { return DefaultAction(async_update); } absl::Status HandleAsyncDone(HloInstructionPtr async_done) override { return DefaultAction(async_done); } absl::Status HandleCopyStart(HloInstructionPtr copy_start) override { return DefaultAction(copy_start); } absl::Status HandleCopyDone(HloInstructionPtr copy_done) override { return DefaultAction(copy_done); } absl::Status HandleRecv(HloInstructionPtr recv) override { return DefaultAction(recv); } absl::Status HandleRecvDone(HloInstructionPtr recv_done) override { return DefaultAction(recv_done); } absl::Status HandleSend(HloInstructionPtr send) override { return DefaultAction(send); } absl::Status HandleTopK(HloInstructionPtr topk) override { return DefaultAction(topk); } absl::Status HandleSendDone(HloInstructionPtr send_done) override { return DefaultAction(send_done); } absl::Status HandleGather(HloInstructionPtr gather) override { return DefaultAction(gather); } absl::Status HandleScatter(HloInstructionPtr scatter) override { return DefaultAction(scatter); } absl::Status HandleAfterAll(HloInstructionPtr token) override { return DefaultAction(token); } absl::Status HandleGetDimensionSize(HloInstructionPtr get_size) override { return DefaultAction(get_size); } absl::Status HandleSetDimensionSize(HloInstructionPtr get_size) override { return DefaultAction(get_size); } absl::Status HandleAddDependency(HloInstructionPtr add_dependency) override { return DefaultAction(add_dependency); } absl::Status FinishVisit(HloInstructionPtr ) override { return absl::OkStatus(); } private: DfsHloVisitorWithDefaultBase(const DfsHloVisitorWithDefaultBase&) = delete; DfsHloVisitorWithDefaultBase& operator=(const DfsHloVisitorWithDefaultBase&) = delete; }; using DfsHloVisitorWithDefault = DfsHloVisitorWithDefaultBase<HloInstruction*>; using ConstDfsHloVisitorWithDefault = DfsHloVisitorWithDefaultBase<const HloInstruction*>; class DfsHloRewriteVisitor : public DfsHloVisitorWithDefault { public: absl::StatusOr<bool> RunOnModule( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads = {}) { absl::Status status; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { status = computation->Accept(this); if (ABSL_PREDICT_FALSE(!status.ok())) return status; } return changed(); } absl::Status DefaultAction(HloInstruction* ) override { return absl::OkStatus(); } bool changed() const { return changed_; } protected: absl::Status ReplaceWithNewInstruction( HloInstruction* old_instruction, std::unique_ptr<HloInstruction> new_instruction) { VLOG(3) << "Replacing instruction:" << "\n old: " << old_instruction->ToString() << "\n new: " << new_instruction->ToString(); absl::Status status = old_instruction->parent()->ReplaceWithNewInstruction( old_instruction, std::move(new_instruction)); if (ABSL_PREDICT_TRUE(status.ok())) { changed_ = true; } return status; } absl::StatusOr<bool> ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction, bool preserve_sharding) { VLOG(3) << "Replacing instruction:" << "\n old: " << old_instruction->ToString() << "\n new: " << new_instruction->ToString(); absl::StatusOr<bool> changed_or = old_instruction->parent()->ReplaceInstruction( old_instruction, new_instruction, preserve_sharding); if (ABSL_PREDICT_TRUE(changed_or.ok())) { changed_ |= changed_or.value(); } return changed_or; } absl::Status ReplaceInstruction(HloInstruction* old_instruction, HloInstruction* new_instruction) { absl::StatusOr<bool> changed_or = ReplaceInstruction(old_instruction, new_instruction, false); if (ABSL_PREDICT_TRUE(changed_or.ok())) { DCHECK(changed_or.value()); } return changed_or.status(); } void MarkAsChanged() { changed_ = true; } private: bool changed_ = false; }; template <typename HloInstructionPtr> class FunctionVisitorBase : public DfsHloVisitorWithDefaultBase<HloInstructionPtr> { public: explicit FunctionVisitorBase( std::function<absl::Status(HloInstructionPtr)> visitor_func) : visitor_func_(std::move(visitor_func)) {} absl::Status DefaultAction(HloInstructionPtr hlo_instruction) override { return visitor_func_(hlo_instruction); } private: FunctionVisitorBase(const FunctionVisitorBase&) = delete; FunctionVisitorBase& operator=(const FunctionVisitorBase&) = delete; std::function<absl::Status(HloInstructionPtr)> visitor_func_; }; using FunctionVisitor = FunctionVisitorBase<HloInstruction*>; using ConstFunctionVisitor = FunctionVisitorBase<const HloInstruction*>; } #endif
#include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_runner.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { class DfsHloVisitorWithDefaultTest : public HloTestBase {}; TEST_F(DfsHloVisitorWithDefaultTest, DefaultElementwiseTest) { class ElementwiseTestVisitor : public DfsHloVisitorWithDefault { public: absl::Status DefaultAction(HloInstruction* hlo) override { TF_RET_CHECK(!(hlo->IsElementwise() && hlo->operand_count() == 2)) << hlo->ToString(); TF_RET_CHECK(!(hlo->IsElementwise() && hlo->operand_count() == 1)) << hlo->ToString(); return absl::OkStatus(); } absl::Status HandleElementwiseBinary(HloInstruction* hlo) override { TF_RET_CHECK(hlo->IsElementwise() && hlo->operand_count() == 2) << hlo->ToString(); return absl::OkStatus(); } absl::Status HandleElementwiseUnary(HloInstruction* hlo) override { TF_RET_CHECK(hlo->IsElementwise() && hlo->operand_count() == 1) << hlo->ToString(); return absl::OkStatus(); } }; const std::string& hlo_string = R"( HloModule TestModule ENTRY TestComputation { arg = f32[] parameter(0) tuple = (f32[]) tuple(arg) gte = f32[] get-tuple-element(tuple), index=0 abs = f32[] abs(arg) add = f32[] add(arg, gte) broadcast = f32[42] broadcast(add), dimensions={} slice = f32[1] slice(broadcast), slice={[1:2]} copy = f32[] copy(arg) eq = pred[] compare(arg, gte), direction=EQ neg = f32[] negate(arg) ROOT convert = f64[] convert(f32[] arg) })"; std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_string).value(); ElementwiseTestVisitor visitor; TF_EXPECT_OK(module->entry_computation()->Accept(&visitor)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/dfs_hlo_visitor_with_default.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dfs_hlo_visitor_with_default_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ac9dcc13-70b4-4bb8-b8e3-89f9de54e3a5
cpp
tensorflow/tensorflow
nccl_manager
tensorflow/core/nccl/nccl_manager.cc
tensorflow/core/nccl/nccl_manager_test.cc
#include "tensorflow/core/nccl/nccl_manager.h" #include <utility> #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "absl/base/call_once.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/unbounded_work_queue.h" #include "tensorflow/core/profiler/lib/annotated_traceme.h" #include "tensorflow/core/profiler/lib/connected_traceme.h" #include "tensorflow/core/profiler/lib/traceme.h" #if GOOGLE_CUDA #include "xla/stream_executor/gpu/scoped_activate_context.h" #elif TENSORFLOW_USE_ROCM #include "tensorflow/core/platform/rocm.h" #endif namespace tensorflow { using stream_executor::gpu::ScopedActivateContext; #if TENSORFLOW_USE_ROCM #define cudaError_t hipError_t #define cudaStream_t hipStream_t #define cudaGetErrorString hipGetErrorString #define cudaGetDevice hipGetDevice #define cudaSetDevice hipSetDevice #define cudaSuccess hipSuccess int NcclManager::instance_count = 0; #endif #define NCCL_RETURN_IF_ERROR(...) \ do { \ ncclResult_t nccl_status = (__VA_ARGS__); \ if (nccl_status != ncclSuccess) { \ return errors::Internal("NCCL: ", ncclGetErrorString(nccl_status), \ ". Set NCCL_DEBUG=WARN for detail."); \ } \ } while (0) #define CUDA_RETURN_IF_ERROR(...) \ do { \ cudaError_t cuda_status = (__VA_ARGS__); \ if (cuda_status != cudaSuccess) { \ return errors::Internal("CUDA: ", cudaGetErrorString(cuda_status)); \ } \ } while (0) struct NcclManager::NcclStream : public core::RefCounted { public: NcclStream() = default; ~NcclStream() = default; se::StreamExecutor* executor = nullptr; #if TENSORFLOW_USE_ROCM se::Stream* stream = nullptr; #else std::unique_ptr<se::Stream> stream; #endif mutex mu; condition_variable cv; std::deque<std::pair<Collective*, int>> pending_launches_ TF_GUARDED_BY(mu); bool shutdown_requested TF_GUARDED_BY(mu) = false; }; struct NcclManager::CommunicatorMember { public: CommunicatorMember() {} ~CommunicatorMember() { if (nccl_comm != nullptr) ncclCommDestroy(nccl_comm); } ncclComm_t nccl_comm = nullptr; NcclStream* nccl_stream = nullptr; }; struct NcclManager::Communicator { public: explicit Communicator(std::vector<CommunicatorMember> members, const string& key) : num_devices(members.size()), members(std::move(members)), key(key) {} const int num_devices; std::vector<CommunicatorMember> members; const string key; }; namespace { static constexpr DataTypeSet kValidDataTypes = ToSet(DT_HALF) | ToSet(DT_FLOAT) | ToSet(DT_DOUBLE) | ToSet(DT_INT32) | ToSet(DT_INT64); ncclDataType_t ToNcclType(DataType t) { switch (t) { case DT_HALF: return ncclHalf; case DT_FLOAT: return ncclFloat; case DT_DOUBLE: return ncclDouble; case DT_INT32: return ncclInt; case DT_INT64: return ncclInt64; default: return ncclFloat; } } void StringToNcclUniqueId(const string& str_id, ncclUniqueId* nccl_id) { if (str_id.size() == NCCL_UNIQUE_ID_BYTES) { memcpy(nccl_id->internal, str_id.data(), NCCL_UNIQUE_ID_BYTES); } } } struct NcclManager::Collective : public core::RefCounted { Collective(const string& collective_key_in, DataType data_type_in, CollectiveType type_in, ncclRedOp_t reduction_op_in, int num_local_devices_in, int num_global_devices_in, const string& communicator_key_in) : collective_key(collective_key_in), data_type(data_type_in), type(type_in), reduction_op(reduction_op_in), num_local_devices(num_local_devices_in), num_global_devices(num_global_devices_in), single_node(num_local_devices_in == num_global_devices_in), communicator_key(communicator_key_in) { participants.reserve(num_local_devices_in); #if TENSORFLOW_USE_ROCM if (NcclManager::instance_count > 1) { status = errors::Internal( "ROCm cannot use multi-node NCCL collectives on a single node"); } #endif } const string collective_key; const DataType data_type; const CollectiveType type; const ncclRedOp_t reduction_op; const int num_local_devices; const int num_global_devices; const bool single_node; const string communicator_key; Communicator* communicator = nullptr; std::vector<std::unique_ptr<Participant>> participants; int root_rank = -1; int available_participants = 0; bool multi_node_ready = false; uint64 trace_context = 0; Status status; }; NcclManager::NcclManager() { VLOG(2) << "New NcclManager " << this; #if TENSORFLOW_USE_ROCM ++instance_count; #endif } NcclManager::~NcclManager() { VLOG(2) << "~NcclManager " << this; #if TENSORFLOW_USE_ROCM --instance_count; #endif for (auto& it : device_to_comm_streams_) { for (NcclStream* nccl_stream : it.second) { { mutex_lock l(nccl_stream->mu); nccl_stream->shutdown_requested = true; nccl_stream->cv.notify_all(); } nccl_stream->Unref(); } } } NcclManager* NcclManager::instance() { static NcclManager* instance = new NcclManager(); #if TENSORFLOW_USE_ROCM static absl::once_flag once; absl::call_once(once, [] { --NcclManager::instance_count; }); #endif return instance; } string NcclManager::GenerateCommunicatorKey() { ncclUniqueId nccl_id; ncclGetUniqueId(&nccl_id); return string(nccl_id.internal, NCCL_UNIQUE_ID_BYTES); } Status NcclManager::GetCommunicator(NcclManager::Collective* collective, NcclManager::Communicator** communicator) { std::sort(collective->participants.begin(), collective->participants.end(), [](const std::unique_ptr<Participant>& a, const std::unique_ptr<Participant>& b) { if (a->gpu_device_id != b->gpu_device_id) { return a->gpu_device_id < b->gpu_device_id; } if (a->executor != b->executor) { return a->executor < b->executor; } return a->global_rank < b->global_rank; }); mutex_lock l(mu_); if (!status_.ok()) { return status_; } if (collective->communicator_key.empty()) { for (auto& comm : communicators_) { if (comm->num_devices == collective->num_global_devices) { int i; for (i = 0; i < collective->num_local_devices; ++i) { if (comm->members[i].nccl_stream->executor != collective->participants[i]->executor) { break; } } if (i == collective->num_local_devices) { *communicator = comm.get(); return OkStatus(); } } } } else { #if NCCL_MAJOR < 2 return errors::Internal( "Cannot use multi-node NCCL collectives with NCCL 1.x"); #endif if (collective->communicator_key.size() != NCCL_UNIQUE_ID_BYTES) { return errors::Internal("Expected communicator_key of size ", NCCL_UNIQUE_ID_BYTES, " but found size ", collective->communicator_key.size()); } for (auto& comm : communicators_) { if (comm->key == collective->communicator_key) { *communicator = comm.get(); return OkStatus(); } } } auto* env = Env::Default(); std::set<NcclStream*> used_streams; std::vector<CommunicatorMember> members(collective->num_local_devices); std::vector<int> devices(collective->num_local_devices); for (int i = 0; i < collective->num_local_devices; ++i) { auto* executor = collective->participants[i]->executor; auto& streams = device_to_comm_streams_[executor]; NcclStream* nccl_stream = nullptr; for (const auto& s : streams) { if (used_streams.insert(s).second) { nccl_stream = s; break; } } if (nccl_stream == nullptr) { nccl_stream = new NcclStream(); nccl_stream->executor = executor; #if TENSORFLOW_USE_ROCM nccl_stream->stream = collective->participants[i]->context->nccl_stream(); #else TF_ASSIGN_OR_RETURN(auto stream, executor->CreateStream()); nccl_stream->stream = std::move(stream); #endif streams.emplace_back(nccl_stream); used_streams.insert(nccl_stream); nccl_stream->Ref(); env->SchedClosure([this, nccl_stream]() { LoopKernelLaunches(nccl_stream); nccl_stream->Unref(); }); } members[i].nccl_stream = nccl_stream; devices[i] = collective->participants[i]->gpu_device_id; } std::vector<ncclComm_t> nccl_comms(collective->num_local_devices); VLOG(2) << "Created nccl Communicator with " << "num_global_devices = " << collective->num_global_devices << " num_local_devices = " << collective->num_local_devices << " communicator_key =" << absl::StrJoin( std::vector<int>{collective->communicator_key.begin(), collective->communicator_key.end()}, " "); #if NCCL_MAJOR >= 2 ncclUniqueId nccl_id; if (collective->single_node) { NCCL_RETURN_IF_ERROR(ncclGetUniqueId(&nccl_id)); } else { StringToNcclUniqueId(collective->communicator_key, &nccl_id); } int saved_device = 0; CUDA_RETURN_IF_ERROR(cudaGetDevice(&saved_device)); NCCL_RETURN_IF_ERROR(ncclGroupStart()); for (int i = 0; i < collective->num_local_devices; ++i) { const int rank = collective->participants[i]->global_rank >= 0 ? collective->participants[i]->global_rank : i; CUDA_RETURN_IF_ERROR(cudaSetDevice(devices[i])); NCCL_RETURN_IF_ERROR(ncclCommInitRank( nccl_comms.data() + i, collective->num_global_devices, nccl_id, rank)); } NCCL_RETURN_IF_ERROR(ncclGroupEnd()); CUDA_RETURN_IF_ERROR(cudaSetDevice(saved_device)); #else NCCL_RETURN_IF_ERROR(ncclCommInitAll( nccl_comms.data(), collective->num_local_devices, devices.data())); #endif for (int i = 0; i < collective->num_local_devices; ++i) { members[i].nccl_comm = nccl_comms[i]; } communicators_.emplace_back( new Communicator(std::move(members), collective->communicator_key)); *communicator = communicators_.back().get(); return OkStatus(); } void NcclManager::AddToAllReduce(std::unique_ptr<Participant> participant, const Context& context, ncclRedOp_t reduction_op) { AddParticipant(std::move(participant), context, kAllReduce, reduction_op); } void NcclManager::AddToAllGather(std::unique_ptr<Participant> participant, const Context& context) { AddParticipant(std::move(participant), context, kAllGather, ncclSum ); } void NcclManager::AddToReduceScatter(std::unique_ptr<Participant> participant, const Context& context, ncclRedOp_t reduction_op) { AddParticipant(std::move(participant), context, kReduceScatter, reduction_op); } void NcclManager::AddToAllToAll(std::unique_ptr<Participant> participant, const Context& context) { AddParticipant(std::move(participant), context, kAllToAll, ncclSum ); } void NcclManager::AddBroadcastSend(std::unique_ptr<Participant> participant, const Context& context) { participant->root = true; AddParticipant(std::move(participant), context, kBroadcast, ncclSum ); } void NcclManager::AddBroadcastRecv(std::unique_ptr<Participant> participant, const Context& context) { AddParticipant(std::move(participant), context, kBroadcast, ncclSum ); } void NcclManager::AddReduceSend(std::unique_ptr<Participant> participant, const Context& context, ncclRedOp_t reduction_op) { AddParticipant(std::move(participant), context, kReduce, reduction_op); } void NcclManager::AddReduceRecv(std::unique_ptr<Participant> participant, const Context& context, ncclRedOp_t reduction_op) { participant->root = true; AddParticipant(std::move(participant), context, kReduce, reduction_op); } void NcclManager::SignalMultiNodeReady(const string& collective_key) { Collective* to_run = nullptr; { mutex_lock l(mu_); auto collective_it = collectives_.find(collective_key); if (collective_it != collectives_.end()) { Collective* collective = collective_it->second; collective->multi_node_ready = true; if (CheckReady(collective_key, collective)) { to_run = collective; } VLOG(2) << "SignalMultiNodeReady collective " << collective_key << " to_run " << to_run; } } if (to_run != nullptr) RunCollective(to_run); } void NcclManager::AddParticipant(std::unique_ptr<Participant> participant, const Context& context, CollectiveType collective_type, ncclRedOp_t reduction_op) { Collective* to_run = nullptr; DataType data_type; Status nccl_manager_status; if (participant->input != nullptr) { data_type = participant->input->dtype(); } else { data_type = participant->output->dtype(); } { mutex_lock l(mu_); nccl_manager_status = status_; if (nccl_manager_status.ok()) { auto collective_it = collectives_.find(context.collective_key); Collective* collective = nullptr; if (collective_it == collectives_.end()) { collective = new Collective( context.collective_key, data_type, collective_type, reduction_op, context.num_local_devices, context.num_global_devices, context.communicator_key); collectives_.emplace(context.collective_key, collective); } else { collective = collective_it->second; } if (collective->status.ok() && !collective->single_node && collective->communicator_key.empty()) { collective->status = errors::Internal( "Collective ", reduction_op, " is multi node with num_local_devices=", collective->num_local_devices, " and num_global_devices=", collective->num_global_devices, " but has an empty communicator_key"); } if (collective->status.ok() && collective->communicator_key.size() != context.communicator_key.size()) { collective->status = errors::Internal("Collective ", reduction_op, " mismatch in member communicator_key with size ", collective->communicator_key.size(), " and arg communicator_key with size ", context.communicator_key.size()); } if (collective->status.ok() && collective->type != collective_type) { collective->status = errors::Internal( "Collective ", reduction_op, " previously initialized with type ", collective->type, " but now got type ", collective_type); } if (collective->status.ok() && collective->num_global_devices != context.num_global_devices) { collective->status = errors::Internal("Collective ", reduction_op, " previously initialized with num_global_devices ", collective->num_global_devices, " but now got ", context.num_global_devices); } if (collective->status.ok() && collective->num_local_devices != context.num_local_devices) { collective->status = errors::Internal("Collective ", reduction_op, "previously initialized with num_local_devices ", collective->num_local_devices, " but now got ", context.num_local_devices); } if (collective->status.ok() && collective->participants.size() >= collective->num_local_devices) { collective->status = errors::Internal( "Collective ", reduction_op, " expected ", collective->num_local_devices, " participants but now has ", collective->participants.size(), " with one more participant being added"); } if (collective->status.ok() && collective->root_rank >= 0 && context.source_rank >= 0 && collective->root_rank != context.source_rank) { collective->status = errors::Internal( "Collective ", collective->collective_key, " already has root_rank ", collective->root_rank, " but new participant has root_rank ", context.source_rank); } if (collective->status.ok() && !kValidDataTypes.Contains(collective->data_type)) { collective->status = errors::Internal( "Collective ", collective->collective_key, " expected data types compatible with NCCL but instead got ", DataTypeString(collective->data_type)); } if (context.source_rank >= 0) { collective->root_rank = context.source_rank; } collective->participants.emplace_back(std::move(participant)); ++collective->available_participants; if (CheckReady(context.collective_key, collective)) { to_run = collective; } } } if (!nccl_manager_status.ok()) { participant->done_callback(nccl_manager_status); return; } if (to_run != nullptr) RunCollective(to_run); } bool NcclManager::CheckReady(const string& collective_key, Collective* collective) { if (collective->available_participants == collective->num_local_devices) { if (collective->num_global_devices == collective->num_local_devices || collective->multi_node_ready) { collectives_.erase(collective_key); return true; } } return false; } void NcclManager::RunCollective(Collective* collective) { tensorflow::profiler::TraceMeProducer traceme("Schedule Collective"); collective->trace_context = traceme.GetContextId(); static mutex collective_mu(LINKER_INITIALIZED); Status status = collective->status; if (status.ok()) { status = GetCommunicator(collective, &collective->communicator); } for (int i = 0; status.ok() && i < collective->num_local_devices; ++i) { Participant* p = collective->participants[i].get(); NcclStream* nccl_stream = collective->communicator->members[i].nccl_stream; CHECK(nccl_stream != nullptr); const int rank = p->global_rank >= 0 ? p->global_rank : i; if (p->input != nullptr) { status = nccl_stream->stream->WaitFor(p->tensor_stream); } if (p->root) { if (collective->root_rank == -1) { collective->root_rank = rank; } else if (collective->root_rank != rank) { status = errors::Internal( "Inconsistent root rank ", collective->root_rank, " and GPU id ", p->gpu_device_id, " rank ", rank, " also marked as root."); } } VLOG(2) << "RunCollective rank " << rank << " global_rank " << p->global_rank << " root_rank " << collective->root_rank; } if (status.ok() && collective->type == kBroadcast && collective->root_rank < 0) { status = errors::Internal("Root rank not indicated for collective ", collective->collective_key); } if (!status.ok()) { for (int i = 0; i < collective->num_local_devices; ++i) { collective->participants[i]->done_callback(status); } collective->Unref(); return; } { mutex_lock l(collective_mu); for (int i = 0; i < collective->num_local_devices; ++i) { NcclStream* nccl_stream = collective->communicator->members[i].nccl_stream; mutex_lock l(nccl_stream->mu); nccl_stream->pending_launches_.push_front(std::make_pair(collective, i)); collective->Ref(); nccl_stream->cv.notify_all(); } } collective->Unref(); } namespace { size_t ComputeBufferSize(const NcclManager::Participant* p, DataType data_type) { size_t num_elements = 0; if (p->output) { num_elements += p->output->NumElements(); } else if (p->input) { num_elements += p->input->NumElements(); } return num_elements * DataTypeSize(data_type); } } void NcclManager::LoopKernelLaunches(NcclStream* nccl_stream) { #if TENSORFLOW_USE_ROCM se::Stream* comm_stream = nccl_stream->stream; #else se::Stream* comm_stream = nccl_stream->stream.get(); #endif ScopedActivateContext scoped_context(nccl_stream->executor); cudaStream_t cu_stream = reinterpret_cast<cudaStream_t>( comm_stream->platform_specific_handle().stream); while (true) { std::pair<Collective*, int> next_launch; { VLOG(3) << "Locking mutex nccl_stream " << nccl_stream; mutex_lock l(nccl_stream->mu); while (nccl_stream->pending_launches_.empty()) { if (nccl_stream->shutdown_requested) { return; } nccl_stream->cv.wait(l); } next_launch = nccl_stream->pending_launches_.back(); nccl_stream->pending_launches_.pop_back(); } Collective* collective = next_launch.first; tensorflow::profiler::TraceMeConsumer traceme("Run Collective", collective->trace_context); ncclDataType_t data_type = ToNcclType(collective->data_type); int p_idx = next_launch.second; Participant* p = collective->participants[p_idx].get(); auto nccl_comm = collective->communicator->members[p_idx].nccl_comm; ncclResult_t nccl_result = ncclSuccess; switch (collective->type) { case kAllReduce: { const void* sendbuff = p->input->tensor_data().data(); void* recvbuff = const_cast<char*>(p->output->tensor_data().data()); VLOG(2) << "call NcclAllReduce collective_key " << collective->collective_key << " participant " << p_idx << " num_participants " << collective->participants.size() << " sendbuff " << sendbuff << " recvbuff " << recvbuff << " nccl_comm " << nccl_comm << " comm_stream " << comm_stream << " cuda_stream " << cu_stream; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "ncclAllReduce", {{"buffer_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "all_reduce"}}); }); nccl_result = ncclAllReduce(sendbuff, recvbuff, p->input->NumElements(), data_type, collective->reduction_op, nccl_comm, cu_stream); break; } case kBroadcast: { const void* sendbuff = nullptr; void* recvbuff = nullptr; int num_elements = -1; if (p->input) { sendbuff = p->input->tensor_data().data(); num_elements = p->input->NumElements(); } if (p->output) { recvbuff = const_cast<char*>(p->output->tensor_data().data()); num_elements = p->output->NumElements(); } else { recvbuff = const_cast<void*>(sendbuff); } if (num_elements < 0) { p->done_callback(errors::Internal( "Both input and output are null in ncclBroadcast")); collective->Unref(); continue; } VLOG(2) << "call NcclBroadcast collective_key " << collective->collective_key << " participant " << p_idx << " sendbuff " << sendbuff << " recvbuff " << recvbuff << " nccl_comm " << nccl_comm << " comm_stream " << comm_stream << " cuda_stream " << cu_stream; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "ncclBroadcast", {{"buffer_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "broadcast"}}); }); nccl_result = ncclBroadcast(sendbuff, recvbuff, num_elements, data_type, collective->root_rank, nccl_comm, cu_stream); break; } case kReduce: { const void* sendbuff = p->input->tensor_data().data(); void* recvbuff = p->output ? const_cast<char*>(p->output->tensor_data().data()) : nullptr; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "buffer_size", {{"output_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "reduce"}}); }); nccl_result = ncclReduce(sendbuff, recvbuff, p->input->NumElements(), data_type, collective->reduction_op, collective->root_rank, nccl_comm, cu_stream); break; } case kAllGather: { const void* sendbuff = p->input->tensor_data().data(); void* recvbuff = const_cast<char*>(p->output->tensor_data().data()); VLOG(2) << "call NcclAllGather collective_key " << collective->collective_key << " participant " << p_idx << " sendbuff " << sendbuff << " sendcount " << p->input->NumElements() << " recvbuff " << recvbuff << " recvcount " << p->output->NumElements() << " nccl_comm " << nccl_comm << " comm_stream " << comm_stream << " cuda_stream " << cu_stream; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "ncclAllGather", {{"buffer_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "all_gather"}}); }); nccl_result = ncclAllGather(sendbuff, recvbuff, p->input->NumElements(), data_type, nccl_comm, cu_stream); break; } case kReduceScatter: { const void* sendbuff = p->input->tensor_data().data(); void* recvbuff = const_cast<char*>(p->output->tensor_data().data()); VLOG(2) << "call NcclReduceScatter collective_key " << collective->collective_key << " participant " << p_idx << " num_participants " << collective->participants.size() << " sendbuff " << sendbuff << " recvbuff " << recvbuff << " nccl_comm " << nccl_comm << " comm_stream " << comm_stream << " cuda_stream " << cu_stream; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "ncclReduceScatter", {{"buffer_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "reduce_scatter"}}); }); nccl_result = ncclReduceScatter( sendbuff, recvbuff, p->output->NumElements(), data_type, collective->reduction_op, nccl_comm, cu_stream); break; } case kAllToAll: { const char* sendbuff = p->input->tensor_data().data(); char* recvbuff = const_cast<char*>(p->output->tensor_data().data()); size_t count = p->input->NumElements() / collective->participants.size(); size_t rank_offset = count * DataTypeSize(collective->data_type); VLOG(2) << "call Nccl All to All collective_key " << collective->collective_key << " participant " << p_idx << " num_participants " << collective->participants.size() << " sendbuff " << static_cast<const void*>(sendbuff) << " recvbuff " << static_cast<void*>(recvbuff) << " nccl_comm " << nccl_comm << " comm_stream " << comm_stream << " cuda_stream " << cu_stream; profiler::AnnotatedTraceMe traceme([&] { return profiler::TraceMeEncode( "ncclAllToAll", {{"buffer_size", ComputeBufferSize(p, collective->data_type)}, {"collective_type", "all_to_all"}}); }); ncclGroupStart(); for (int i = 0; i < collective->participants.size(); ++i) { ncclSend(sendbuff + i * rank_offset, count, data_type, collective->participants[i]->global_rank, nccl_comm, cu_stream); ncclRecv(recvbuff + i * rank_offset, count, data_type, collective->participants[i]->global_rank, nccl_comm, cu_stream); } nccl_result = ncclGroupEnd(); break; } } auto done_callback = [collective, p_idx, nccl_result]() { VLOG(2) << "done Nccl kernel collective_key " << collective->collective_key << " participant " << p_idx << " ncclResult " << nccl_result; if (nccl_result == ncclSuccess) { collective->participants[p_idx]->done_callback(OkStatus()); } else { collective->participants[p_idx]->done_callback(errors::Unknown( "Error invoking NCCL: ", ncclGetErrorString(nccl_result))); } collective->Unref(); }; p->event_mgr->ThenExecute(comm_stream, done_callback); } } void NcclManager::StartAbort(const Status& s) { absl::flat_hash_map<string, Collective*> collectives; std::vector<std::unique_ptr<Communicator>> communicators; { mutex_lock l(mu_); if (!status_.ok()) { LOG(WARNING) << "NcclManager already aborted, ignoring subsequent StartAbort with " << s; return; } status_ = s; collectives.swap(collectives_); communicators.swap(communicators_); } VLOG(2) << "Aborted NcclManager " << this << " with " << collectives.size() << " collectives and " << communicators.size() << " comms with status " << s; for (const auto& item : collectives) { for (const std::unique_ptr<Participant>& p : item.second->participants) { p->done_callback(s); } item.second->Unref(); } UnboundedWorkQueue queue(Env::Default(), "nccl_abort"); int num_comms = 0; for (std::unique_ptr<Communicator>& communicator : communicators) { num_comms += communicator->members.size(); } BlockingCounter pending(num_comms); for (std::unique_ptr<Communicator>& communicator : communicators) { for (CommunicatorMember& member : communicator->members) { queue.Schedule([&member, &pending]() { ncclCommAbort(member.nccl_comm); member.nccl_comm = nullptr; pending.DecrementCount(); }); } } pending.Wait(); } void NcclManager::Reset() { mutex_lock l(mu_); status_ = Status(); VLOG(2) << "Reset NcclManager " << this; } } #endif
#include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include <algorithm> #include <random> #include <vector> #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/gpu/gpu_device.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/nccl/nccl_manager.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/unbounded_work_queue.h" namespace tensorflow { static std::vector<std::unique_ptr<BaseGPUDevice>> GetGPUDevices() { std::vector<std::unique_ptr<Device>> devices; TF_CHECK_OK(DeviceFactory::GetFactory(DEVICE_GPU) ->AddDevices(SessionOptions(), "", &devices)); std::vector<std::unique_ptr<BaseGPUDevice>> gpus; for (std::unique_ptr<Device>& device : devices) { if (device->device_type() == "GPU") { gpus.emplace_back(static_cast<BaseGPUDevice*>(device.release())); } } return gpus; } template <typename Scalar> class NcclManagerTest : public ::testing::Test { public: struct TestCase { TestCase(int num_nodes, int num_ranks_per_node) : num_nodes(num_nodes), num_ranks_per_node(num_ranks_per_node) {} std::vector<Tensor> ins; std::vector<Tensor> outs; Tensor expected; const int num_nodes; const int num_ranks_per_node; mutex mu; Status final_status; int num_completed TF_GUARDED_BY(mu) = 0; condition_variable done_cv; }; static void SetUpTestSuite() { setenv("NCCL_DEBUG", "INFO", 1 ); setenv("NCCL_LAUNCH_MODE", "PARALLEL", 1 ); devices_ = new std::vector<std::unique_ptr<BaseGPUDevice>>(GetGPUDevices()); VLOG(1) << "Running test with " << devices_->size() << " gpus"; if (devices_->size() <= 1) { LOG(FATAL) << "Cannot run NCCL test without multiple GPUs"; } work_queue_ = new UnboundedWorkQueue(Env::Default(), "nccl_manager_test"); } void SetUp() override { ASSERT_GT(devices_->size(), 0) << "No GPUs found"; ASSERT_NE(work_queue_, nullptr); } static int32 NumGPUs() { return static_cast<int32>(devices_->size()); } static void PopulateMultiNodeParams(int* num_nodes, int* num_ranks_per_node) { const auto num_gpus = NumGPUs(); CHECK_GT(num_gpus, 1); *num_nodes = 2; if (num_gpus % 2 == 0) { *num_ranks_per_node = num_gpus / 2; } else { *num_ranks_per_node = (num_gpus - 1) / 2; } } static void TearDownTestSuite() { delete devices_; delete work_queue_; } TestCase* MakeReductionTestCase(int num_nodes, int num_ranks_per_node, ncclRedOp_t reduction_op, TensorShape shape, float value_offset) { TestCase* test_case = new TestCase(num_nodes, num_ranks_per_node); test_case->expected = Tensor(data_type_, shape); if (reduction_op == ncclProd) { test::FillFn<Scalar>(&test_case->expected, [](int) { return static_cast<Scalar>(1); }); } else if (reduction_op == ncclSum) { test::FillFn<Scalar>(&test_case->expected, [](int) { return static_cast<Scalar>(0); }); } else if (reduction_op == ncclMax) { test::FillFn<Scalar>(&test_case->expected, [](int) { return -max_; }); } else if (reduction_op == ncclMin) { test::FillFn<Scalar>(&test_case->expected, [](int) { return max_; }); } else { LOG(FATAL) << "Invalid reduction_op " << reduction_op; } float value_scale = 0.01; for (int node = 0; node < num_nodes; ++node) { for (int local_rank = 0; local_rank < num_ranks_per_node; ++local_rank) { auto* device = GetDevice(num_ranks_per_node, node, local_rank); auto* stream = device->tensorflow_accelerator_device_info()->stream; Tensor in_cpu(data_type_, shape); test::FillFn<Scalar>(&in_cpu, [&](int index) { return static_cast<Scalar>((index + 1) * value_scale + value_offset); }); for (int j = 0; j < shape.num_elements(); ++j) { auto in_val = in_cpu.flat<Scalar>()(j); auto out_expr = test_case->expected.template flat<Scalar>(); if (reduction_op == ncclProd) { out_expr(j) = out_expr(j) * in_val; } else if (reduction_op == ncclSum) { out_expr(j) = out_expr(j) + in_val; } else if (reduction_op == ncclMax) { if (in_val > out_expr(j)) { out_expr(j) = in_val; } } else if (reduction_op == ncclMin) { if (in_val < out_expr(j)) { out_expr(j) = in_val; } } } value_scale *= 10; test_case->ins.emplace_back(GpuAllocator(device), data_type_, shape); test_case->outs.emplace_back(GpuAllocator(device), data_type_, shape); const Tensor& in_gpu = test_case->ins.back(); auto in_gpu_mem = AsDeviceMemory(in_gpu.flat<Scalar>().data()); TF_CHECK_OK(stream->Memcpy(&in_gpu_mem, in_cpu.flat<Scalar>().data(), in_cpu.TotalBytes())); } } return test_case; } TestCase* MakeGatherTestCase(int num_nodes, int num_ranks_per_node, TensorShape in_shape, TensorShape out_shape) { TestCase* test_case = new TestCase(num_nodes, num_ranks_per_node); test_case->expected = Tensor(data_type_, out_shape); test::FillFn<Scalar>(&test_case->expected, [](int) { return static_cast<Scalar>(0); }); float value_scale = 0.01; for (int node = 0; node < num_nodes; ++node) { for (int i = 0; i < num_ranks_per_node; ++i) { auto* device = GetDevice(num_ranks_per_node, node, i); auto* stream = device->tensorflow_accelerator_device_info()->stream; Tensor in_cpu(data_type_, in_shape); test::FillFn<Scalar>(&in_cpu, [&](int index) { return static_cast<Scalar>((index + 1) * value_scale); }); int32_t gather_idx = (node * num_ranks_per_node + i) * in_shape.num_elements(); for (int j = 0; j < in_shape.num_elements(); ++j) { auto in_val = in_cpu.flat<Scalar>()(j); auto out_expr = test_case->expected.template flat<Scalar>(); out_expr(gather_idx + j) = in_val; } value_scale *= 10; test_case->ins.emplace_back(GpuAllocator(device), data_type_, in_shape); test_case->outs.emplace_back(GpuAllocator(device), data_type_, out_shape); const Tensor& in_gpu = test_case->ins.back(); auto in_gpu_mem = AsDeviceMemory(in_gpu.flat<Scalar>().data()); TF_CHECK_OK(stream->Memcpy(&in_gpu_mem, in_cpu.flat<Scalar>().data(), in_cpu.TotalBytes())); } } return test_case; } TestCase* MakeBroadcastTestCase(int num_nodes, int num_ranks_per_node, TensorShape shape, int src_node, int src_rank, bool in_place) { TestCase* test_case = new TestCase(num_nodes, num_ranks_per_node); test_case->expected = Tensor(data_type_, shape); test::FillFn<Scalar>(&test_case->expected, [](int) { return static_cast<Scalar>(1); }); for (int node = 0; node < num_nodes; ++node) { for (int local_rank = 0; local_rank < num_ranks_per_node; ++local_rank) { auto* device = GetDevice(num_ranks_per_node, node, local_rank); if (node == src_node && local_rank == src_rank) { test_case->ins.emplace_back(GpuAllocator(device), data_type_, shape); if (in_place) { test_case->outs.emplace_back(test_case->ins.back()); } else { test_case->outs.emplace_back(GpuAllocator(device), data_type_, shape); } Tensor in_cpu(data_type_, shape); test::FillFn<Scalar>(&in_cpu, [](int) { return static_cast<Scalar>(1); }); const Tensor& in_gpu = test_case->ins.back(); auto in_gpu_mem = AsDeviceMemory(in_gpu.flat<Scalar>().data()); auto* stream = device->tensorflow_accelerator_device_info()->stream; TF_CHECK_OK(stream->Memcpy(&in_gpu_mem, in_cpu.flat<Scalar>().data(), in_cpu.TotalBytes())); } else { test_case->ins.emplace_back(Tensor()); test_case->outs.emplace_back(GpuAllocator(device), data_type_, shape); } } } return test_case; } void WaitForTestCompletion(TestCase* test_case) { mutex_lock l(test_case->mu); while (test_case->num_completed != test_case->outs.size()) { test_case->done_cv.wait(l); } } void VerifyResults(TestCase* test_case) { WaitForTestCompletion(test_case); TF_ASSERT_OK(test_case->final_status); for (int node = 0; node < test_case->num_nodes; ++node) { for (int local_rank = 0; local_rank < test_case->num_ranks_per_node; ++local_rank) { auto* device = GetDevice(test_case->num_ranks_per_node, node, local_rank); auto* stream = device->tensorflow_accelerator_device_info()->stream; const int global_rank = GlobalRank(test_case->num_ranks_per_node, node, local_rank); const Tensor& out_gpu = test_case->outs[global_rank]; Tensor out_cpu(data_type_, out_gpu.shape()); auto out_gpu_mem = AsDeviceMemory(out_gpu.flat<Scalar>().data()); TF_CHECK_OK(stream->Memcpy(out_cpu.flat<Scalar>().data(), out_gpu_mem, out_cpu.TotalBytes())); TF_ASSERT_OK(stream->BlockHostUntilDone()); VLOG(1) << "Verifying rank " << global_rank << " expected shape " << test_case->expected.shape() << " out shape " << out_cpu.shape(); test::ExpectClose(test_case->expected, out_cpu); } } } void VerifyError(TestCase* test_case) { WaitForTestCompletion(test_case); LOG(INFO) << test_case->final_status; EXPECT_EQ(test_case->final_status.code(), error::INTERNAL); } NcclManager::DoneCallback CreateDoneCallback(TestCase* test_case) { return [this, test_case](Status s) { mutex_lock l(test_case->mu); test_case->final_status.Update(s); if (++test_case->num_completed == test_case->outs.size()) { test_case->done_cv.notify_one(); } }; } struct NodeState { NcclManager nccl_manager; std::atomic<int> launched{0}; }; void RunMultiNodeAllReduceTest(const int num_nodes, const int num_ranks_per_node) { std::vector<NodeState> node_states(num_nodes); RunMultiNodeAllReduceTest(node_states, num_ranks_per_node); } void RunMultiNodeAllReduceTest(std::vector<NodeState>& node_states, const int num_ranks_per_node) { const int num_nodes = node_states.size(); const int num_global_ranks = num_nodes * num_ranks_per_node; const string collective_key = "allreduce"; const string communicator_key = node_states[0].nccl_manager.GenerateCommunicatorKey(); for (int op = 0; op < 4; ++op) { ncclRedOp_t reduction_op = static_cast<ncclRedOp_t>(op); std::unique_ptr<TestCase> test_case( this->MakeReductionTestCase(num_nodes, num_ranks_per_node, reduction_op, TensorShape({2, 3}), 0.0f)); for (int node = 0; node < num_nodes; ++node) { auto node_fn = [this, node, num_ranks_per_node, num_global_ranks, &node_states, &communicator_key, &collective_key, reduction_op, &test_case] { for (int local_rank = 0; local_rank < num_ranks_per_node; ++local_rank) { auto* device = GetDevice(num_ranks_per_node, node, local_rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; const int global_rank = GlobalRank(num_ranks_per_node, node, local_rank); auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[global_rank], &test_case->outs[global_rank], global_rank, this->CreateDoneCallback(test_case.get())); node_states[node].nccl_manager.AddToAllReduce( std::move(participant), {collective_key, num_ranks_per_node, num_global_ranks, communicator_key, -1}, reduction_op); VLOG(1) << "AddToAllReduce node " << node << " global_rank " << global_rank; } node_states[node].nccl_manager.SignalMultiNodeReady(collective_key); }; this->work_queue_->Schedule(node_fn); } VLOG(2) << "Verifying results"; this->VerifyResults(test_case.get()); } } void RunMultiNodeBroadcastTest(const int num_nodes, const int num_ranks_per_node, const int src_node, const int src_local_rank, const bool in_place) { const int num_global_ranks = num_nodes * num_ranks_per_node; const int src_global_rank = src_node * num_ranks_per_node + src_local_rank; const string collective_key = "broadcast"; std::vector<NodeState> node_states(num_nodes); const string communicator_key = node_states[0].nccl_manager.GenerateCommunicatorKey(); std::unique_ptr<TestCase> test_case(this->MakeBroadcastTestCase( num_nodes, num_ranks_per_node, TensorShape({5, 6}), src_node, src_local_rank, in_place)); for (int node = 0; node < num_nodes; ++node) { for (int local_rank = 0; local_rank < num_ranks_per_node; ++local_rank) { auto rank_fn = [this, node, num_ranks_per_node, num_global_ranks, src_global_rank, local_rank, &node_states, &collective_key, &communicator_key, &test_case]() { auto* device = GetDevice(num_ranks_per_node, node, local_rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; const int global_rank = GlobalRank(num_ranks_per_node, node, local_rank); auto* input = global_rank == src_global_rank ? &test_case->ins[global_rank] : nullptr; auto* output = test_case->outs[global_rank].NumElements() == 0 ? nullptr : &test_case->outs[global_rank]; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, input, output, global_rank, this->CreateDoneCallback(test_case.get())); if (global_rank == src_global_rank) { node_states[node].nccl_manager.AddBroadcastSend( std::move(participant), {collective_key, num_ranks_per_node, num_global_ranks, communicator_key, src_global_rank}); } else { node_states[node].nccl_manager.AddBroadcastRecv( std::move(participant), {collective_key, num_ranks_per_node, num_global_ranks, communicator_key, src_global_rank}); } if (++node_states[node].launched == num_ranks_per_node) { node_states[node].nccl_manager.SignalMultiNodeReady(collective_key); } }; this->work_queue_->Schedule(std::move(rank_fn)); } } VLOG(2) << "Verifying results"; this->VerifyResults(test_case.get()); } static int GlobalRank(int num_ranks_per_node, int node, int local_rank) { return node * num_ranks_per_node + local_rank; } static BaseGPUDevice* GetDevice(int num_ranks_per_node, int node, int local_rank) { const int device_idx = GlobalRank(num_ranks_per_node, node, local_rank); CHECK_LT(device_idx, devices_->size()); return (*devices_)[device_idx].get(); } static UnboundedWorkQueue* work_queue_; private: static Allocator* GpuAllocator(BaseGPUDevice* device) { return device->GetAllocator(AllocatorAttributes()); } static se::DeviceMemory<Scalar> AsDeviceMemory(const Scalar* cuda_memory) { se::DeviceMemoryBase wrapped(const_cast<Scalar*>(cuda_memory)); se::DeviceMemory<Scalar> typed(wrapped); return typed; } static std::vector<std::unique_ptr<BaseGPUDevice>>* devices_; static const DataType data_type_; static const Scalar max_; }; template <typename Scalar> std::vector<std::unique_ptr<BaseGPUDevice>>* NcclManagerTest<Scalar>::devices_ = nullptr; template <typename Scalar> const DataType NcclManagerTest<Scalar>::data_type_ = DataTypeToEnum<Scalar>::value; template <typename Scalar> const Scalar NcclManagerTest<Scalar>::max_ = Eigen::NumTraits<Scalar>::highest(); template <typename Scalar> UnboundedWorkQueue* NcclManagerTest<Scalar>::work_queue_ = nullptr; using TypeList = ::testing::Types<float, double>; TYPED_TEST_SUITE(NcclManagerTest, TypeList); TYPED_TEST(NcclManagerTest, BasicSumReduction) { const int num_ranks = this->NumGPUs(); for (int op = 0; op < 4; ++op) { ncclRedOp_t reduction_op = static_cast<ncclRedOp_t>(op); std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase(1, num_ranks, reduction_op, TensorShape({2, 3}), 0.0f)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); VLOG(2) << "rank " << rank << " device " << device->name(); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], -1, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddToAllReduce( std::move(participant), {"allreduce", num_ranks, num_ranks, "", -1}, reduction_op); } LOG(INFO) << "Verifying results"; this->VerifyResults(test_case.get()); } } TYPED_TEST(NcclManagerTest, MultipleCallers) { const int num_ranks = this->NumGPUs(); const int num_collectives_per_iteration = 10; const int time_limit_micros = 1 * 1000 * 1000; int64_t start = Env::Default()->NowMicros(); srand(Env::Default()->NowMicros()); for (;;) { std::vector<std::pair<int, int>> case_and_rank; std::vector<std::unique_ptr<typename TestFixture::TestCase>> test_cases; for (int i = 0; i < num_collectives_per_iteration; ++i) { test_cases.emplace_back(this->MakeReductionTestCase( 1, num_ranks, ncclSum, TensorShape({100, i % 5 + 1, i % 3 + 1}), 1.1f * i)); for (int j = 0; j < num_ranks; ++j) { case_and_rank.emplace_back(i, j); } } for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* stream = device->tensorflow_accelerator_device_info()->stream; TF_ASSERT_OK(stream->BlockHostUntilDone()); } std::shuffle(case_and_rank.begin(), case_and_rank.end(), std::mt19937(std::random_device()())); mutex mu; const int to_schedule = case_and_rank.size(); for (int i = 0; i < to_schedule; ++i) { auto fn = [&]() { int rank; int test_num; { mutex_lock l(mu); test_num = case_and_rank.back().first; rank = case_and_rank.back().second; case_and_rank.pop_back(); } auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; typename TestFixture::TestCase* test_case = test_cases[test_num].get(); auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], -1, this->CreateDoneCallback(test_case)); NcclManager::instance()->AddToAllReduce( std::move(participant), {strings::StrCat("allreduce", test_num), num_ranks, num_ranks, "", -1}, ncclSum); }; this->work_queue_->Schedule(fn); } VLOG(2) << "Verifying results for " << num_collectives_per_iteration << " collectives"; for (int i = 0; i < test_cases.size(); ++i) { this->VerifyResults(test_cases[i].get()); } int64_t delta = Env::Default()->NowMicros() - start; if (delta > time_limit_micros) { LOG(INFO) << "Ran for " << delta << " microsecs, now quitting"; break; } } } TYPED_TEST(NcclManagerTest, BasicAllGather) { const int num_ranks = this->NumGPUs(); for (int i = 0; i < num_ranks; ++i) { std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeGatherTestCase(1, num_ranks, TensorShape({2, 3}), TensorShape({2 * num_ranks, 3}))); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); VLOG(2) << "rank " << rank << " device " << device->name(); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], rank, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddToAllGather( std::move(participant), {"allgather", num_ranks, num_ranks, "", -1}); } LOG(INFO) << "Verifying results"; this->VerifyResults(test_case.get()); } } TYPED_TEST(NcclManagerTest, BasicBroadcast) { this->RunMultiNodeBroadcastTest(1, this->NumGPUs(), 0, 0, false); } TYPED_TEST(NcclManagerTest, InPlaceBroadcast) { this->RunMultiNodeBroadcastTest(1, this->NumGPUs(), 0, 0, true); } TYPED_TEST(NcclManagerTest, BroadcastWithDifferentRanks) { for (int num_ranks = 1; num_ranks <= this->NumGPUs(); ++num_ranks) { const int src_rank = static_cast<int>(random::New64() % num_ranks); for (int in_place_idx = 0; in_place_idx <= 1; ++in_place_idx) { const bool in_place = in_place_idx == 0; this->RunMultiNodeBroadcastTest(1, num_ranks, 0, src_rank, in_place); } } } TEST(NcclManagerTest, CommunicatorKey) { const string communicator_key = NcclManager::instance()->GenerateCommunicatorKey(); EXPECT_EQ(communicator_key.size(), NCCL_UNIQUE_ID_BYTES); } #if !TENSORFLOW_USE_ROCM TYPED_TEST(NcclManagerTest, MultiNode) { int num_nodes; int num_ranks_per_node; this->PopulateMultiNodeParams(&num_nodes, &num_ranks_per_node); VLOG(1) << "Calling RunMultiNodeAllReduceTest with num_nodes=" << num_nodes << " and num_ranks_per_node=" << num_ranks_per_node; this->RunMultiNodeAllReduceTest(num_nodes, num_ranks_per_node); } #endif TYPED_TEST(NcclManagerTest, MultiNodeSingle) { this->RunMultiNodeAllReduceTest(1, this->NumGPUs()); } #if !TENSORFLOW_USE_ROCM TYPED_TEST(NcclManagerTest, MultiNodeBroadcast) { int num_nodes; int num_ranks_per_node; this->PopulateMultiNodeParams(&num_nodes, &num_ranks_per_node); VLOG(1) << "Calling RunMultiNodeBroadcastTest with num_nodes=" << num_nodes << " and num_ranks_per_node=" << num_ranks_per_node; this->RunMultiNodeBroadcastTest(num_nodes, num_ranks_per_node, 0, 0, true); } #endif TYPED_TEST(NcclManagerTest, ConsistentCollectiveType) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase(1, num_ranks, ncclSum, TensorShape({2, 3}), 0.0f)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], -1, this->CreateDoneCallback(test_case.get())); if (rank == 0) { NcclManager::instance()->AddToAllReduce(std::move(participant), {"bad_coll_type", num_ranks, num_ranks, "", -1}, ncclSum); } else { NcclManager::instance()->AddBroadcastSend( std::move(participant), {"bad_coll_type", num_ranks, num_ranks, "", -1}); } } this->VerifyError(test_case.get()); } TYPED_TEST(NcclManagerTest, ConsistentCommunicatorKey) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase(1, num_ranks, ncclSum, TensorShape({2, 3}), 0.0f)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], -1, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddToAllReduce( std::move(participant), {"bad_coll_type", num_ranks, num_ranks, rank == 0 ? "" : NcclManager::instance()->GenerateCommunicatorKey(), -1}, ncclSum); } this->VerifyError(test_case.get()); } TYPED_TEST(NcclManagerTest, ConsistentNumberOfDevices) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase(1, num_ranks, ncclSum, TensorShape({2, 3}), 0.0f)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; int num_devices = rank == 0 ? num_ranks : num_ranks + 1; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[rank], &test_case->outs[rank], -1, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddToAllReduce(std::move(participant), {"bad_coll_type", num_devices, num_devices, "", -1}, ncclSum); } this->VerifyError(test_case.get()); } TYPED_TEST(NcclManagerTest, BroadcastNoSource) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeBroadcastTestCase(1, num_ranks, TensorShape({2, 3}), -1, -1, false)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, nullptr, &test_case->outs[rank], rank, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddBroadcastRecv(std::move(participant), {"bcast_no_send", num_ranks, num_ranks, "", -1}); } this->VerifyError(test_case.get()); } TYPED_TEST(NcclManagerTest, BroadcastMultipleSends) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeBroadcastTestCase(1, num_ranks, TensorShape({2, 3}), -1, -1, false)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->outs[rank], &test_case->outs[rank], rank, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddBroadcastSend(std::move(participant), {"bcast_multiple_send", num_ranks, num_ranks, "", -1}); } this->VerifyError(test_case.get()); } TYPED_TEST(NcclManagerTest, BroadcastInconsistentSource) { const int num_ranks = 2; std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeBroadcastTestCase(1, num_ranks, TensorShape({2, 3}), -1, -1, false)); for (int rank = 0; rank < num_ranks; ++rank) { auto* device = this->GetDevice(num_ranks, 0, rank); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->outs[rank], &test_case->outs[rank], rank, this->CreateDoneCallback(test_case.get())); NcclManager::instance()->AddBroadcastRecv(std::move(participant), {"bcast_inconsistent_source", num_ranks, num_ranks, "", rank}); } this->VerifyError(test_case.get()); } #if !TENSORFLOW_USE_ROCM TYPED_TEST(NcclManagerTest, AbortThenReset) { using NodeState = typename TestFixture::NodeState; using TestCase = typename TestFixture::TestCase; const int num_nodes = 2; std::vector<NodeState> nodes(num_nodes); this->RunMultiNodeAllReduceTest(nodes, 1); const string collective_key = "allreduce"; ncclRedOp_t reduction_op = static_cast<ncclRedOp_t>(0); auto node_fn = [&](TestCase* test_case, int node, const string& communicator_key) { auto* device = this->GetDevice( 1, node, 0); auto* info = device->tensorflow_accelerator_device_info(); auto* stream = device->tensorflow_accelerator_device_info()->stream; auto participant = absl::make_unique<NcclManager::Participant>( device->executor(), stream, info, &test_case->ins[node], &test_case->outs[node], node, this->CreateDoneCallback(test_case)); nodes[node].nccl_manager.AddToAllReduce( std::move(participant), {collective_key, 1, num_nodes, communicator_key, -1}, reduction_op); nodes[node].nccl_manager.SignalMultiNodeReady(collective_key); }; string communicator_key = nodes[0].nccl_manager.GenerateCommunicatorKey(); { std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase( num_nodes, 1, reduction_op, TensorShape({2, 3}), 0.0f)); for (int i = 0; i < num_nodes; ++i) { this->work_queue_->Schedule( [&node_fn, &test_case, i, communicator_key]() { node_fn(test_case.get(), i, communicator_key); }); } this->VerifyResults(test_case.get()); } ASSERT_GT(num_nodes, 1); std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase( num_nodes, 1, reduction_op, TensorShape({2, 3}), 0.0f)); node_fn(test_case.get(), 0, communicator_key); Env::Default()->SleepForMicroseconds(1000000); for (auto& node : nodes) { node.nccl_manager.StartAbort(errors::Unavailable("peer down")); } { mutex_lock l(test_case->mu); while (test_case->num_completed != 1) { test_case->done_cv.wait(l); } } for (auto& node : nodes) { node.nccl_manager.Reset(); } communicator_key = nodes[0].nccl_manager.GenerateCommunicatorKey(); { std::unique_ptr<typename TestFixture::TestCase> test_case( this->MakeReductionTestCase( num_nodes, 1, reduction_op, TensorShape({2, 3}), 0.0f)); for (int i = 0; i < num_nodes; ++i) { this->work_queue_->Schedule( [&node_fn, &test_case, i, communicator_key]() { node_fn(test_case.get(), i, communicator_key); }); } this->VerifyResults(test_case.get()); } } #endif } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/nccl/nccl_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/nccl/nccl_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02979f14-d915-4bdb-9b1d-3ff75a0e9139
cpp
tensorflow/tensorflow
stablehlo_op_quant_spec
tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec.cc
tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec_test.cc
#include "tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec.h" #include <memory> #include "absl/status/statusor.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Operation.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "stablehlo/dialect/StablehloOps.h" #include "tensorflow/compiler/mlir/lite/quantization/ir/QuantOps.h" #include "tensorflow/compiler/mlir/quantization/common/attrs_and_constraints.h" #include "tensorflow/compiler/mlir/quantization/common/lift_as_function_call.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tsl/platform/protobuf.h" #define DEBUG_TYPE "stablehlo_opt_quant_spec" namespace mlir::quant::stablehlo { namespace { using ::mlir::stablehlo::DotGeneralOp; using ::stablehlo::quantization::Method; using ::stablehlo::quantization::StaticRangePtq; bool IsDenylistedLiftedFunction(Operation* op) { if (auto xla_call_module_op = dyn_cast_or_null<TF::XlaCallModuleOp>(op); xla_call_module_op != nullptr) { absl::StatusOr<Method> method = GetQuantizationMethod(xla_call_module_op); if (method.ok() && method->has_no_quantization()) { return true; } } return false; } void PopulateCoeffOpQuantDimIfPerChannelQuantized( TF::XlaCallModuleOp xla_call_module_op, OpQuantSpec& spec) { absl::StatusOr<Method> method = GetQuantizationMethod(xla_call_module_op); if (method.ok() && method->has_static_range_ptq()) { const StaticRangePtq& static_range_ptq_spec = method->static_range_ptq(); for (const auto& [operand_idx, quantized_type] : static_range_ptq_spec.input_quantized_types()) { if (quantized_type.has_dimension_specs()) { spec.coeff_op_quant_dim[operand_idx] = quantized_type.dimension_specs().dimension(); } } } } } std::unique_ptr<OpQuantSpec> GetStableHloOpQuantSpec(Operation* op) { auto spec = std::make_unique<OpQuantSpec>(); if (auto call_op = dyn_cast_or_null<TF::XlaCallModuleOp>(op)) { auto entry_function = call_op->getAttrOfType<FlatSymbolRefAttr>("_entry_function"); StringRef function_name = entry_function.getValue(); if (!function_name.starts_with("composite_")) { return spec; } if (function_name.contains("conv")) { PopulateCoeffOpQuantDimIfPerChannelQuantized(call_op, *spec); if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("dot_general")) { const auto module_op = call_op->getParentOfType<ModuleOp>(); const SymbolTable symbol_table(module_op); auto entry_func_op = dyn_cast_or_null<func::FuncOp>(symbol_table.lookup(function_name)); auto dot_general_op = *entry_func_op.getOps<DotGeneralOp>().begin(); if (auto optional_dim = GetDotGeneralQuantizationDim(dot_general_op); optional_dim) { spec->coeff_op_quant_dim[1] = optional_dim.value(); } else { spec->coeff_op_quant_dim[1] = -1; } if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } for (const auto [operand_idx, per_channel_dim] : spec->coeff_op_quant_dim) { spec->quantizable_operands.insert(operand_idx); } } return spec; } std::unique_ptr<OpQuantScaleSpec> GetStableHloQuantConstraints(Operation* op) { auto scale_spec = std::make_unique<OpQuantScaleSpec>(); if (llvm::isa<mlir::stablehlo::BroadcastInDimOp, mlir::stablehlo::ConcatenateOp, mlir::stablehlo::DynamicReshapeOp, mlir::stablehlo::DynamicSliceOp, mlir::stablehlo::GatherOp, mlir::stablehlo::PadOp, mlir::stablehlo::ReduceWindowOp, mlir::stablehlo::ReshapeOp, mlir::stablehlo::SelectOp, mlir::stablehlo::SliceOp, mlir::stablehlo::TransposeOp>(op)) { scale_spec->has_same_scale_requirement = true; } if (llvm::isa<mlir::stablehlo::DynamicSliceOp, mlir::stablehlo::GatherOp, mlir::stablehlo::PadOp, mlir::stablehlo::SliceOp>(op)) { scale_spec->has_same_operand_and_result_type_requirement = true; } return scale_spec; } bool IsOpQuantizableStableHlo(Operation* op) { if (isa<func::ConstantOp, mlir::stablehlo::ConstantOp>(op)) { return true; } else if (op->hasTrait<OpTrait::IsTerminator>() || isa<quantfork::QuantizeCastOp, quantfork::DequantizeCastOp>(op)) { return false; } if (IsDenylistedLiftedFunction(op)) { LLVM_DEBUG(llvm::errs() << "Denylisted quantizable unit: \n" << op << "\n"); return false; } if (GetStableHloQuantConstraints(op)->has_same_scale_requirement) { return true; } const bool attr_enforced_quantizable = op->hasAttrOfType<StringAttr>(kQuantTraitAttrName) && op->getAttrOfType<StringAttr>(kQuantTraitAttrName).getValue().str() == QuantTraitValues[QuantizationTrait::FullyQuantizable]; return attr_enforced_quantizable; } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/LogicalResult.h" #include "stablehlo/dialect/StablehloOps.h" #include "tensorflow/compiler/mlir/lite/quantization/ir/QuantOps.h" #include "tensorflow/compiler/mlir/quantization/common/attrs_and_constraints.h" #include "tensorflow/compiler/mlir/quantization/common/func.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/common/test_base.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/platform/test.h" namespace mlir::quant::stablehlo { namespace { using ::mlir::stablehlo::GatherOp; using ::testing::IsEmpty; using ::testing::IsTrue; using ::testing::NotNull; using ::testing::Pair; using ::testing::UnorderedElementsAre; using IsOpQuantizableStableHloTest = ::mlir::quant::QuantizationTestBase; constexpr absl::string_view kModuleConstantAdd = R"mlir( module { func.func @constant_add() -> (tensor<3x2xf32>) { %cst1 = stablehlo.constant dense<2.4> : tensor<3x2xf32> %cst2 = stablehlo.constant dense<5.7> : tensor<3x2xf32> %add = stablehlo.add %cst1, %cst2 : (tensor<3x2xf32>, tensor<3x2xf32>) -> tensor<3x2xf32> func.return %add : tensor<3x2xf32> } } )mlir"; constexpr absl::string_view kModuleCompositeSameScale = R"mlir( module { func.func @same_scale_after_composite() -> tensor<3x1xf32> { %0 = "tf.XlaCallModule"() {Sout = [#tf_type.shape<1x3>], _entry_function = @composite_dot_general_fn_1, _original_entry_function = "composite_dot_general_fn_1", _stablehlo_module_attrs = {}, _tfl_quant_trait = "fully_quantizable", device = "", dim_args_spec = [], disabled_checks = [], has_token_input_output = false, module = "", platforms = [], version = 5 : i64} : () -> tensor<1x3xf32> %1 = "quantfork.qcast"(%0) {volatile} : (tensor<1x3xf32>) -> tensor<1x3x!quant.uniform<i8:f32, 0.13170163023705575:-1>> %2 = "quantfork.dcast"(%1) : (tensor<1x3x!quant.uniform<i8:f32, 0.13170163023705575:-1>>) -> tensor<1x3xf32> %3 = stablehlo.reshape %2 : (tensor<1x3xf32>) -> tensor<3x1xf32> %4 = "quantfork.qcast"(%3) {volatile} : (tensor<3x1xf32>) -> tensor<3x1x!quant.uniform<i8:f32, 0.13170163023705575:-1>> %5 = "quantfork.dcast"(%4) : (tensor<3x1x!quant.uniform<i8:f32, 0.13170163023705575:-1>>) -> tensor<3x1xf32> return %5 : tensor<3x1xf32> } } )mlir"; constexpr absl::string_view kModuleCompositeNoAttr = R"mlir( module { func.func @composite_without_attr() -> tensor<1x3xf32> { %0 = "tf.XlaCallModule"() {Sout = [#tf_type.shape<1x3>], _entry_function = @non_quantizable_composite, _original_entry_function = "non_quantizable_composite", _stablehlo_module_attrs = {}, device = "", dim_args_spec = [], disabled_checks = [], has_token_input_output = false, module = "", platforms = [], version = 5 : i64} : () -> tensor<1x3xf32> return %0 : tensor<1x3xf32> } } )mlir"; TEST_F(IsOpQuantizableStableHloTest, ConstantOpQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleConstantAdd); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("constant_add"); ASSERT_THAT(test_func, NotNull()); auto constant_op = FindOperationOfType<mlir::stablehlo::ConstantOp>(test_func); EXPECT_TRUE(IsOpQuantizableStableHlo(constant_op)); } TEST_F(IsOpQuantizableStableHloTest, TerminatorOpNotQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleConstantAdd); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("constant_add"); ASSERT_THAT(test_func, NotNull()); auto return_op = FindOperationOfType<func::ReturnOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(return_op)); } TEST_F(IsOpQuantizableStableHloTest, SameScaleOpQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleCompositeSameScale); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("same_scale_after_composite"); ASSERT_THAT(test_func, NotNull()); auto reshape_op = FindOperationOfType<mlir::stablehlo::ReshapeOp>(test_func); EXPECT_TRUE(IsOpQuantizableStableHlo(reshape_op)); } TEST_F(IsOpQuantizableStableHloTest, NonSameScaleOpNotQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleConstantAdd); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("constant_add"); ASSERT_THAT(test_func, NotNull()); auto add_op = FindOperationOfType<mlir::stablehlo::AddOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(add_op)); } TEST_F(IsOpQuantizableStableHloTest, ValidXlaCallModuleOpQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleCompositeSameScale); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("same_scale_after_composite"); ASSERT_THAT(test_func, NotNull()); auto xla_call_module_op = FindOperationOfType<TF::XlaCallModuleOp>(test_func); EXPECT_TRUE(IsOpQuantizableStableHlo(xla_call_module_op)); } TEST_F(IsOpQuantizableStableHloTest, InvalidXlaCallModuleOpNotQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleCompositeNoAttr); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("composite_without_attr"); ASSERT_THAT(test_func, NotNull()); auto xla_call_module_op = FindOperationOfType<TF::XlaCallModuleOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(xla_call_module_op)); } TEST_F(IsOpQuantizableStableHloTest, QuantizeDequantizeOpNotQuantizable) { OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleCompositeSameScale); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("same_scale_after_composite"); ASSERT_THAT(test_func, NotNull()); auto quantize_op = FindOperationOfType<quantfork::QuantizeCastOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(quantize_op)); auto dequantize_op = FindOperationOfType<quantfork::DequantizeCastOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(dequantize_op)); } TEST_F(IsOpQuantizableStableHloTest, XlaCallModuleOpQuantizableWhenNotDenylisted) { constexpr absl::string_view kModuleXlaCallModuleOpWithDefaultQuantizationMethod = R"mlir( func.func @xla_call_module_default_quantization_method(%arg0: tensor<1x1x3xf32>, %arg1: tensor<3x4xf32>) -> tensor<1x1x4xf32> { %0 = "tf.XlaCallModule"(%arg0, %arg1) <{Sout = [#tf_type.shape<1x1x4>], dim_args_spec = [], disabled_checks = [], function_list = [], has_token_input_output = false, module = "", platforms = ["CPU"], version = 9 : i64}> {_entry_function = @composite_dot_general_fn_1, _original_entry_function = "composite_dot_general_fn_1", _quantization_method = "", _stablehlo_module_attrs = {jax.uses_shape_polymorphism = true}, _tfl_quant_trait = "fully_quantizable"} : (tensor<1x1x3xf32>, tensor<3x4xf32>) -> tensor<1x1x4xf32> return %0 : tensor<1x1x4xf32> } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleXlaCallModuleOpWithDefaultQuantizationMethod); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>( "xla_call_module_default_quantization_method"); ASSERT_THAT(test_func, NotNull()); auto xla_call_module_op = FindOperationOfType<TF::XlaCallModuleOp>(test_func); EXPECT_TRUE(IsOpQuantizableStableHlo(xla_call_module_op)); } TEST_F(IsOpQuantizableStableHloTest, DenylistedXlaCallModuleOpNotQuantizable) { constexpr absl::string_view kModuleDenylistedXlaCallModuleOp = R"mlir( func.func @xla_call_module_denylisted(%arg0: tensor<1x1x3xf32>, %arg1: tensor<3x4xf32>) -> tensor<1x1x4xf32> { %0 = "tf.XlaCallModule"(%arg0, %arg1) <{Sout = [#tf_type.shape<1x1x4>], dim_args_spec = [], disabled_checks = [], function_list = [], has_token_input_output = false, module = "", platforms = ["CPU"], version = 9 : i64}> {_entry_function = @composite_dot_general_fn_1, _original_entry_function = "composite_dot_general_fn_1", _quantization_method = "no_quantization {}", _stablehlo_module_attrs = {jax.uses_shape_polymorphism = true}, _tfl_quant_trait = "fully_quantizable"} : (tensor<1x1x3xf32>, tensor<3x4xf32>) -> tensor<1x1x4xf32> return %0 : tensor<1x1x4xf32> } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleDenylistedXlaCallModuleOp); ASSERT_TRUE(module_op); auto test_func = module_op->lookupSymbol<func::FuncOp>("xla_call_module_denylisted"); ASSERT_THAT(test_func, NotNull()); auto xla_call_module_op = FindOperationOfType<TF::XlaCallModuleOp>(test_func); EXPECT_FALSE(IsOpQuantizableStableHlo(xla_call_module_op)); } using GetStableHloOpQuantSpecTest = ::mlir::quant::QuantizationTestBase; TEST_F(GetStableHloOpQuantSpecTest, EmptyCoeffOpQuantDimForPerTensorQuantizedConvolution) { constexpr absl::string_view kXlaCallModuleOpWithPerTensorQuantizedConvolution = R"mlir( func.func @main(%arg0: tensor<1x1x3xf32>, %arg1: tensor<3x4xf32>) -> tensor<1x1x4xf32> { %0 = "tf.XlaCallModule"(%arg0, %arg1) <{Sout = [#tf_type.shape<1x1x4>], dim_args_spec = [], disabled_checks = [], function_list = [], has_token_input_output = false, module = "", platforms = ["CPU"], version = 9 : i64}> { _entry_function = @composite_conv_fn_1, _original_entry_function = "composite_conv_fn_1", _quantization_method = "static_range_ptq {}", _stablehlo_module_attrs = {jax.uses_shape_polymorphism = true}, _tfl_quant_trait = "fully_quantizable" } : (tensor<1x1x3xf32>, tensor<3x4xf32>) -> tensor<1x1x4xf32> return %0 : tensor<1x1x4xf32> } )mlir"; const OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kXlaCallModuleOpWithPerTensorQuantizedConvolution); ASSERT_TRUE(module_op); const FailureOr<TF::XlaCallModuleOp> xla_call_module_op = FindFirstOpFromMainFunc<TF::XlaCallModuleOp>(*module_op); ASSERT_TRUE(succeeded(xla_call_module_op)); const std::unique_ptr<OpQuantSpec> op_quant_spec = GetStableHloOpQuantSpec(*xla_call_module_op); ASSERT_THAT(op_quant_spec, NotNull()); EXPECT_THAT(op_quant_spec->coeff_op_quant_dim, IsEmpty()); } TEST_F(GetStableHloOpQuantSpecTest, EmptyCoeffOpQuantDimForPerChannelQuantizedConvolution) { constexpr absl::string_view kXlaCallModuleOpWithPerChannelQuantizedConvolution = R"mlir( func.func @main(%arg0: tensor<1x1x3xf32>, %arg1: tensor<3x4xf32>) -> tensor<1x1x4xf32> { %0 = "tf.XlaCallModule"(%arg0, %arg1) <{Sout = [#tf_type.shape<1x1x4>], dim_args_spec = [], disabled_checks = [], function_list = [], has_token_input_output = false, module = "", platforms = ["CPU"], version = 9 : i64}> { _entry_function = @composite_conv_fn_1, _original_entry_function = "composite_conv_fn_1", _quantization_method = "static_range_ptq {input_quantized_types {key: 1, value {dimension_specs {dimension: 3}}}}", _stablehlo_module_attrs = {jax.uses_shape_polymorphism = true}, _tfl_quant_trait = "fully_quantizable" } : (tensor<1x1x3xf32>, tensor<3x4xf32>) -> tensor<1x1x4xf32> return %0 : tensor<1x1x4xf32> } )mlir"; const OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kXlaCallModuleOpWithPerChannelQuantizedConvolution); ASSERT_TRUE(module_op); const FailureOr<TF::XlaCallModuleOp> xla_call_module_op = FindFirstOpFromMainFunc<TF::XlaCallModuleOp>(*module_op); ASSERT_TRUE(succeeded(xla_call_module_op)); const std::unique_ptr<OpQuantSpec> op_quant_spec = GetStableHloOpQuantSpec(*xla_call_module_op); ASSERT_THAT(op_quant_spec, NotNull()); EXPECT_THAT(op_quant_spec->coeff_op_quant_dim, UnorderedElementsAre(Pair(1, 3))); } using GetStableHloQuantConstraintsTest = ::mlir::quant::QuantizationTestBase; TEST_F(GetStableHloQuantConstraintsTest, HasSameOperandAndResultTypeRequirementSucceeds) { constexpr absl::string_view kModuleGather = R"mlir( module { func.func @main() -> (tensor<2x3x2x2xf32>) { %0 = stablehlo.constant dense<1.0> : tensor<3x4x2xf32> %1 = stablehlo.constant dense<2> : tensor<2x3x2xi64> %2 = "stablehlo.gather"(%0, %1) { dimension_numbers = #stablehlo.gather< offset_dims = [2, 3], collapsed_slice_dims = [0], start_index_map = [1, 0], index_vector_dim = 2>, slice_sizes = array<i64: 1, 2, 2>, indices_are_sorted = false } : (tensor<3x4x2xf32>, tensor<2x3x2xi64>) -> tensor<2x3x2x2xf32> func.return %2 : tensor<2x3x2x2xf32> } } )mlir"; OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleGather); ASSERT_TRUE(module_op); func::FuncOp main_fn = FindMainFuncOp(*module_op); ASSERT_THAT(main_fn, NotNull()); Operation* gather_op = FindOperationOfType<GatherOp>(main_fn); const auto spec = GetStableHloQuantConstraints(gather_op); EXPECT_THAT(spec, NotNull()); EXPECT_THAT(spec->has_same_operand_and_result_type_requirement, IsTrue()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/ops/stablehlo_op_quant_spec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8515d29c-d1da-488d-9277-faa53268774a
cpp
tensorflow/tensorflow
dialect
tensorflow/core/ir/types/dialect.cc
tensorflow/core/ir/types/dialect_test.cc
#include "tensorflow/core/ir/types/dialect.h" #include <cstdint> #include <optional> #include <string> #include "absl/strings/escaping.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Traits.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #define GET_ATTRDEF_CLASSES #include "tensorflow/core/ir/types/attributes.cc.inc" #include "tensorflow/core/ir/types/attributes_enum.cc.inc" #define GET_TYPEDEF_CLASSES #include "tensorflow/core/ir/types/types.cc.inc" #include "tensorflow/core/ir/types/dialect.cpp.inc" namespace mlir { namespace tf_type { void TFTypeDialect::initialize() { addAttributes< #define GET_ATTRDEF_LIST #include "tensorflow/core/ir/types/attributes.cc.inc" >(); addTypes<ControlType, OpaqueTensorType, #define HANDLE_TF_TYPE(tftype, enumerant, name) tftype##Type, #define HANDLE_LAST_TF_TYPE(tftype, enumerant, name) tftype##Type #include "tensorflow/core/ir/types/types.def" >(); } namespace { template <typename TypeWithSubtype> Type ParseTypeWithSubtype(MLIRContext* context, DialectAsmParser& parser) { if (failed(parser.parseOptionalLess())) return TypeWithSubtype::get(context); SmallVector<TensorType, 1> subtypes; do { TensorType tensor_ty; if (parser.parseType(tensor_ty)) return Type(); if (!IsValidTFTensorType(tensor_ty)) { parser.emitError(parser.getNameLoc()) << "invalid subtype: " << tensor_ty; return Type(); } subtypes.push_back(tensor_ty); } while (succeeded(parser.parseOptionalComma())); if (parser.parseGreater()) return Type(); return TypeWithSubtype::get(subtypes, context); } template <typename TypeWithSubtype> void PrintTypeWithSubtype(StringRef type, TypeWithSubtype ty, DialectAsmPrinter& os) { os << type; ArrayRef<TensorType> subtypes = ty.getSubtypes(); if (subtypes.empty()) return; os << "<"; interleaveComma(subtypes, os); os << ">"; } Type ParseResourceType(MLIRContext* context, DialectAsmParser& parser) { return ParseTypeWithSubtype<ResourceType>(context, parser); } void PrintResourceType(ResourceType ty, DialectAsmPrinter& os) { return PrintTypeWithSubtype("resource", ty, os); } Type ParseVariantType(MLIRContext* context, DialectAsmParser& parser) { return ParseTypeWithSubtype<VariantType>(context, parser); } void PrintVariantType(VariantType ty, DialectAsmPrinter& os) { return PrintTypeWithSubtype("variant", ty, os); } } Type TFTypeDialect::parseType(DialectAsmParser& parser) const { StringRef type_tag; llvm::SMLoc loc = parser.getNameLoc(); Type genType; auto parse_result = generatedTypeParser(parser, &type_tag, genType); if (parse_result.has_value()) return genType; #define HANDLE_TF_TYPE(tftype, enumerant, name) \ if (type_tag == name) return tftype##Type::get(getContext()); #define HANDLE_CUSTOM_TF_TYPE(tftype, enumerant, name) #include "tensorflow/core/ir/types/types.def" if (type_tag.starts_with("resource")) { Type ret = ParseResourceType(getContext(), parser); if (!ret) parser.emitError(loc, "invalid resource type"); return ret; } if (type_tag.starts_with("variant")) { Type ret = ParseVariantType(getContext(), parser); if (!ret) parser.emitError(loc, "invalid variant type"); return ret; } parser.emitError(parser.getNameLoc(), "unknown type in TF graph dialect: " + type_tag); return {}; } void TFTypeDialect::printType(Type type, DialectAsmPrinter& printer) const { #define HANDLE_TF_TYPE(tftype, enumerant, name) \ if (auto derived_ty = type.dyn_cast<tftype##Type>()) { \ printer << name; \ return; \ } #define HANDLE_CUSTOM_TF_TYPE(tftype, enumerant, name) \ if (auto derived_ty = type.dyn_cast<tftype##Type>()) { \ Print##tftype##Type(derived_ty, printer); \ return; \ } #include "tensorflow/core/ir/types/types.def" if (failed(generatedTypePrinter(type, printer))) llvm::report_fatal_error("unexpected tensorflow graph type kind"); } Attribute VersionAttr::parse(AsmParser& parser, Type) { if (failed(parser.parseLess())) return {}; int32_t producer, min_consumer; if (parser.parseKeyword("producer", " in tf_type version") || parser.parseEqual() || parser.parseInteger(producer) || parser.parseComma() || parser.parseKeyword("min_consumer", " in tf_type version") || parser.parseEqual() || parser.parseInteger(min_consumer)) return {}; SmallVector<int32_t, 4> bad_consumers; if (!parser.parseOptionalComma()) { if (parser.parseKeyword("bad_consumers", " in tf_type version") || parser.parseEqual() || parser.parseLSquare()) return {}; do { int32_t bad_consumer; if (parser.parseInteger(bad_consumer)) return {}; bad_consumers.push_back(bad_consumer); } while (!parser.parseOptionalComma()); if (parser.parseRSquare()) return {}; } if (failed(parser.parseGreater())) return {}; return VersionAttr::get(parser.getContext(), producer, min_consumer, bad_consumers); } void VersionAttr::print(AsmPrinter& printer) const { llvm::raw_ostream& os = printer.getStream(); os << "<producer = " << getProducer() << ", min_consumer = " << getMinConsumer(); ArrayRef<int32_t> badConsumers = getBadConsumers(); if (!badConsumers.empty()) { os << ", bad_consumers = ["; llvm::interleaveComma(badConsumers, os); os << "]"; } os << ">"; } FailureOr<FullTypeAttr> RawFullTypeAttrParser(AsmParser& parser) { SmallVector<FullTypeAttr> args; llvm::StringRef type_id_str; if (failed(parser.parseKeyword(&type_id_str))) { parser.emitError( parser.getCurrentLocation(), "failed to parse TFType_FullTypeAttr parameter keyword for " "'type_id'"); return failure(); } std::optional<FullTypeId> type_id = symbolizeFullTypeId(type_id_str); if (!type_id) { parser.emitError(parser.getCurrentLocation(), "failed to parse TFType_FullTypeAttr parameter " "'type_id'"); return failure(); } if (parser.parseCommaSeparatedList(AsmParser::Delimiter::OptionalLessGreater, [&]() { FailureOr<tf_type::FullTypeAttr> arg = RawFullTypeAttrParser(parser); if (failed(arg)) return failure(); args.push_back(*arg); return success(); })) return failure(); Attribute attr; parser.parseOptionalAttribute(attr); return FullTypeAttr::get( parser.getContext(), mlir::IntegerAttr::get(mlir::IntegerType::get(parser.getContext(), 32), static_cast<int32_t>(*type_id)), args, attr); } Attribute FullTypeAttr::parse(AsmParser& parser, Type odsType) { if (failed(parser.parseLess())) return {}; FailureOr<tf_type::FullTypeAttr> ret = RawFullTypeAttrParser(parser); if (succeeded(ret) && failed(parser.parseGreater())) return {}; return ret.value_or(FullTypeAttr()); } static void RawFullTypeAttrPrint(FullTypeAttr tfattr, AsmPrinter& printer) { printer << stringifyFullTypeId( tf_type::FullTypeId(tfattr.getTypeId().getInt())); if (!tfattr.getArgs().empty()) { printer << "<"; llvm::interleaveComma(tfattr.getArgs(), printer, [&](Attribute arg) { if (auto t = mlir::dyn_cast<FullTypeAttr>(arg)) RawFullTypeAttrPrint(t, printer); else printer << "<<INVALID ARG>>"; }); printer << ">"; } if (tfattr.getAttr()) { printer << ' '; printer.printStrippedAttrOrType(tfattr.getAttr()); } } void FullTypeAttr::print(AsmPrinter& printer) const { printer << "<"; RawFullTypeAttrPrint(*this, printer); printer << ">"; } void FuncAttr::print(AsmPrinter& os) const { if (getName().getRootReference().getValue().empty()) os << "<\"\", " << getAttrs() << ">"; else os << "<" << getName() << ", " << getAttrs() << ">"; } Attribute FuncAttr::parse(AsmParser& parser, Type type) { if (failed(parser.parseLess())) return {}; llvm::SMLoc loc = parser.getCurrentLocation(); Attribute name, dict; if (failed(parser.parseAttribute(name))) { parser.emitError(loc) << "expected symbol while parsing tf.func attribute"; return {}; } if (auto func_name_str = mlir::dyn_cast<StringAttr>(name)) { if (!func_name_str.getValue().empty()) { parser.emitError(loc) << "expected empty string or symbol while parsing tf.func " "attribute"; return {}; } name = SymbolRefAttr::get(parser.getContext(), ""); } if (!mlir::isa<SymbolRefAttr>(name)) { parser.emitError(loc) << "expected symbol while parsing tf.func attribute"; return {}; } if (failed(parser.parseComma())) return {}; loc = parser.getCurrentLocation(); if (failed(parser.parseAttribute(dict)) || !mlir::isa<DictionaryAttr>(dict)) { parser.emitError(loc) << "expected Dictionary attribute while parsing tf.func attribute"; return {}; } if (failed(parser.parseGreater())) return {}; return FuncAttr::get(parser.getContext(), mlir::cast<SymbolRefAttr>(name), mlir::cast<DictionaryAttr>(dict)); } void PlaceholderAttr::print(AsmPrinter& os) const { os << "<" << StringAttr::get(getContext(), getValue()) << ">"; } Attribute PlaceholderAttr::parse(AsmParser& parser, Type type) { if (failed(parser.parseLess())) return {}; std::string content; if (failed(parser.parseOptionalString(&content))) { parser.emitError(parser.getCurrentLocation()) << "expected string while parsing tf.placeholder attribute"; return {}; } if (failed(parser.parseGreater())) return {}; return PlaceholderAttr::get(parser.getContext(), content); } void ShapeAttr::print(AsmPrinter& os) const { os << "<"; if (hasRank()) { auto print_dim = [&](int64_t dim) { if (dim != ShapedType::kDynamic) os << dim; else os << "?"; }; llvm::interleave(getShape(), os, print_dim, "x"); } else { os << "*"; } os << ">"; } Attribute ShapeAttr::parse(AsmParser& parser, Type type) { if (failed(parser.parseLess())) return {}; if (succeeded(parser.parseOptionalStar())) { if (failed(parser.parseGreater())) { parser.emitError(parser.getCurrentLocation()) << "expected `>` after `*` when parsing a tf.shape " "attribute"; return {}; } return ShapeAttr::get(parser.getContext(), std::nullopt); } SmallVector<int64_t> shape; if (failed(parser.parseOptionalGreater())) { auto parse_element = [&]() { shape.emplace_back(); llvm::SMLoc loc = parser.getCurrentLocation(); if (succeeded(parser.parseOptionalQuestion())) { shape.back() = ShapedType::kDynamic; } else if (failed(parser.parseDecimalInteger(shape.back()))) { parser.emitError(loc) << "expected an integer or `?` when parsing a tf.shape attribute"; return failure(); } return success(); }; if (failed(parse_element())) return {}; while (failed(parser.parseOptionalGreater())) { if (failed(parser.parseXInDimensionList()) || failed(parse_element())) return {}; } } return ShapeAttr::get(parser.getContext(), llvm::ArrayRef(shape)); } ShapeAttr ShapeAttr::get(MLIRContext* context, std::optional<ArrayRef<int64_t>> shape) { if (shape) return Base::get(context, *shape, false); return Base::get(context, ArrayRef<int64_t>(), true); } ShapeAttr ShapeAttr::get(MLIRContext* context, ShapedType shaped_type) { if (shaped_type.hasRank()) return Base::get(context, shaped_type.getShape(), false); return Base::get(context, ArrayRef<int64_t>(), true); } std::optional<ArrayRef<int64_t>> ShapeAttr::getValue() const { if (hasRank()) return getShape(); return std::nullopt; } bool ShapeAttr::hasRank() const { return !getImpl()->unranked; } int64_t ShapeAttr::getRank() const { assert(hasRank()); return getImpl()->shape.size(); } bool ShapeAttr::hasStaticShape() const { if (!hasRank()) return false; for (auto dim : getShape()) { if (dim < 0) return false; } return true; } namespace { std::optional<ArrayRef<int64_t>> GetShape(Value value) { auto shaped_type = mlir::cast<ShapedType>(value.getType()); if (shaped_type.hasRank()) return shaped_type.getShape(); return std::nullopt; } bool GetCastCompatibleShape(ArrayRef<int64_t> a_shape, ArrayRef<int64_t> b_shape, SmallVectorImpl<int64_t>* refined_shape) { if (a_shape.size() != b_shape.size()) return false; int64_t rank = a_shape.size(); refined_shape->reserve(rank); for (auto dims : llvm::zip(a_shape, b_shape)) { int64_t dim1 = std::get<0>(dims); int64_t dim2 = std::get<1>(dims); if (ShapedType::isDynamic(dim1)) { refined_shape->push_back(dim2); continue; } if (ShapedType::isDynamic(dim2)) { refined_shape->push_back(dim1); continue; } if (dim1 == dim2) { refined_shape->push_back(dim1); continue; } return false; } return true; } } OperandShapeIterator::OperandShapeIterator(Operation::operand_iterator it) : llvm::mapped_iterator<Operation::operand_iterator, std::optional<ArrayRef<int64_t>> (*)(Value)>( it, &GetShape) {} ResultShapeIterator::ResultShapeIterator(Operation::result_iterator it) : llvm::mapped_iterator<Operation::result_iterator, std::optional<ArrayRef<int64_t>> (*)(Value)>( it, &GetShape) {} bool TensorFlowType::classof(Type type) { return llvm::isa<TFTypeDialect>(type.getDialect()); } bool TensorFlowRefType::classof(Type type) { return mlir::isa< #define HANDLE_TF_TYPE(tftype, enumerant, name) #define HANDLE_TF_REF_TYPE(tftype, enumerant, name) tftype##Type, #define HANDLE_LAST_TF_TYPE(tftype, enumerant, name) tftype##Type #include "tensorflow/core/ir/types/types.def" >(type); } TensorFlowType TensorFlowRefType::get(Type type) { MLIRContext* ctx = type.getContext(); type = getElementTypeOrSelf(type); if (type.isF16()) { return HalfRefType::get(ctx); } else if (type.isF32()) { return FloatRefType::get(ctx); } else if (type.isF64()) { return DoubleRefType::get(ctx); } else if (type.isBF16()) { return Bfloat16RefType::get(ctx); } else if (type.isFloat8E4M3FN()) { return Float8E4M3FNRefType::get(ctx); } else if (type.isFloat8E5M2()) { return Float8E5M2RefType::get(ctx); } else if (auto complex_type = mlir::dyn_cast<ComplexType>(type)) { Type etype = complex_type.getElementType(); if (etype.isF32()) { return Complex64RefType::get(ctx); } else if (etype.isF64()) { return Complex128RefType::get(ctx); } llvm_unreachable("unexpected complex type"); } else if (auto itype = mlir::dyn_cast<IntegerType>(type)) { switch (itype.getWidth()) { case 1: return BoolRefType::get(ctx); case 4: return itype.isUnsigned() ? TensorFlowType(Uint4RefType::get(ctx)) : Int4RefType::get(ctx); case 8: return itype.isUnsigned() ? TensorFlowType(Uint8RefType::get(ctx)) : Int8RefType::get(ctx); case 16: return itype.isUnsigned() ? TensorFlowType(Uint16RefType::get(ctx)) : Int16RefType::get(ctx); case 32: return itype.isUnsigned() ? TensorFlowType(Uint32RefType::get(ctx)) : Int32RefType::get(ctx); case 64: return itype.isUnsigned() ? TensorFlowType(Uint64RefType::get(ctx)) : Int64RefType::get(ctx); default: llvm_unreachable("unexpected integer type"); } } #define HANDLE_TF_TYPE(tftype, enumerant, name) \ if (auto derived_ty = type.dyn_cast<tftype##Type>()) \ return tftype##RefType::get(ctx); #define HANDLE_TF_REF_TYPE(tftype, enumerant, name) #include "tensorflow/core/ir/types/types.def" llvm_unreachable("unexpected type kind"); } Type TensorFlowRefType::RemoveRef() { MLIRContext* ctx = getContext(); if (mlir::isa<HalfRefType>(*this)) return FloatType::getF16(ctx); if (mlir::isa<FloatRefType>(*this)) return FloatType::getF32(ctx); if (mlir::isa<DoubleRefType>(*this)) return FloatType::getF64(ctx); if (mlir::isa<Bfloat16RefType>(*this)) return FloatType::getBF16(ctx); if (mlir::isa<Float8E4M3FNType>(*this)) return FloatType::getFloat8E4M3FN(ctx); if (mlir::isa<Float8E5M2Type>(*this)) return FloatType::getFloat8E5M2(ctx); if (mlir::isa<BoolRefType>(*this)) return IntegerType::get(ctx, 1); if (mlir::isa<Int4RefType>(*this)) return IntegerType::get(ctx, 4, IntegerType::Signed); if (mlir::isa<Int8RefType>(*this)) return IntegerType::get(ctx, 8); if (mlir::isa<Int16RefType>(*this)) return IntegerType::get(ctx, 16); if (mlir::isa<Int32RefType>(*this)) return IntegerType::get(ctx, 32); if (mlir::isa<Int64RefType>(*this)) return IntegerType::get(ctx, 64); if (mlir::isa<Uint4RefType>(*this)) return IntegerType::get(ctx, 4, IntegerType::Unsigned); if (mlir::isa<Uint8RefType>(*this)) return IntegerType::get(ctx, 8, IntegerType::Unsigned); if (mlir::isa<Uint16RefType>(*this)) return IntegerType::get(ctx, 16, IntegerType::Unsigned); if (mlir::isa<Uint32RefType>(*this)) return IntegerType::get(ctx, 32, IntegerType::Unsigned); if (mlir::isa<Uint64RefType>(*this)) return IntegerType::get(ctx, 64, IntegerType::Unsigned); if (mlir::isa<Complex64RefType>(*this)) return ComplexType::get(FloatType::getF32(ctx)); if (mlir::isa<Complex128RefType>(*this)) return ComplexType::get(FloatType::getF64(ctx)); #define HANDLE_TF_TYPE(tftype, enumerant, name) \ if (isa<tftype##RefType>()) return tftype##Type::get(ctx); #define HANDLE_TF_REF_TYPE(tftype, enumerant, name) #include "tensorflow/core/ir/types/types.def" llvm_unreachable("unexpected tensorflow ref type kind"); } bool TensorFlowTypeWithSubtype::classof(Type type) { return mlir::isa<ResourceType, VariantType>(type); } Type TensorFlowTypeWithSubtype::RemoveSubtypes() { MLIRContext* ctx = getContext(); if (mlir::isa<VariantType>(*this)) return VariantType::get(ctx); if (mlir::isa<ResourceType>(*this)) return ResourceType::get(ctx); llvm_unreachable("unexpected tensorflow type with subtypes kind"); } TensorFlowTypeWithSubtype TensorFlowTypeWithSubtype::clone( ArrayRef<TensorType> new_subtypes) { MLIRContext* ctx = getContext(); if (mlir::isa<VariantType>(*this)) return mlir::cast<TensorFlowTypeWithSubtype>( VariantType::get(new_subtypes, ctx)); if (mlir::isa<ResourceType>(*this)) return mlir::cast<TensorFlowTypeWithSubtype>( ResourceType::get(new_subtypes, ctx)); llvm_unreachable("unexpected tensorflow type with subtypes kind"); } ArrayRef<TensorType> TensorFlowTypeWithSubtype::GetSubtypes() { if (auto variant_type = mlir::dyn_cast<VariantType>(*this)) return variant_type.getSubtypes(); if (auto resource_type = mlir::dyn_cast<ResourceType>(*this)) return resource_type.getSubtypes(); llvm_unreachable("unexpected tensorflow type with subtypes kind"); } bool BroadcastCompatible(TypeRange lhs, TypeRange rhs) { if (lhs.size() != rhs.size()) return false; for (auto types : llvm::zip(lhs, rhs)) { auto lhs_type = DropRefType(std::get<0>(types)); auto rhs_type = DropRefType(std::get<1>(types)); auto lhs_tt = mlir::dyn_cast<TensorType>(lhs_type); auto rhs_tt = mlir::dyn_cast<TensorType>(rhs_type); if (!lhs_tt || !rhs_tt) { if (lhs_type != rhs_type) return false; continue; } auto lhs_et = lhs_tt.getElementType(); auto rhs_et = rhs_tt.getElementType(); if (lhs_et != rhs_et) { auto lhs_wst = mlir::dyn_cast<TensorFlowTypeWithSubtype>(lhs_et); auto rhs_wst = mlir::dyn_cast<TensorFlowTypeWithSubtype>(rhs_et); if (!lhs_wst || !rhs_wst) return false; auto lhs_wst_st = lhs_wst.GetSubtypes(); auto rhs_wst_st = rhs_wst.GetSubtypes(); if (!lhs_wst_st.empty() && !rhs_wst_st.empty()) { for (auto subtypes : llvm::zip(lhs_wst_st, rhs_wst_st)) { if (!BroadcastCompatible(std::get<0>(subtypes), std::get<1>(subtypes))) return false; } } } auto lhs_rt = mlir::dyn_cast<RankedTensorType>(lhs_type); auto rhs_rt = mlir::dyn_cast<RankedTensorType>(rhs_type); if (!lhs_rt || !rhs_rt) return true; SmallVector<int64_t, 4> shape; return OpTrait::util::getBroadcastedShape(lhs_rt.getShape(), rhs_rt.getShape(), shape); } return true; } Type GetCastCompatibleType(Type a, Type b, bool may_ignore_ref_type_a) { if (a == b) return b; auto a_tt = mlir::dyn_cast<TensorType>(a); auto b_tt = mlir::dyn_cast<TensorType>(b); if (static_cast<bool>(a_tt) ^ static_cast<bool>(b_tt)) return nullptr; if (!a_tt && !b_tt) { if (may_ignore_ref_type_a) { if (auto ref_type = mlir::dyn_cast<TensorFlowRefType>(a)) { a = ref_type.RemoveRef(); if (a == b) return a; } } if (a.getTypeID() != b.getTypeID()) return nullptr; auto a_wst = mlir::dyn_cast<TensorFlowTypeWithSubtype>(a); auto b_wst = mlir::dyn_cast<TensorFlowTypeWithSubtype>(b); if (!a_wst || !b_wst) return nullptr; if (mlir::isa<VariantType>(a)) return a; if (mlir::isa<VariantType>(b)) return b; auto a_wst_st = a_wst.GetSubtypes(); auto b_wst_st = b_wst.GetSubtypes(); if (a_wst_st.empty()) return b; if (b_wst_st.empty()) return a; if (a_wst_st.size() != b_wst_st.size()) return nullptr; SmallVector<TensorType, 4> refined_subtypes; for (auto subtypes : llvm::zip(a_wst_st, b_wst_st)) { Type refined_st = GetCastCompatibleType(std::get<0>(subtypes), std::get<1>(subtypes), false); if (!refined_st) return nullptr; refined_subtypes.push_back(mlir::cast<TensorType>(refined_st)); } return ResourceType::get(refined_subtypes, a.getContext()); } Type refined_element_ty = GetCastCompatibleType( a_tt.getElementType(), b_tt.getElementType(), may_ignore_ref_type_a); if (!refined_element_ty) return nullptr; if (!a_tt.hasRank() && !b_tt.hasRank()) { return UnrankedTensorType::get(refined_element_ty); } if (!a_tt.hasRank()) { return RankedTensorType::get(b_tt.getShape(), refined_element_ty); } if (!b_tt.hasRank()) { return RankedTensorType::get(a_tt.getShape(), refined_element_ty); } SmallVector<int64_t, 4> refined_shape; if (!GetCastCompatibleShape(a_tt.getShape(), b_tt.getShape(), &refined_shape)) return nullptr; return RankedTensorType::get(refined_shape, refined_element_ty); } bool HasCompatibleElementTypes(Type lhs, Type rhs, bool may_ignore_ref_type_lhs) { return GetCastCompatibleType(lhs, rhs, may_ignore_ref_type_lhs) != nullptr; } bool AreCastCompatible(TypeRange types) { Type common = types.front(); for (auto type : types.drop_front()) { Type refined_type = GetCastCompatibleType(common, type, false); if (!refined_type) return false; common = refined_type; } return true; } bool ArraysAreCastCompatible(TypeRange lhs, TypeRange rhs) { if (lhs.size() != rhs.size()) return false; for (auto pair : llvm::zip(lhs, rhs)) { auto lhs_i = std::get<0>(pair); auto rhs_i = std::get<1>(pair); if (!AreCastCompatible({lhs_i, rhs_i})) return false; } return true; } static Type GetDefaultTypeOf(TensorFlowRefType type) { return type.RemoveRef(); } template <typename ComposedType> Type DropTypeHelper(Type ty) { Type element_ty = getElementTypeOrSelf(ty); auto composed_type = mlir::dyn_cast<ComposedType>(element_ty); if (!composed_type) return ty; Type default_ty = GetDefaultTypeOf(composed_type); if (auto ranked_ty = mlir::dyn_cast<RankedTensorType>(ty)) { return RankedTensorType::get(ranked_ty.getShape(), default_ty); } else if (mlir::dyn_cast<UnrankedTensorType>(ty)) { return UnrankedTensorType::get(default_ty); } else { return default_ty; } } Type DropSubTypes(Type ty) { return DropTypeHelper<TensorFlowTypeWithSubtype>(ty); } Type DropRefType(Type ty) { return DropTypeHelper<TensorFlowRefType>(ty); } Type DropRefAndSubTypes(Type ty) { return DropRefType(DropSubTypes(ty)); } Attribute TensorProtoAttr::parse(AsmParser& parser, Type type) { if (parser.parseColon()) { return nullptr; } std::string data; if (parser.parseString(&data)) { return nullptr; } if (data.size() < 2 || data.substr(0, 2) != "0x") { parser.emitError(parser.getNameLoc(), "Hex string doesn't start with `0x`"); return nullptr; } auto shapedType = mlir::dyn_cast<ShapedType>(type); if (!shapedType) return nullptr; std::string bytes_data = absl::HexStringToBytes(data.substr(2)); return TensorProtoAttr::get(shapedType, bytes_data); } void TensorProtoAttr::print(mlir::AsmPrinter& printer) const { StringRef bytes_str = getValue(); printer << " : \"0x" << llvm::toHex(bytes_str) << "\""; } } }
#include "tensorflow/core/ir/types/dialect.h" #include <cstdint> #include <limits> #include <gmock/gmock.h> #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { TEST(TFTypesDialect, TestFuncAttrSubElement) { const char *const code = R"mlir( "test.op"() {func = #tf_type.func<@foo, {bar = @foo}>} : () -> () )mlir"; MLIRContext context; context.allowUnregisteredDialects(); context.getOrLoadDialect<tf_type::TFTypeDialect>(); OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); Operation &test_op = module->front(); Builder b(&context); StringAttr baz = b.getStringAttr("baz"); ASSERT_TRUE(succeeded(SymbolTable::replaceAllSymbolUses( b.getStringAttr("foo"), baz, test_op.getParentRegion()))); auto func_attr = mlir::dyn_cast<tf_type::FuncAttr>(test_op.getAttr("func")); ASSERT_TRUE(func_attr); auto sym_ref = FlatSymbolRefAttr::get(baz); EXPECT_TRUE(func_attr.getName() == sym_ref); auto bar_ref = func_attr.getAttrs().get("bar"); EXPECT_TRUE(bar_ref == sym_ref); } TEST(TFTypesDialect, ParsesDimensionListWithZero) { const char *const code = R"mlir( "test.op"() {shape = #tf_type.shape<0x128>} : () -> () )mlir"; MLIRContext context; context.allowUnregisteredDialects(); context.getOrLoadDialect<tf_type::TFTypeDialect>(); OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); Operation &test_op = module->front(); auto shape_attr = mlir::dyn_cast<tf_type::ShapeAttr>(test_op.getAttr("shape")); ASSERT_TRUE(shape_attr); EXPECT_THAT(shape_attr.getShape(), testing::ElementsAre(0, 128)); } TEST(TFTypesDialect, ParsesDimensionListWithQuestionMark) { const char *const code = R"mlir( "test.op"() {shape = #tf_type.shape<0x?x2>} : () -> () )mlir"; MLIRContext context; context.allowUnregisteredDialects(); context.getOrLoadDialect<tf_type::TFTypeDialect>(); OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); Operation &test_op = module->front(); auto shape_attr = mlir::dyn_cast<tf_type::ShapeAttr>(test_op.getAttr("shape")); ASSERT_TRUE(shape_attr); EXPECT_THAT(shape_attr.getShape(), testing::ElementsAre(0, std::numeric_limits<int64_t>::min(), 2)); } TEST(TFTypesDialect, ParsesDimensionListWithNegativeOne) { const char *const code = R"mlir( "test.op"() {shape = #tf_type.shape<0x-1x2>} : () -> () )mlir"; MLIRContext context; context.allowUnregisteredDialects(); context.getOrLoadDialect<tf_type::TFTypeDialect>(); OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); Operation &test_op = module->front(); auto shape_attr = mlir::dyn_cast<tf_type::ShapeAttr>(test_op.getAttr("shape")); ASSERT_TRUE(shape_attr); EXPECT_THAT(shape_attr.getShape(), testing::ElementsAre(0, -1, 2)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ir/types/dialect.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ir/types/dialect_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9bda38a9-493d-4316-85e9-9599ccb99c9a
cpp
tensorflow/tensorflow
dynamic_padder
third_party/xla/xla/service/dynamic_padder.cc
third_party/xla/xla/service/dynamic_padder_test.cc
#include "xla/service/dynamic_padder.h" #include <cstdint> #include <functional> #include <iterator> #include <set> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/dynamic_parameter_binding.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_window_utils.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/monitoring/gauge.h" #include "xla/util.h" #include "xla/window_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { auto* dynamic_padding_gauge = tsl::monitoring::Gauge<bool, 0>::New( "/tensorflow/core/use_dynamic_padding_gauge", "Tracks if dynamic padder is used."); absl::StatusOr<HloInstruction*> ChooseIdentityValue(HloInstruction* inst, int64_t operand_number) { if (inst->IsElementwise()) { return nullptr; } if (inst->opcode() == HloOpcode::kSelectAndScatter || inst->IsCustomCall("DynamicSelectAndScatterSamePadding")) { if (operand_number == 1) { return inst->mutable_operand(2); } TF_RET_CHECK(operand_number == 0); HloComputation* select = inst->called_computations()[0]; if (Match(select->root_instruction(), match::Compare(match::Parameter(), match::Parameter()) .WithComparisonDirection(ComparisonDirection::kGe))) { return inst->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::MinValue(inst->operand(0)->shape().element_type()))); } else { return Unimplemented( "Only select and scatter with `max` as select function is " "supported, got %s", select->ToString()); } } switch (inst->opcode()) { case HloOpcode::kReduce: { auto* reduce = Cast<HloReduceInstruction>(inst); TF_RET_CHECK(operand_number < reduce->input_count()) << "Only data operand with dynamic dimension is valid."; int64_t init_value_index = reduce->input_count() + operand_number; return inst->mutable_operand(init_value_index); } case HloOpcode::kReduceWindow: { auto* reduce_window = Cast<HloReduceWindowInstruction>(inst); TF_RET_CHECK(operand_number < reduce_window->input_count()) << "Only data operand with dynamic dimension is valid."; int64_t init_value_index = reduce_window->input_count() + operand_number; return inst->mutable_operand(init_value_index); } case HloOpcode::kConvolution: case HloOpcode::kDot: { PrimitiveType ptype = inst->operand(0)->shape().element_type(); return inst->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(ptype))); } case HloOpcode::kPad: return inst->mutable_operand(1); case HloOpcode::kScatter: { if (operand_number != 1) { return nullptr; } PrimitiveType indices_ptype = inst->operand(operand_number)->shape().element_type(); return inst->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(indices_ptype))); } case HloOpcode::kParameter: case HloOpcode::kGather: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGetDimensionSize: case HloOpcode::kSetDimensionSize: case HloOpcode::kConcatenate: case HloOpcode::kReshape: case HloOpcode::kReverse: case HloOpcode::kTuple: case HloOpcode::kAllReduce: case HloOpcode::kReduceScatter: case HloOpcode::kBroadcast: case HloOpcode::kTranspose: case HloOpcode::kSort: case HloOpcode::kSlice: case HloOpcode::kDomain: return nullptr; case HloOpcode::kCustomCall: return nullptr; default: return UnimplementedStrCat("Unimplemented padding for instruction: ", inst->ToString()); } } absl::StatusOr<bool> ReplaceGetSize( HloInstruction* instr, DynamicDimensionInference* dynamic_dimension_inference) { if (instr->opcode() != HloOpcode::kGetDimensionSize) { return false; } HloComputation* computation = instr->parent(); TF_ASSIGN_OR_RETURN(auto legal_shape, ShapeInference::InferGetDimensionSizeShape( instr->operand(0)->shape(), instr->dimension())); TF_RET_CHECK(ShapeUtil::Equal(instr->shape(), legal_shape)) << "instr->shape() " << instr->shape().ToString() << " , " << "legal_shape " << legal_shape.ToString(); TF_RET_CHECK(ShapeUtil::HasPrimitiveType(instr->shape(), S32)); HloInstruction* operand = instr->mutable_operand(0); int64_t dim = instr->dimension(); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, dim); if (dynamic_size != nullptr) { TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(dynamic_size)); dynamic_dimension_inference->ReplaceAllDynamicDimensionUsesWith( instr, dynamic_size); } else { int32_t size = instr->operand(0)->shape().dimensions(dim); HloInstruction* new_instr = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(size))); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(new_instr)); dynamic_dimension_inference->ReplaceAllDynamicDimensionUsesWith(instr, new_instr); } return true; } absl::StatusOr<bool> ReplaceSetSize(HloInstruction* instr) { if (instr->opcode() != HloOpcode::kSetDimensionSize) { return false; } TF_RET_CHECK(Shape::Equal().IgnoreDynamicDimension()( instr->shape(), instr->operand(0)->shape())) << "instr->shape() " << instr->shape().ToString() << " , " << "instruction operand shape " << instr->operand(0)->shape(); HloInstruction* operand = instr->mutable_operand(0); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(operand)); return true; } absl::StatusOr<bool> ReplaceSetBound(HloInstruction* instr) { if (instr->opcode() != HloOpcode::kCustomCall || instr->custom_call_target() != "SetBound") { return false; } TF_RET_CHECK(Shape::Equal().IgnoreDynamicDimension()( instr->shape(), instr->operand(0)->shape())) << "instr->shape() " << instr->shape().ToString() << " , " << "instruction operand shape " << instr->operand(0)->shape(); HloInstruction* operand = instr->mutable_operand(0); TF_RETURN_IF_ERROR(instr->ReplaceAllUsesWith(operand)); return true; } bool ShouldSkipPadOnOperand( const HloInstruction* inst, int64_t operand_num, int64_t dimension, const absl::flat_hash_set<absl::string_view>& execution_threads) { switch (inst->opcode()) { case HloOpcode::kConvolution: { if (operand_num == 0) { if (dimension == inst->convolution_dimension_numbers().input_batch_dimension()) { return true; } const auto& spatial_dims = inst->convolution_dimension_numbers().input_spatial_dimensions(); for (int64_t spatial_dim = 0; spatial_dim < spatial_dims.size(); ++spatial_dim) { if (spatial_dims[spatial_dim] == dimension && inst->window().dimensions(spatial_dim).size() == 1) { return true; } } } return operand_num == 1 && (dimension == inst->convolution_dimension_numbers() .kernel_output_feature_dimension()); } case HloOpcode::kDot: { if (operand_num == 0) { return !absl::c_linear_search( inst->dot_dimension_numbers().lhs_contracting_dimensions(), dimension); } return !absl::c_linear_search( inst->dot_dimension_numbers().rhs_contracting_dimensions(), dimension); } case HloOpcode::kReduce: return !absl::c_linear_search(inst->dimensions(), dimension); case HloOpcode::kSelectAndScatter: case HloOpcode::kReduceWindow: return inst->window().dimensions(dimension).size() == 1; case HloOpcode::kAsyncStart: if (!HloInstruction::IsThreadIncluded(inst->async_execution_thread(), execution_threads)) { return true; } return false; default: return false; } } HloInstruction* PadWithScalar(HloInstruction* inst, int64_t dim, HloInstruction* dynamic_size, HloInstruction* padding_scalar) { CHECK(inst != nullptr && dynamic_size != nullptr && padding_scalar != nullptr); const Shape mask_shape = ShapeUtil::MakeShape(xla::S32, inst->shape().dimensions()); const Shape pred_shape = ShapeUtil::MakeShape(xla::PRED, inst->shape().dimensions()); HloInstruction* iota = inst->AddInstruction(HloInstruction::CreateIota(mask_shape, dim)); HloInstruction* broadcasted_effective_size = inst->AddInstruction( HloInstruction::CreateBroadcast(mask_shape, dynamic_size, {})); HloInstruction* pred = inst->AddInstruction(HloInstruction::CreateCompare( pred_shape, iota, broadcasted_effective_size, ComparisonDirection::kLt)); HloInstruction* broadcasted_identity_value = inst->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::MakeStaticShape(inst->shape()), padding_scalar, {})); HloInstruction* padded = inst->AddInstruction(HloInstruction::CreateTernary( ShapeUtil::MakeStaticShape(inst->shape()), HloOpcode::kSelect, pred, inst, broadcasted_identity_value)); return padded; } HloInstruction* GenerateBinaryMask( HloInstruction* reshape, int64_t input_dim, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> output_dynamic_dims, HloInstruction* one, HloInstruction* zero, bool split_input) { Shape input_shape = split_input ? reshape->operand(0)->shape() : reshape->shape(); Shape output_shape = split_input ? reshape->shape() : reshape->operand(0)->shape(); const Shape mask_input_shape = ShapeUtil::MakeShape(xla::S32, {input_shape.dimensions(input_dim)}); const Shape pred_input_shape = ShapeUtil::MakeShape(xla::PRED, {input_shape.dimensions(input_dim)}); HloInstruction* pred_true = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* input_shape_pred_mask = reshape->AddInstruction( HloInstruction::CreateBroadcast(pred_input_shape, pred_true, {})); bool need_rewrite = false; HloInstruction* iota = reshape->AddInstruction(HloInstruction::CreateIota(mask_input_shape, 0)); for (int64_t i = 1; i < output_dims.size(); ++i) { if (output_dynamic_dims[output_dims[i]] != nullptr) { need_rewrite = true; break; } } if (!need_rewrite) { return nullptr; } for (int64_t i = output_dims.size() - 1; i > 0; i--) { const int64_t output_dim = output_dims[i]; HloInstruction* dynamic_size = output_dynamic_dims[output_dim]; HloInstruction* static_output_dim_size = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( output_shape.dimensions(output_dim)))); HloInstruction* broadcasted_static_output_dim_size = reshape->AddInstruction(HloInstruction::CreateBroadcast( mask_input_shape, static_output_dim_size, {})); if (dynamic_size != nullptr) { HloInstruction* dim_index = reshape->AddInstruction(HloInstruction::CreateBinary( mask_input_shape, HloOpcode::kRemainder, iota, broadcasted_static_output_dim_size)); HloInstruction* broadcasted_effective_size = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, dynamic_size, {})); HloInstruction* selected = reshape->AddInstruction(HloInstruction::CreateCompare( pred_input_shape, dim_index, broadcasted_effective_size, ComparisonDirection::kLt)); input_shape_pred_mask = reshape->AddInstruction( HloInstruction::CreateBinary(pred_input_shape, HloOpcode::kAnd, input_shape_pred_mask, selected)); } iota = reshape->AddInstruction( HloInstruction::CreateBinary(mask_input_shape, HloOpcode::kDivide, iota, broadcasted_static_output_dim_size)); } HloInstruction* broadcasted_one = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, one, {})); HloInstruction* broadcasted_zero = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, zero, {})); return reshape->AddInstruction(HloInstruction::CreateTernary( mask_input_shape, HloOpcode::kSelect, input_shape_pred_mask, broadcasted_one, broadcasted_zero)); } absl::StatusOr<bool> RewriteDynamicReshapeSplitInput( HloInstruction* reshape, int64_t input_dim, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> output_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { VLOG(2) << "Reshaping input dim " << input_dim << " to " << VectorString(output_dims); const Shape operand_shape = reshape->operand(0)->shape(); TF_RET_CHECK(output_dims.size() > 1); const Shape mask_input_shape = ShapeUtil::MakeShape(xla::S32, {operand_shape.dimensions(input_dim)}); const Shape pred_input_shape = ShapeUtil::MakeShape(xla::PRED, {operand_shape.dimensions(input_dim)}); HloInstruction* zero = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); HloInstruction* one = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); HloInstruction* input_shape_binary_mask = GenerateBinaryMask(reshape, input_dim, output_dims, output_dynamic_dims, one, zero, true); if (input_shape_binary_mask == nullptr) { VLOG(2) << "No need to rewrite"; return false; } auto embedded_builder = HloComputation::Builder("add"); { auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(S32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(S32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); } HloComputation* add = reshape->GetModule()->AddEmbeddedComputation(embedded_builder.Build()); Window cumsum_window; WindowDimension* dim = cumsum_window.add_dimensions(); dim->set_size(operand_shape.dimensions(input_dim)); dim->set_stride(1); dim->set_padding_low(operand_shape.dimensions(input_dim) - 1); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); HloInstruction* cumsum = reshape->AddInstruction(HloInstruction::CreateReduceWindow( mask_input_shape, input_shape_binary_mask, zero, cumsum_window, add)); HloInstruction* broadcast_ones = reshape->AddInstruction( HloInstruction::CreateBroadcast(mask_input_shape, one, {})); cumsum = reshape->AddInstruction(HloInstruction::CreateBinary( mask_input_shape, HloOpcode::kSubtract, cumsum, broadcast_ones)); GatherDimensionNumbers gather_dim_numbers; for (int64_t i = 0; i < operand_shape.dimensions_size(); ++i) { if (i != input_dim) { gather_dim_numbers.add_offset_dims(i); } } gather_dim_numbers.add_start_index_map(input_dim); gather_dim_numbers.set_index_vector_dim(1); gather_dim_numbers.add_collapsed_slice_dims(input_dim); HloInstruction* operand_static_dim_size = reshape->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(operand_shape.dimensions(input_dim)))); HloInstruction* operand_static = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( operand_shape, reshape->mutable_operand(0), operand_static_dim_size, input_dim)); std::vector<int64_t> slice_sizes(operand_shape.dimensions().begin(), operand_shape.dimensions().end()); slice_sizes[input_dim] = 1; HloInstruction* gather = reshape->AddInstruction(HloInstruction::CreateGather( ShapeUtil::MakeShape(operand_shape.element_type(), operand_shape.dimensions()), operand_static, cumsum, gather_dim_numbers, slice_sizes, true)); TF_RETURN_IF_ERROR(reshape->ReplaceOperandWith(0, gather)); HloInstruction* reshape_dynamic = reshape; auto users = reshape->users(); for (int64_t output_dim : output_dims) { HloInstruction* output_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, output_dim); if (output_dynamic_size != nullptr) { reshape_dynamic = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( reshape->shape(), reshape_dynamic, output_dynamic_size, output_dim)); } } for (auto* user : users) { TF_RETURN_IF_ERROR(reshape->ReplaceUseWith(user, reshape_dynamic)); } TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, reshape_dynamic, {})); return true; } absl::StatusOr<bool> RewriteDynamicReshapeCombineInput( HloInstruction* reshape, absl::Span<const int64_t> input_dims, int64_t output_dim, absl::Span<HloInstruction*> input_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* zero = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); HloInstruction* one = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); const Shape output_shape = reshape->shape(); const Shape input_shape = reshape->operand(0)->shape(); const Shape mask_output_shape = ShapeUtil::MakeShape(xla::S32, {output_shape.dimensions(output_dim)}); HloInstruction* output_shape_binary_mask = GenerateBinaryMask(reshape, output_dim, input_dims, input_dynamic_dims, one, zero, false); if (output_shape_binary_mask == nullptr) { VLOG(2) << "No need to rewrite"; return false; } HloInstruction* iota = reshape->AddInstruction(HloInstruction::CreateIota(mask_output_shape, 0)); HloComputation::Builder comp_builder("compare"); HloInstruction* lhs_key = comp_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeScalarShape(S32), "lhs_key")); HloInstruction* rhs_key = comp_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeScalarShape(S32), "rhs_key")); comp_builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeScalarShape(S32), "lhs_value")); comp_builder.AddInstruction(HloInstruction::CreateParameter( 3, ShapeUtil::MakeScalarShape(S32), "rhs_value")); comp_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), lhs_key, rhs_key, ComparisonDirection::kGt)); HloComputation* compare = reshape->GetModule()->AddEmbeddedComputation(comp_builder.Build()); HloInstruction* sort = reshape->AddInstruction(HloInstruction::CreateSort( ShapeUtil::MakeTupleShape({mask_output_shape, mask_output_shape}), 0, {output_shape_binary_mask, iota}, compare, true)); HloInstruction* gather_indices = reshape->AddInstruction( HloInstruction::CreateGetTupleElement(mask_output_shape, sort, 1)); GatherDimensionNumbers gather_dim_numbers; for (int64_t i = 0; i < output_shape.dimensions_size(); ++i) { if (i != output_dim) { gather_dim_numbers.add_offset_dims(i); } } gather_dim_numbers.add_start_index_map(output_dim); gather_dim_numbers.set_index_vector_dim(1); gather_dim_numbers.add_collapsed_slice_dims(output_dim); HloInstruction* static_dim_size = reshape->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( reshape->shape().dimensions(output_dim)))); Shape reshape_static_shape = reshape->shape(); reshape_static_shape.set_dynamic_dimension(output_dim, false); HloInstruction* reshape_static = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( reshape_static_shape, reshape, static_dim_size, output_dim)); std::vector<int64_t> gather_slice_sizes(output_shape.dimensions().begin(), output_shape.dimensions().end()); gather_slice_sizes[output_dim] = 1; HloInstruction* gather = reshape->AddInstruction(HloInstruction::CreateGather( output_shape, reshape_static, gather_indices, gather_dim_numbers, gather_slice_sizes, true)); HloInstruction* output_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, output_dim); TF_RET_CHECK(output_dynamic_size != nullptr); gather = reshape->AddInstruction(HloInstruction::CreateSetDimensionSize( gather->shape(), gather, output_dynamic_size, output_dim)); auto users = reshape->users(); for (auto* user : users) { if (user != reshape_static && user != output_dynamic_size) { TF_RETURN_IF_ERROR(reshape->ReplaceUseWith(user, gather)); } } if (reshape == reshape->parent()->root_instruction()) { reshape->parent()->set_root_instruction(gather); } TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(reshape, gather, {})); return true; } absl::StatusOr<bool> RewriteDynamicReshapeSingleGroup( HloInstruction* reshape, absl::Span<const int64_t> input_dims, absl::Span<const int64_t> output_dims, absl::Span<HloInstruction*> input_dynamic_dims, absl::Span<HloInstruction*> output_dynamic_dims, DynamicDimensionInference* dynamic_dimension_inference) { VLOG(2) << "Rewriting dynamic reshape " << reshape->ToString() << " input dims: " << VectorString(input_dims) << " output dims: " << VectorString(output_dims); const Shape operand_shape = reshape->operand(0)->shape(); const Shape output_shape = reshape->shape(); if (input_dims.size() == 1) { int64_t input_dim = input_dims[0]; if (operand_shape.dimensions()[input_dim] == 1) { return false; } return RewriteDynamicReshapeSplitInput(reshape, input_dim, output_dims, output_dynamic_dims, dynamic_dimension_inference); } if (output_dims.size() == 1) { int64_t output_dim = output_dims[0]; if (output_shape.dimensions()[output_dim] == 1) { return false; } return RewriteDynamicReshapeCombineInput(reshape, input_dims, output_dim, input_dynamic_dims, dynamic_dimension_inference); } TF_RET_CHECK(false); return false; } absl::StatusOr<bool> RewriteReverse( HloInstruction* reverse, DynamicDimensionInference* dynamic_dimension_inference) { auto reverse_dims = reverse->dimensions(); const Shape& reverse_shape = reverse->shape(); std::set<int64_t> dynamic_reverse_dims; for (int64_t reverse_dim : reverse_dims) { HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(reverse, {}, reverse_dim); if (dynamic_size == nullptr) { continue; } dynamic_reverse_dims.insert(reverse_dim); } if (dynamic_reverse_dims.empty()) { return false; } PaddingConfig padding; Shape pad_shape = reverse_shape; for (int i = 0; i < reverse_shape.rank(); ++i) { auto dimension = padding.add_dimensions(); if (dynamic_reverse_dims.count(i) > 0) { dimension->set_edge_padding_low(0); dimension->set_edge_padding_high(reverse_shape.dimensions(i)); dimension->set_interior_padding(0); pad_shape.set_dimensions(i, 2 * pad_shape.dimensions(i)); } } HloInstruction* cloned_reverse = reverse->AddInstruction(reverse->Clone()); HloInstruction* zero = reverse->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(pad_shape.element_type()))); HloInstruction* pad = reverse->AddInstruction( HloInstruction::CreatePad(pad_shape, cloned_reverse, zero, padding)); std::vector<HloInstruction*> start_indices; start_indices.reserve(reverse_shape.rank()); for (int i = 0; i < reverse_shape.rank(); ++i) { if (dynamic_reverse_dims.count(i) > 0) { HloInstruction* bound_size = reverse->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(reverse_shape.dimensions(i)))); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(reverse, {}, i); HloInstruction* start_offset = reverse->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kSubtract, bound_size, dynamic_size)); start_indices.push_back(start_offset); } else { HloInstruction* zero = reverse->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); start_indices.push_back(zero); } } HloInstruction* dynamic_reverse = reverse->AddInstruction(HloInstruction::CreateDynamicSlice( reverse_shape, pad, start_indices, reverse_shape.dimensions())); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reverse, dynamic_reverse, {})); TF_RETURN_IF_ERROR(reverse->ReplaceAllUsesWith(dynamic_reverse)); return true; } HloInstruction* RewriteInputWithDynamicPadding( HloInstruction* conv, HloInstruction* input, HloInstruction* padding_value, absl::Span<HloInstruction*> padding_before, Window* input_window, absl::FunctionRef<int64_t(int64_t)> window_dim_to_shape_dim) { HloInstruction* zero_s32 = conv->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(S32))); Shape padded_shape = input->shape(); PaddingConfig padding_configs; for (int64_t i = 0; i < input->shape().rank(); ++i) { PaddingConfig::PaddingConfigDimension padding_dim; *padding_configs.add_dimensions() = padding_dim; } std::vector<HloInstruction*> start_indices(input->shape().rank(), zero_s32); for (int64_t dim_index = 0; dim_index < input_window->dimensions_size(); ++dim_index) { if (padding_before[dim_index] == nullptr) { continue; } int64_t shape_dim = window_dim_to_shape_dim(dim_index); WindowDimension* window_dim = input_window->mutable_dimensions(dim_index); auto* padding_dim = padding_configs.mutable_dimensions(shape_dim); const int64_t dilated_window_size = window_util::DilatedBound( window_dim->size(), window_dim->window_dilation()); padding_dim->set_edge_padding_low(dilated_window_size); padding_dim->set_edge_padding_high(window_dim->padding_high() + window_dim->padding_low()); padding_dim->set_interior_padding(window_dim->base_dilation() - 1); HloInstruction* slicing_start = conv->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kSubtract, conv->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( padding_dim->edge_padding_low()))), padding_before[dim_index])); start_indices[shape_dim] = slicing_start; padded_shape.mutable_dimensions()[shape_dim] = window_dim->padding_low() + window_util::DilatedBound(padded_shape.dimensions(shape_dim), window_dim->base_dilation()) + window_dim->padding_high(); window_dim->clear_padding_high(); window_dim->clear_padding_low(); window_dim->set_base_dilation(1); input->mutable_shape()->set_dynamic_dimension(shape_dim, false); } HloInstruction* pad = MakePadHlo(input, padding_value, padding_configs).value(); input = conv->AddInstruction(HloInstruction::CreateDynamicSlice( padded_shape, pad, start_indices, padded_shape.dimensions())); return input; } absl::StatusOr<bool> RewriteDynamicConvolutionInputGrad( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* grad = custom_call_conv->mutable_operand(1); HloInstruction* kernel = custom_call_conv->mutable_operand(2); TF_RET_CHECK(kernel->shape().is_static()); auto dnums = custom_call_conv->convolution_dimension_numbers(); Window window = custom_call_conv->window(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(1), {}, input_spatial_dim); if (operand_dynamic_size == nullptr) { continue; } grad = PadWithScalar(grad, input_spatial_dim, operand_dynamic_size, zero); HloInstruction* slice = custom_call_conv->AddInstruction(HloInstruction::CreateSlice( ShapeUtil::MakeShape(S32, {1}), custom_call_conv->mutable_operand(0), {input_spatial_dim}, {input_spatial_dim + 1}, {1})); HloInstruction* dynamic_input_size = custom_call_conv->AddInstruction( HloInstruction::CreateReshape(ShapeUtil::MakeScalarShape(S32), slice)); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedInputGradSize( dynamic_input_size, window_dim.size(), window_dim.window_dilation(), window_dim.base_dilation(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { grad = RewriteInputWithDynamicPadding( custom_call_conv, grad, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } PrecisionConfig precision_config; if (custom_call_conv->precision_config().operand_precision_size() == 3) { *precision_config.mutable_operand_precision() = { custom_call_conv->precision_config().operand_precision().begin() + 1, custom_call_conv->precision_config().operand_precision().end()}; } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), grad, kernel, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicConvolutionForward( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* input = custom_call_conv->mutable_operand(0); HloInstruction* kernel = custom_call_conv->mutable_operand(1); Window window = custom_call_conv->window(); auto dnums = custom_call_conv->convolution_dimension_numbers(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_spatial_dim); if (operand_dynamic_size == nullptr) { continue; } input = PadWithScalar(input, input_spatial_dim, operand_dynamic_size, zero); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } const int64_t input_feature_dim = dnums.input_feature_dimension(); if (HloInstruction* input_feature_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_feature_dim)) { input = PadWithScalar(input, input_feature_dim, input_feature_dynamic_size, zero); } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { input = RewriteInputWithDynamicPadding( custom_call_conv, input, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), input, kernel, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicConvolutionKernelGrad( HloInstruction* custom_call_conv, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* activations = custom_call_conv->mutable_operand(0); HloInstruction* gradients = custom_call_conv->mutable_operand(1); TF_RET_CHECK(dynamic_dimension_inference->HasDynamicDimension(activations)); TF_RET_CHECK(dynamic_dimension_inference->HasDynamicDimension(gradients)); Window window = custom_call_conv->window(); auto dnums = custom_call_conv->convolution_dimension_numbers(); HloInstruction* zero = custom_call_conv->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(custom_call_conv->shape().element_type()))); std::vector<HloInstruction*> padding_before( dnums.input_spatial_dimensions_size(), nullptr); for (int64_t spatial_dim_index = 0; spatial_dim_index < dnums.input_spatial_dimensions_size(); ++spatial_dim_index) { int64_t input_spatial_dim = dnums.input_spatial_dimensions(spatial_dim_index); int64_t kernel_spatial_dim = dnums.kernel_spatial_dimensions(spatial_dim_index); HloInstruction* activations_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_spatial_dim); if (activations_dynamic_size != nullptr) { activations = PadWithScalar(activations, input_spatial_dim, activations_dynamic_size, zero); } HloInstruction* gradients_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(1), {}, kernel_spatial_dim); if (gradients_dynamic_size != nullptr) { gradients = PadWithScalar(gradients, kernel_spatial_dim, gradients_dynamic_size, zero); } if (activations_dynamic_size == nullptr || gradients_dynamic_size == nullptr) { TF_RET_CHECK(activations_dynamic_size == nullptr && gradients_dynamic_size == nullptr); continue; } int64_t output_spatial_dim = dnums.output_spatial_dimensions(spatial_dim_index); const WindowDimension& window_dim = window.dimensions(spatial_dim_index); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( activations_dynamic_size, custom_call_conv->shape().dimensions(output_spatial_dim), window_dim.stride(), window_dim.window_dilation(), custom_call_conv->padding_type()); padding_before[spatial_dim_index] = dynamic_window_dims.padding_before; } const int64_t input_feature_dim = dnums.input_feature_dimension(); if (HloInstruction* input_feature_dynamic_size = dynamic_dimension_inference->GetDynamicSize( custom_call_conv->mutable_operand(0), {}, input_feature_dim)) { activations = PadWithScalar(activations, input_feature_dim, input_feature_dynamic_size, zero); } if (custom_call_conv->padding_type() == PaddingType::PADDING_SAME) { activations = RewriteInputWithDynamicPadding( custom_call_conv, activations, zero, absl::MakeSpan(padding_before), &window, [&](int64_t dim) { return dnums.input_spatial_dimensions(dim); }); } HloInstruction* static_conv = custom_call_conv->AddInstruction(HloInstruction::CreateConvolve( custom_call_conv->shape(), activations, gradients, custom_call_conv->feature_group_count(), custom_call_conv->batch_group_count(), window, custom_call_conv->convolution_dimension_numbers(), custom_call_conv->precision_config())); TF_RETURN_IF_ERROR(custom_call_conv->ReplaceAllUsesWith(static_conv)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( custom_call_conv, static_conv, {})); return true; } absl::StatusOr<bool> RewriteDynamicReduceWindowSamePadding( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { if (hlo->shape().IsTuple()) { return Unimplemented("DynamicReduceWindowSamePadding not yet supported."); } HloInstruction* input = hlo->mutable_operand(0); HloInstruction* init = hlo->mutable_operand(1); int64_t rank = hlo->shape().rank(); Window window = hlo->window(); std::vector<HloInstruction*> padding_before(hlo->shape().rank(), nullptr); for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(0), {}, dim_index); if (operand_dynamic_size == nullptr) { continue; } const WindowDimension& window_dim = window.dimensions(dim_index); if (window_util::IsTrivialWindowDimension(window_dim)) { continue; } input = PadWithScalar(input, dim_index, operand_dynamic_size, init); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_SAME); padding_before[dim_index] = dynamic_window_dims.padding_before; } input = RewriteInputWithDynamicPadding( hlo, input, init, absl::MakeSpan(padding_before), &window, [](int64_t dim) { return dim; }); HloInstruction* rewritten = hlo->AddInstruction(HloInstruction::CreateReduceWindow( hlo->shape(), input, init, window, hlo->called_computations()[0])); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWith(rewritten)); TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(hlo, rewritten, {})); return true; } absl::StatusOr<bool> RewriteDynamicSelectAndScatterSamePadding( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* input = hlo->mutable_operand(0); HloInstruction* source = hlo->mutable_operand(1); HloInstruction* init = hlo->mutable_operand(2); TF_ASSIGN_OR_RETURN(HloInstruction * input_padding_value, ChooseIdentityValue(hlo, 0)); int64_t rank = hlo->shape().rank(); Window window = hlo->window(); std::vector<HloInstruction*> padding_before(hlo->shape().rank(), nullptr); for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { const WindowDimension& window_dim = window.dimensions(dim_index); if (window_util::IsTrivialWindowDimension(window_dim)) { continue; } HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(0), {}, dim_index); if (operand_dynamic_size == nullptr) { continue; } input = PadWithScalar(input, dim_index, operand_dynamic_size, input_padding_value); HloInstruction* source_dynamic_size = dynamic_dimension_inference->GetDynamicSize(hlo->mutable_operand(1), {}, dim_index); if (source_dynamic_size == nullptr) { continue; } source = PadWithScalar(source, dim_index, source_dynamic_size, init); DynamicWindowDims dynamic_window_dims = GetWindowedOutputSize( operand_dynamic_size, window_dim.size(), window_dim.window_dilation(), window_dim.stride(), PaddingType::PADDING_SAME); padding_before[dim_index] = dynamic_window_dims.padding_before; } input = RewriteInputWithDynamicPadding( hlo, input, input_padding_value, absl::MakeSpan(padding_before), &window, [](int64_t dim) { return dim; }); HloInstruction* rewritten = hlo->AddInstruction(HloInstruction::CreateSelectAndScatter( input->shape(), input, hlo->called_computations()[0], window, source, init, hlo->called_computations()[1])); std::vector<HloInstruction*> start_indices( input->shape().rank(), hlo->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(S32)))); PaddingConfig padding_configs; for (int64_t dim_index = 0; dim_index < rank; ++dim_index) { PaddingConfig::PaddingConfigDimension padding_dim; if (padding_before[dim_index] != nullptr) { const WindowDimension& window_dim = window.dimensions(dim_index); const int64_t dilated_window_size = window_util::DilatedBound( window_dim.size(), window_dim.window_dilation()); padding_dim.set_edge_padding_high(dilated_window_size); start_indices[dim_index] = padding_before[dim_index]; } *padding_configs.add_dimensions() = padding_dim; } HloInstruction* padded = MakePadHlo(rewritten, init, padding_configs).value(); rewritten = hlo->AddInstruction(HloInstruction::CreateDynamicSlice( hlo->shape(), padded, start_indices, hlo->shape().dimensions())); TF_RETURN_IF_ERROR(hlo->ReplaceAllUsesWith(rewritten)); TF_RETURN_IF_ERROR( dynamic_dimension_inference->ForwardDynamicSize(hlo, rewritten, {})); return true; } absl::StatusOr<bool> RewriteDynamicConcat( HloInstruction* concat, DynamicDimensionInference* dynamic_dimension_inference) { const int64_t concat_dim = concat->concatenate_dimension(); if (dynamic_dimension_inference->GetDynamicSize(concat, {}, concat_dim) == nullptr) { return false; } std::vector<HloInstruction*> offsets; offsets.reserve(concat->shape().dimensions_size()); for (int64_t i = 0; i < concat->shape().dimensions_size(); ++i) { offsets.push_back(concat->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0)))); } HloInstruction* rewritten_concat = concat; auto prev_users = concat->users(); for (int64_t i = 0; i < concat->operand_count(); ++i) { HloInstruction* operand = concat->mutable_operand(i); rewritten_concat = concat->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( rewritten_concat->shape(), rewritten_concat, operand, offsets)); HloInstruction* dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, concat_dim); if (dynamic_size == nullptr) { HloInstruction* static_size = concat->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( operand->shape().dimensions(concat_dim)))); offsets[concat_dim] = concat->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kAdd, offsets[concat_dim], static_size)); } else { offsets[concat_dim] = concat->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(S32), HloOpcode::kAdd, offsets[concat_dim], dynamic_size)); } } TF_RETURN_IF_ERROR(concat->ReplaceUsesWith(prev_users, rewritten_concat)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( concat, rewritten_concat, {})); return true; } absl::StatusOr<bool> RewriteDynamicSort( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* dynamic_size = nullptr; HloSortInstruction* sort = Cast<HloSortInstruction>(hlo); int64_t sort_dim = sort->sort_dimension(); for (auto* operand : sort->operands()) { if (dynamic_size == nullptr) { dynamic_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, sort_dim); } } if (dynamic_size == nullptr) { return false; } Shape operand_shape = ShapeUtil::ChangeElementType(sort->operand(0)->shape(), S32); Shape broadcast_shape = ShapeUtil::MakeStaticShape(operand_shape); HloInstruction* iota = hlo->AddInstruction( HloInstruction::CreateIota(broadcast_shape, sort_dim)); HloInstruction* dynamic_size_broadcasted = hlo->AddInstruction( HloInstruction::CreateBroadcast(broadcast_shape, dynamic_size, {})); HloInstruction* lt = hlo->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::ChangeElementType(broadcast_shape, PRED), iota, dynamic_size_broadcasted, ComparisonDirection::kLt)); sort->AppendOperand(lt); const int64_t param_number_before_rewritten = sort->called_computations()[0]->num_parameters(); auto new_param_0 = HloInstruction::CreateParameter( param_number_before_rewritten, ShapeUtil::MakeScalarShape(PRED), "inbound_lhs"); auto new_param_1 = HloInstruction::CreateParameter( param_number_before_rewritten + 1, ShapeUtil::MakeScalarShape(PRED), "inbound_rhs"); std::vector<const HloInstruction*> extra_parameters{new_param_0.get(), new_param_1.get()}; HloComputation* sort_comp = sort->GetModule()->AddEmbeddedComputation( sort->called_computations()[0]->CloneWithReplacements( nullptr, extra_parameters)); auto inbound_lhs = sort_comp->parameter_instruction(param_number_before_rewritten); auto inbound_rhs = sort_comp->parameter_instruction(param_number_before_rewritten + 1); sort->ReplaceCalledComputations( [&](HloComputation* comp) { return sort_comp; }); auto out_of_bound_rhs = sort_comp->AddInstruction(HloInstruction::CreateUnary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kNot, inbound_rhs)); auto sort_comp_or_out_of_bound_rhs = sort_comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kOr, sort_comp->root_instruction(), out_of_bound_rhs)); auto new_root = sort_comp->AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeScalarShape(PRED), HloOpcode::kAnd, inbound_lhs, sort_comp_or_out_of_bound_rhs)); sort_comp->set_root_instruction(new_root); if (sort->shape().IsTuple()) { *sort->mutable_shape()->add_tuple_shapes() = ShapeUtil::ChangeElementType(operand_shape, PRED); } else { auto sort_users = sort->users(); auto sort_clone = hlo->AddInstruction(sort->Clone()); *sort_clone->mutable_shape() = ShapeUtil::MakeTupleShape( {sort->shape(), ShapeUtil::ChangeElementType(operand_shape, PRED)}); auto rewritten_sort = hlo->AddInstruction( HloInstruction::CreateGetTupleElement(sort->shape(), sort_clone, 0)); for (HloInstruction* user : sort_users) { TF_RETURN_IF_ERROR(sort->ReplaceUseWith(user, rewritten_sort)); } TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( sort, rewritten_sort, {})); if (hlo->parent()->root_instruction() == sort) { hlo->parent()->set_root_instruction(rewritten_sort); } } return true; } absl::StatusOr<bool> RewriteDynamicBinaryOp( HloInstruction* binary, DynamicDimensionInference* dynamic_dimension_inference) { HloInstruction* operand_0 = binary->mutable_operand(0); HloInstruction* operand_1 = binary->mutable_operand(1); TF_RET_CHECK(operand_0->shape().rank() == operand_1->shape().rank()); auto dims_0 = dynamic_dimension_inference->GetDynamicSizes(operand_0, {}); auto dims_1 = dynamic_dimension_inference->GetDynamicSizes(operand_1, {}); bool changed = false; for (int64_t i = 0; i < dims_0.size(); ++i) { HloInstruction* dim_0 = dims_0[i]; HloInstruction* dim_1 = dims_1[i]; if (dims_0[i] != dims_1[i] && dims_0[i] != nullptr && dims_1[i] != nullptr) { changed = true; auto rewrite_operand = [&](HloInstruction* pred, HloInstruction* operand) -> HloInstruction* { Shape static_shape = ShapeUtil::MakeStaticShape(operand->shape()); pred = binary->AddInstruction(HloInstruction::CreateBroadcast( ShapeUtil::ChangeElementType(static_shape, PRED), pred, {})); Shape slice_shape = static_shape; slice_shape.set_dimensions(i, 1); std::vector<int64_t> start_indices(slice_shape.rank(), 0); std::vector<int64_t> strides(slice_shape.rank(), 1); HloInstruction* slice = binary->AddInstruction( HloInstruction::CreateSlice(slice_shape, operand, start_indices, slice_shape.dimensions(), strides)); Shape reshape_shape = ShapeUtil::DeleteDimension(i, slice_shape); HloInstruction* reshape = binary->AddInstruction( HloInstruction::CreateReshape(reshape_shape, slice)); std::vector<int64_t> broadcast_dims; broadcast_dims.reserve(static_shape.rank() - 1); for (int64_t j = 0; j < static_shape.rank(); ++j) { if (j != i) { broadcast_dims.push_back(j); } } HloInstruction* broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBroadcast(static_shape, reshape, broadcast_dims), "implicit_broadcast"); HloInstruction* select = binary->AddInstruction(HloInstruction::CreateTernary( static_shape, HloOpcode::kSelect, pred, broadcast, operand)); return select; }; HloInstruction* one = binary->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::One(S32))); auto operand_0_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_0, dim_1, ComparisonDirection::kLt), "lhs_less_than_rhs"); auto is_one = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_0, one, ComparisonDirection::kEq), "lhs_is_one"); operand_0_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, operand_0_needs_broadcast), "lhs_needs_implicit_broadcast"); operand_0 = rewrite_operand(operand_0_needs_broadcast, operand_0); auto operand_1_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_1, dim_0, ComparisonDirection::kLt), "rhs_less_than_lhs"); is_one = binary->parent()->AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), dim_1, one, ComparisonDirection::kEq), "rhs_is_one"); operand_1_needs_broadcast = binary->parent()->AddInstruction( HloInstruction::CreateBinary(ShapeUtil::MakeShape(PRED, {}), HloOpcode::kAnd, is_one, operand_1_needs_broadcast), "lhs_needs_implicit_broadcast"); operand_1 = rewrite_operand(operand_1_needs_broadcast, operand_1); } } if (changed) { TF_RETURN_IF_ERROR(binary->ReplaceOperandWith(0, operand_0)); TF_RETURN_IF_ERROR(binary->ReplaceOperandWith(1, operand_1)); } return changed; } absl::StatusOr<bool> RewriteDynamicUpdateSlice( HloInstruction* hlo, DynamicDimensionInference* dynamic_dimension_inference) { HloDynamicUpdateSliceInstruction* dus = Cast<HloDynamicUpdateSliceInstruction>(hlo); HloInstruction* update = dus->mutable_operand(1); HloInstruction* base = dus->mutable_operand(0); std::vector<HloInstruction*> dynamic_dims_in_partial_update( update->shape().rank(), nullptr); bool needs_rewrite = false; for (int64_t i = 0; i < update->shape().rank(); ++i) { if (update->shape().dimensions(i) < base->shape().dimensions(i)) { HloInstruction* dynamic_dim = dynamic_dimension_inference->GetDynamicSize(update, {}, i); if (dynamic_dim != nullptr) { dynamic_dims_in_partial_update[i] = dynamic_dim; needs_rewrite = true; } } } if (!needs_rewrite) { return false; } std::vector<HloInstruction*> indices; indices.reserve(dus->operand_count() - 2); for (int64_t i = 2; i < dus->operand_count(); ++i) { indices.push_back(dus->mutable_operand(i)); } HloInstruction* base_slice = dus->AddInstruction(HloInstruction::CreateDynamicSlice( update->shape(), base, indices, update->shape().dimensions())); for (int64_t i = 0; i < dynamic_dims_in_partial_update.size(); ++i) { HloInstruction* dynamic_dim = dynamic_dims_in_partial_update[i]; if (dynamic_dim != nullptr) { Shape mask_shape_int = ShapeUtil::ChangeElementType(update->shape(), S32); Shape mask_shape_pred = ShapeUtil::ChangeElementType(update->shape(), PRED); HloInstruction* iota = dus->AddInstruction(HloInstruction::CreateIota(mask_shape_int, i)); HloInstruction* broadcast_dim = dus->AddInstruction( HloInstruction::CreateBroadcast(mask_shape_int, dynamic_dim, {})); HloInstruction* pred = dus->AddInstruction(HloInstruction::CreateCompare( mask_shape_pred, iota, broadcast_dim, ComparisonDirection::kLt)); update = dus->AddInstruction(HloInstruction::CreateTernary( update->shape(), HloOpcode::kSelect, pred, update, base_slice)); } } TF_RETURN_IF_ERROR(dus->ReplaceOperandWith(1, update)); return true; } absl::StatusOr<bool> RewriteDynamicReshape( HloInstruction* reshape, DynamicDimensionInference* dynamic_dimension_inference) { bool changed = false; HloInstruction* operand = reshape->mutable_operand(0); std::vector<HloInstruction*> input_dynamic_dims; input_dynamic_dims.reserve(operand->shape().dimensions_size()); for (int64_t dim = 0; dim < operand->shape().dimensions_size(); ++dim) { input_dynamic_dims.push_back( dynamic_dimension_inference->GetDynamicSize(operand, {}, dim)); } std::vector<HloInstruction*> output_dynamic_dims; output_dynamic_dims.reserve(reshape->shape().dimensions_size()); for (int64_t dim = 0; dim < reshape->shape().dimensions_size(); ++dim) { output_dynamic_dims.push_back( dynamic_dimension_inference->GetDynamicSize(reshape, {}, dim)); } auto common_factors = CommonFactors(operand->shape().dimensions(), reshape->shape().dimensions()); bool need_flatten_unflatten = false; auto is_dynamic_dimension = [&](int64_t dim) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference->GetDynamicSize(reshape, {}, dim); return operand_dynamic_size != nullptr || reshape->shape().is_dynamic_dimension(dim); }; auto should_skip_common_factor_group = [&](DimensionVector input_dims, DimensionVector output_dims) { if (input_dims.empty() || output_dims.empty()) { return true; } if (absl::c_none_of(output_dims, is_dynamic_dimension)) { VLOG(2) << "All dimensions are static in this common factor group"; return true; } if (input_dims.size() == 1 && output_dims.size() == 1) { return true; } return false; }; for (int64_t i = 0; i < common_factors.size() - 1; ++i) { auto start = common_factors[i]; auto end = common_factors[i + 1]; DimensionVector input_dims; DimensionVector output_dims; for (int64_t dim = start.first; dim < end.first; ++dim) { input_dims.push_back(dim); } for (int64_t dim = start.second; dim < end.second; ++dim) { output_dims.push_back(dim); } if (should_skip_common_factor_group(input_dims, output_dims)) { continue; } if (input_dims.size() > 1 && output_dims.size() > 1) { need_flatten_unflatten = true; break; } } if (need_flatten_unflatten) { VLOG(2) << "Rewrite dynamic reshape to flatten-unflatten pair. " << reshape->ToString(); int64_t num_elements = ShapeUtil::ElementsIn(operand->shape()); Shape flattened_shape = ShapeUtil::MakeShape(operand->shape().element_type(), {num_elements}); HloInstruction* flatten = operand->parent()->AddInstruction( HloInstruction::CreateReshape(flattened_shape, operand), absl::StrCat(reshape->name(), ".flatten")); HloInstruction* dynamic_size = operand->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(num_elements))); for (int64_t i = 0; i < operand->shape().rank(); i++) { HloInstruction* dynamic_dim_size = dynamic_dimension_inference->GetDynamicSize(operand, {}, i); if (dynamic_dim_size != nullptr) { HloInstruction* static_dim_size = operand->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>( operand->shape().dimensions(i)))); dynamic_size = operand->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kDivide, dynamic_size, static_dim_size)); dynamic_size = operand->AddInstruction(HloInstruction::CreateBinary( dynamic_size->shape(), HloOpcode::kMultiply, dynamic_size, dynamic_dim_size)); } } dynamic_dimension_inference->SetDynamicSize(flatten, {}, 0, dynamic_size); Shape unflattened_shape = ShapeUtil::MakeStaticShape(reshape->shape()); HloInstruction* unflatten = reshape->parent()->AddInstruction( HloInstruction::CreateReshape(unflattened_shape, flatten), absl::StrCat(reshape->name(), ".unflatten")); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, unflatten, {})); TF_ASSIGN_OR_RETURN( bool changed_unused, RewriteDynamicReshape(flatten, dynamic_dimension_inference)); TF_ASSIGN_OR_RETURN( changed_unused, RewriteDynamicReshape(unflatten, dynamic_dimension_inference)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, unflatten, {})); TF_RETURN_IF_ERROR(reshape->ReplaceAllUsesWith(unflatten)); return true; } for (int64_t i = 0; i < common_factors.size() - 1; ++i) { auto start = common_factors[i]; auto end = common_factors[i + 1]; DimensionVector input_dims; DimensionVector output_dims; for (int64_t dim = start.first; dim < end.first; ++dim) { input_dims.push_back(dim); } for (int64_t dim = start.second; dim < end.second; ++dim) { output_dims.push_back(dim); } VLOG(2) << "input_dims: " << VectorString(input_dims); VLOG(2) << "output_dims: " << VectorString(output_dims); if (should_skip_common_factor_group(input_dims, output_dims)) { continue; } if (input_dims.size() > 1 && output_dims.size() > 1) { return Internal( "Should be handled by decomposing reshape into " "flatten-unflatten pair. %s", reshape->ToString()); } TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicReshapeSingleGroup( reshape, input_dims, output_dims, absl::MakeSpan(input_dynamic_dims), absl::MakeSpan(output_dynamic_dims), dynamic_dimension_inference)); changed |= c; } if (reshape->opcode() == HloOpcode::kDynamicReshape) { auto* static_reshape = reshape->AddInstruction(HloInstruction::CreateReshape( reshape->shape(), reshape->mutable_operand(0))); TF_RETURN_IF_ERROR(reshape->ReplaceAllUsesWith(static_reshape)); TF_RETURN_IF_ERROR(dynamic_dimension_inference->ForwardDynamicSize( reshape, static_reshape, {})); changed = true; } return changed; } class DynamicShapeRemovingVisitor : public DfsHloRewriteVisitor { public: explicit DynamicShapeRemovingVisitor( const OpSupportsDynamismHandler& op_supports_dynamism_handler, DynamicDimensionInference* dynamic_dimension_inference, const absl::flat_hash_set<absl::string_view>& execution_threads) : op_supports_dynamism_handler_(op_supports_dynamism_handler), dynamic_dimension_inference_(dynamic_dimension_inference), execution_threads_(execution_threads) {} absl::Status DefaultAction(HloInstruction* hlo) override; absl::Status HandleCustomCall(HloInstruction* hlo) override; absl::Status HandleTuple(HloInstruction* hlo) override; absl::Status HandleGetTupleElement(HloInstruction* hlo) override; absl::Status HandleParameter(HloInstruction* hlo) override; absl::Status HandleInfeed(HloInstruction* hlo) override; absl::Status HandleAsyncStart(HloInstruction* hlo) override; absl::Status HandleAsyncUpdate(HloInstruction* hlo) override; absl::Status HandleAsyncDone(HloInstruction* hlo) override; absl::Status HandleWhile(HloInstruction* hlo) override; absl::Status HandleConditional(HloInstruction* hlo) override; absl::Status HandleGetDimensionSize(HloInstruction* hlo) override; absl::Status HandleSetDimensionSize(HloInstruction* hlo) override; static absl::StatusOr<bool> Run( HloComputation* computation, const OpSupportsDynamismHandler& op_supports_dynamism_handler, DynamicDimensionInference* dynamic_shape_inference, const absl::flat_hash_set<absl::string_view>& execution_threads, bool require_dynamic_output) { DynamicShapeRemovingVisitor visitor(op_supports_dynamism_handler, dynamic_shape_inference, execution_threads); TF_RETURN_IF_ERROR(computation->Accept(&visitor)); if (require_dynamic_output) { HloInstruction* root = computation->root_instruction(); if (dynamic_shape_inference->HasDynamicDimension(root)) { TF_ASSIGN_OR_RETURN(HloInstruction * new_root, visitor.ConvertToDynamic(root)); computation->set_root_instruction(new_root); } } return visitor.changed(); } private: absl::StatusOr<HloInstruction*> ConvertToDynamic(HloInstruction* inst); absl::Status ConvertOperandsToDynamic(HloInstruction* inst); const OpSupportsDynamismHandler& op_supports_dynamism_handler_; DynamicDimensionInference* dynamic_dimension_inference_; absl::flat_hash_set<absl::string_view> execution_threads_; }; absl::StatusOr<HloInstruction*> DynamicShapeRemovingVisitor::ConvertToDynamic( HloInstruction* inst) { if (!dynamic_dimension_inference_->HasDynamicDimension(inst)) { return absl::OkStatus(); } MarkAsChanged(); Shape shape = dynamic_dimension_inference_->GetDynamicShape(inst); auto gtes = TupleUtil::DisassembleTupleInstruction(inst); gtes.ForEachMutableElement([&](const ShapeIndex& index, HloInstruction** element) { const Shape& subshape = ShapeUtil::GetSubshape(shape, index); if (!subshape.IsArray()) { return; } if (!dynamic_dimension_inference_->HasDynamicDimension(inst, index)) { return; } std::vector<HloInstruction*> slice_operand; slice_operand.push_back(*element); for (int64_t i = 0; i < subshape.dimensions_size(); ++i) { auto dimension_size = dynamic_dimension_inference_->GetDynamicSize(inst, index, i); if (dimension_size == nullptr) { dimension_size = inst->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR0<int32_t>(subshape.dimensions(i)))); } slice_operand.push_back(dimension_size); } *element = inst->AddInstruction(HloInstruction::CreateCustomCall( subshape, slice_operand, "SliceToDynamic")); }); return TupleUtil::AssembleTupleInstruction(inst->parent(), std::move(gtes)); } absl::Status DynamicShapeRemovingVisitor::ConvertOperandsToDynamic( HloInstruction* inst) { for (int64_t i = 0; i < inst->operand_count(); ++i) { auto operand = inst->mutable_operand(i); if (dynamic_dimension_inference_->HasDynamicDimension(operand)) { TF_ASSIGN_OR_RETURN(auto dynamic_operand, ConvertToDynamic(inst->mutable_operand(i))); TF_RETURN_IF_ERROR(inst->ReplaceOperandWith(i, dynamic_operand)); MarkAsChanged(); } } return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::DefaultAction(HloInstruction* hlo) { OpDynamismSupport op_support = OpDynamismSupport::kNoSupport; if (op_supports_dynamism_handler_) { op_support = op_supports_dynamism_handler_(hlo); } if (op_support == OpDynamismSupport::kRequired) { VLOG(1) << "op doesn't support static tensor: " << hlo->ToString(); return ConvertOperandsToDynamic(hlo); } const bool input_is_dynamic = absl::c_any_of( hlo->operands(), [](const HloInstruction* hlo) { return hlo->shape().is_dynamic(); }); if (!input_is_dynamic) { return absl::OkStatus(); } TF_RET_CHECK(op_support != OpDynamismSupport::kNoSupport) << "Dynamic input unexpectedly found for unsupported instruction: " << hlo->ToString(); return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleGetTupleElement( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleTuple(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleInfeed(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleParameter(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleCustomCall( HloInstruction* hlo) { if (hlo->custom_call_target() == "SliceToDynamic" || hlo->custom_call_target() == "PadToStatic") { return absl::OkStatus(); } return DefaultAction(hlo); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncStart( HloInstruction* hlo) { if (HloInstruction::IsThreadIncluded(hlo->async_execution_thread(), execution_threads_)) { return absl::OkStatus(); } return ConvertOperandsToDynamic(hlo); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncUpdate( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleAsyncDone(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleWhile(HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleConditional( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleGetDimensionSize( HloInstruction* hlo) { return absl::OkStatus(); } absl::Status DynamicShapeRemovingVisitor::HandleSetDimensionSize( HloInstruction* hlo) { *hlo->mutable_shape() = hlo->operand(0)->shape(); hlo->mutable_shape()->set_dynamic_dimension(hlo->dimension(), false); return absl::OkStatus(); } } absl::StatusOr<bool> DynamicPadder::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Pre DynamicPadder HLO:"; XLA_VLOG_LINES(2, module->ToString()); HloDCE dce; TF_ASSIGN_OR_RETURN(bool changed, dce.Run(module, execution_threads)); TF_ASSIGN_OR_RETURN( DynamicDimensionInference dynamic_dimension_inference, DynamicDimensionInference::Run( module, options_.op_supports_dynamism_handler, options_.custom_call_handler, options_.shape_check_mode, options_.assertion_generator, execution_threads)); changed |= dynamic_dimension_inference.changed(); std::vector<HloComputation*> computations = module->MakeComputationPostOrder(execution_threads); for (HloComputation* computation : computations) { for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { OpDynamismSupport has_dynamism_support = OpDynamismSupport::kNoSupport; if (options_.op_supports_dynamism_handler != nullptr) { has_dynamism_support = options_.op_supports_dynamism_handler(inst); } if (has_dynamism_support != OpDynamismSupport::kNoSupport) { continue; } if (inst->opcode() == HloOpcode::kConcatenate) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicConcat(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kReverse) { TF_ASSIGN_OR_RETURN(bool c, RewriteReverse(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kSort) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicSort(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kReshape || inst->opcode() == HloOpcode::kDynamicReshape) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicReshape(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsElementwiseBinary()) { TF_ASSIGN_OR_RETURN( bool c, RewriteDynamicBinaryOp(inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->opcode() == HloOpcode::kDynamicUpdateSlice) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicUpdateSlice( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionInputGrad")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionInputGrad( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionForward")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionForward( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicConvolutionKernelGrad")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicConvolutionKernelGrad( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicReduceWindowSamePadding")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicReduceWindowSamePadding( inst, &dynamic_dimension_inference)); changed |= c; continue; } if (inst->IsCustomCall("DynamicSelectAndScatterSamePadding")) { TF_ASSIGN_OR_RETURN(bool c, RewriteDynamicSelectAndScatterSamePadding( inst, &dynamic_dimension_inference)); changed |= c; continue; } for (int64_t operand_num = 0; operand_num < inst->operand_count(); ++operand_num) { HloInstruction* original_operand = inst->mutable_operand(operand_num); HloInstruction* operand = original_operand; if (!operand->shape().IsArray()) { continue; } for (int64_t input_dim = 0; input_dim < operand->shape().rank(); ++input_dim) { HloInstruction* operand_dynamic_size = dynamic_dimension_inference.GetDynamicSize(original_operand, {}, input_dim); if (operand_dynamic_size == nullptr) { continue; } VLOG(2) << "Has dynamic dimension of operand" << operand_num << " @" << input_dim; if (ShouldSkipPadOnOperand(inst, operand_num, input_dim, execution_threads)) { continue; } TF_ASSIGN_OR_RETURN(HloInstruction * identity_value, ChooseIdentityValue(inst, operand_num)); if (identity_value == nullptr) { continue; } HloInstruction* padded = PadWithScalar( operand, input_dim, operand_dynamic_size, identity_value); TF_RETURN_IF_ERROR(inst->ReplaceOperandWith(operand_num, padded)); operand = inst->mutable_operand(operand_num); changed = true; } } } } auto call_graph = CallGraph::Build(module, execution_threads); computations = module->MakeComputationPostOrder(execution_threads); for (auto it = computations.rbegin(); it != computations.rend(); ++it) { HloComputation* computation = *it; if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } bool require_dynamic_output = options_.slice_dynamic_output && computation == module->entry_computation(); changed |= require_dynamic_output; TF_ASSIGN_OR_RETURN(bool c, DynamicShapeRemovingVisitor::Run( computation, options_.op_supports_dynamism_handler, &dynamic_dimension_inference, execution_threads, require_dynamic_output)); changed |= c; } if (changed) { dynamic_padding_gauge->GetCell()->Set(changed); module->set_is_dynamic(true); } for (auto* computation : module->computations(execution_threads)) { if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } for (auto instruction : computation->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN( bool c, ReplaceGetSize(instruction, &dynamic_dimension_inference)); changed |= c; } } for (auto* computation : module->computations(execution_threads)) { if (!call_graph->CanReach(module->entry_computation(), computation)) { continue; } for (auto instruction : computation->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(bool c, ReplaceSetSize(instruction)); changed |= c; TF_ASSIGN_OR_RETURN(c, ReplaceSetBound(instruction)); changed |= c; } } if (changed) { HloDCE dce; TF_ASSIGN_OR_RETURN(bool c, dce.Run(module, execution_threads)); changed |= c; } VLOG(2) << "Post DynamicPadder HLO:"; XLA_VLOG_LINES(2, module->ToString()); return changed; } }
#include "xla/service/dynamic_padder.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_replace.h" #include "absl/types/span.h" #include "xla/error_spec.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/dynamic_dimension_simplifier.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/llvm_irgen_test_base.h" #include "xla/tests/test_macros.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace { namespace m = ::xla::match; namespace op = xla::testing::opcode_matchers; OpDynamismSupport OpHasDynamismSupport(HloInstruction* hlo) { if (hlo->opcode() != HloOpcode::kCustomCall) { return OpDynamismSupport::kNoSupport; } if (hlo->custom_call_target() == "OpWithDynamicLowering") { return OpDynamismSupport::kRequired; } return OpDynamismSupport::kNoSupport; } absl::Status CustomCallDynamicDimensionInference( HloInstruction* hlo, DynamicDimensionInference* inferencer) { if (hlo->custom_call_target() == "OpWithDynamicLowering") { if (hlo->shape().IsTuple()) { HloInstruction* dynamic_size = inferencer->GetDynamicSize(hlo->mutable_operand(0), {1}, 0); inferencer->SetDynamicSize(hlo, {1}, 0, dynamic_size); } else { HloInstruction* dynamic_size = inferencer->GetDynamicSize(hlo->mutable_operand(0), {}, 0); inferencer->SetDynamicSize(hlo, {}, 0, dynamic_size); } } return absl::OkStatus(); } class DynamicPadderTest : public HloTestBase { protected: DynamicPadderTest() : HloTestBase() { module_ = CreateNewVerifiedModule(); } std::unique_ptr<HloModule> GetHloModule(const std::string& hlo_text) { std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_text).value(); return module; } absl::StatusOr<bool> RunPadder( bool slice_dynamic_output = false, OpSupportsDynamismHandler op_supports_dynamism_handler = OpHasDynamismSupport, DynamicDimensionInference::CustomCallInferenceHandler custom_call_handler = CustomCallDynamicDimensionInference) { DynamicPadderOptions options; options.slice_dynamic_output = slice_dynamic_output; options.op_supports_dynamism_handler = std::move(op_supports_dynamism_handler); options.custom_call_handler = std::move(custom_call_handler); DynamicPadder padder(std::move(options)); TF_ASSIGN_OR_RETURN(bool changed, RunHloPass(&padder, module_.get())); if (!changed) return false; TupleSimplifier tuple_simplifier; TF_RETURN_IF_ERROR(RunHloPass(&tuple_simplifier, module_.get()).status()); AlgebraicSimplifier alg_simplifier(AlgebraicSimplifierOptions{}); TF_RETURN_IF_ERROR(RunHloPass(&alg_simplifier, module_.get()).status()); return true; } void ExpectPadded(const HloInstruction* inst) { EXPECT_THAT(inst, op::Select(op::Lt(op::Iota(), op::Broadcast(op::Parameter())), ::testing::_, op::Broadcast())); } HloComputation* GetScalarAddComputation() { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); return module_->AddEmbeddedComputation(embedded_builder.Build()); } std::unique_ptr<HloModule> module_; const Shape scalar_shape_ = ShapeUtil::MakeShape(S32, {}); }; class MemoryAlignmentTest : public HloTestBase {}; TEST_F(MemoryAlignmentTest, DISABLED_ON_CPU(TestDataTypeFP16)) { const std::string hlo_text = R"( HloModule TestDataTypeFP16 update_add (p0: f16[], p1: f16[]) -> f16[] { p0 = f16[] parameter(0) p1 = f16[] parameter(1) ROOT out = f16[] add(p0, p1) } ENTRY main () -> f16[<=1,1] { c1 = s32[1]{0} constant({1}) c2 = f16[1,1]{1,0} constant({ {0.099976} }) shape = s32[] reshape(s32[1]{0} c1) dim_size = f16[<=1,1]{1,0} set-dimension-size(f16[1,1]{1,0} c2, s32[] shape), dimensions={0} ROOT out = f16[<=1,1]{1,0} scatter(f16[<=1,1]{1,0} dim_size, s32[1]{0} c1, f16[1,1]{1,0} c2), update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=update_add } )"; EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5})); } TEST_F(DynamicPadderTest, ReduceTest) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); auto reduce_shape = ShapeUtil::MakeShape(F32, {2}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}, {false, false, true}); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "data_param")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); data_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, data_param, size_param, 2)); auto negate = builder.AddInstruction(HloInstruction::CreateUnary( dynamic_shape, HloOpcode::kNegate, data_param)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( reduce_shape, negate, init, {0, 2}, GetScalarAddComputation())); EXPECT_FALSE(module_->is_dynamic()); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); ExpectPadded(reduce->operand(0)); EXPECT_TRUE(module_->is_dynamic()); } TEST_F(DynamicPadderTest, DynamicLoweringTest) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} custom-call.1 = s32[<=5] custom-call(param_padded), custom_call_target="OpWithDynamicLowering" custom-call.2 = s32[<=5] custom-call(custom-call.1), custom_call_target="OpWithDynamicLowering" ROOT negate = s32[<=5] negate(custom-call.2) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); auto custom_call_1 = module_->entry_computation()->GetInstructionWithName("custom-call.1"); auto custom_call_2 = module_->entry_computation()->GetInstructionWithName("custom-call.2"); HloInstruction* slice_to_dynamic = custom_call_1->mutable_operand(0); ASSERT_THAT(slice_to_dynamic->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(slice_to_dynamic->custom_call_target(), "SliceToDynamic"); ASSERT_EQ(custom_call_2->user_count(), 1); HloInstruction* pad_to_static = custom_call_2->users()[0]; ASSERT_THAT(pad_to_static->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(pad_to_static->custom_call_target(), "PadToStatic"); slice_to_dynamic = module_->entry_computation()->root_instruction(); ASSERT_THAT(slice_to_dynamic->opcode(), HloOpcode::kCustomCall); ASSERT_THAT(slice_to_dynamic->custom_call_target(), "SliceToDynamic"); } TEST_F(DynamicPadderTest, DynamicLoweringTestTupleInput) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} tuple_arg = (s32[], s32[<=5]) tuple(const, param_padded) custom-call.1 = (s32[], s32[<=5]) custom-call(tuple_arg), custom_call_target="OpWithDynamicLowering" custom-call.2 = (s32[], s32[<=5]) custom-call(custom-call.1), custom_call_target="OpWithDynamicLowering" data = s32[<=5]{0} get-tuple-element(custom-call.2), index=1 ROOT negate = s32[<=5] negate(data) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_THAT(root, op::CustomCall( {"SliceToDynamic"}, op::Negate(), op::GetTupleElement(op::CustomCall({"PadToStatic"})))); HloInstruction* negate = root->mutable_operand(0); EXPECT_THAT( negate, op::Negate(op::GetTupleElement(op::CustomCall( {"PadToStatic"}, op::GetTupleElement(op::CustomCall( {"OpWithDynamicLowering"}, ::testing::_)))))); auto custom_call_1 = module_->entry_computation()->GetInstructionWithName("custom-call.1"); EXPECT_THAT(custom_call_1, op::CustomCall({"OpWithDynamicLowering"}, op::Tuple(op::Constant(), op::CustomCall({"SliceToDynamic"})))); } TEST_F(DynamicPadderTest, DynamicOutputNestedTuple) { const std::string hlo_text = R"( HloModule DynamicLowering ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) const2 = s32[] constant(4) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} tuple0 = (s32[], s32[<=5]) tuple(const, param_padded) ROOT tuple1 = (s32[], (s32[], s32[<=5])) tuple(const2, tuple0) } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); TF_ASSERT_OK(TupleSimplifier().Run(module_.get()).status()); XLA_LOG_LINES(INFO, module_->ToString()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Tuple(op::Constant(), op::Tuple())); HloInstruction* nested_tuple = root->mutable_operand(1); EXPECT_THAT(nested_tuple, op::Tuple(op::Constant(), op::CustomCall({"SliceToDynamic"}))); } TEST_F(DynamicPadderTest, ConvolutionTest) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto zx_shape = ShapeUtil::MakeShape(F32, {zdim, xdim}); auto xy_shape_dynamic = ShapeUtil::MakeShape(F32, {xdim, ydim}, {false, true}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( xy_shape_dynamic, a_param, size_param, 1)); auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); ExpectPadded(conv->operand(0)); } TEST_F(DynamicPadderTest, ConvolutionNoPad) { auto builder = HloComputation::Builder(TestName()); constexpr int xdim = 3; constexpr int ydim = 2; constexpr int zdim = 1; auto xy_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}); auto yz_shape = ShapeUtil::MakeShape(F32, {ydim, zdim}); auto zx_shape = ShapeUtil::MakeShape(F32, {zdim, xdim}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {xdim, ydim}, {true, false}); auto* a_param = builder.AddInstruction(HloInstruction::CreateParameter( 0, xy_shape, "A")); auto* b_param = builder.AddInstruction(HloInstruction::CreateParameter( 1, yz_shape, "B")); auto* size_param = builder.AddInstruction(HloInstruction::CreateParameter( 2, scalar_shape_, "size_param")); a_param = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, a_param, size_param, 0)); auto dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(0); dnums.set_kernel_input_feature_dimension(0); dnums.set_kernel_output_feature_dimension(1); dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(1); dnums.set_output_feature_dimension(0); Window window; auto* conv = builder.AddInstruction(HloInstruction::CreateConvolve( zx_shape, a_param, b_param, 1, 1, window, dnums, HloTestBase::DefaultPrecisionConfig(2))); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); EXPECT_THAT(conv->operand(0), op::Parameter()); } TEST_F(DynamicPadderTest, ReduceWindowNoPadForTrivialWindow) { auto builder = HloComputation::Builder(TestName()); auto input_shape = ShapeUtil::MakeShape(F32, {4, 5}); auto reduce_shape = ShapeUtil::MakeShape(F32, {3, 5}, {false, true}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {4, 5}, {false, true}); auto input = builder.AddInstruction( HloInstruction::CreateParameter(0, input_shape, "input")); auto* size_param = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape_, "size_param")); input = builder.AddInstruction(HloInstruction::CreateSetDimensionSize( dynamic_shape, input, size_param, 1)); auto init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0))); TF_ASSERT_OK_AND_ASSIGN(Window window, ParseWindow("size=2x1 pad=0_0x0_0")); auto output = builder.AddInstruction(HloInstruction::CreateReduceWindow( reduce_shape, input, init, window, GetScalarAddComputation())); module_->AddEntryComputation(builder.Build()); TF_ASSERT_OK(RunPadder().status()); EXPECT_THAT(output->operand(0), op::Parameter()); } TEST_F(DynamicPadderTest, VariadicReduceWindowNoPadForTrivialWindow) { const std::string hlo_text = R"( HloModule VariadicReduceWindowNoPadForTrivialWindow add_f32 (a: f32[], b: s32[], c: f32[], d: s32[]) -> (f32[], s32[]) { a = f32[] parameter(0) b = s32[] parameter(1) c = f32[] parameter(2) d = s32[] parameter(3) add.0 = f32[] add(a, c) add.1 = s32[] add(b, d) ROOT out = tuple(add.0, add.1) } ENTRY main { input.0 = f32[4, 5] parameter(0) input.1 = s32[4, 5] parameter(1) size_param.0 = s32[] parameter(2) size_param.1 = s32[] parameter(3) input_dynamic.0 = f32[4,<=5] set-dimension-size(input.0, size_param.0), dimensions={1} input_dynamic.1 = s32[4,<=5] set-dimension-size(input.1, size_param.0), dimensions={1} init.0 = f32[] constant(0.0) init.1 = s32[] constant(0) ROOT output = (f32[3, <=5], s32[3, <=5]) reduce-window(input_dynamic.0, input_dynamic.1, init.0, init.1), window={size=2x1 pad=0_0x0_0}, to_apply=add_f32 } )"; const int kNumParams = 2; module_ = ParseAndReturnVerifiedModule(hlo_text).value(); TF_ASSERT_OK(RunPadder().status()); for (int i = 0; i < kNumParams; ++i) { EXPECT_THAT(module_->entry_computation()->root_instruction()->operand(i), op::Parameter()); } } TEST_F(DynamicPadderTest, PadS8ToS32Dot) { const std::string hlo_text = R"( HloModule test ENTRY test { a = s8[<=16,32] parameter(0) b = s8[32,64] parameter(1) ROOT root = s32[<=16,64] dot(a, b), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); EXPECT_THAT(module_->entry_computation()->root_instruction(), GmockMatch(m::CustomCall({"SliceToDynamic"}, m::Dot(m::Op().WithShape(S8, {16, 32}), m::Op().WithShape(S8, {32, 64})) .WithShape(S32, {16, 64}), m::Op(), m::Op()))); } TEST_F(DynamicPadderTest, PadToStaticForCustomCall) { const std::string hlo_text = R"( HloModule test ENTRY test { a = f32[64] parameter(0) ROOT c = f32[<=128] custom-call(a), custom_call_target="UnknownOp" } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); EXPECT_THAT(module_->entry_computation()->root_instruction(), GmockMatch(m::CustomCall({"UnknownOp"}))); } TEST_F(DynamicPadderTest, WhileLoopDynamicShapeChangeToStatic) { const std::string hlo_text = R"( HloModule WhileLoopDynamicShapeChangeToStatic %cond_wrapper.19447 { param = (s32[], s32[], f32[], f32[<=32,216]{1,0}) parameter(0) %get-tuple-element.184 = s32[] get-tuple-element(param), index=0 %get-tuple-element.185 = s32[] get-tuple-element(param), index=1 ROOT %compare.28 = pred[] compare(s32[] %get-tuple-element.184, s32[] %get-tuple-element.185), direction=LT } %while_body_78894_grad_83711__.18882 { param = (s32[], s32[], f32[], f32[<=32,216]{1,0}) parameter(0) %get-tuple-element.184 = s32[] get-tuple-element(param), index=0 %get-tuple-element.185 = s32[] get-tuple-element(param), index=1 %add.1 = s32[] add(get-tuple-element.184, get-tuple-element.184) %gte.2 = f32[] get-tuple-element(param), index=2 %broadcast.19389 = f32[32,216]{1,0} broadcast(f32[] %gte.2), dimensions={} %constant.32 = s32[] constant(32) %set-dimension-size = f32[<=32,216]{1,0} set-dimension-size(f32[32,216]{1,0} %broadcast.19389, s32[] %constant.32), dimensions={0} ROOT tuple = (s32[], s32[], f32[], f32[<=32,216]{1,0}) tuple(add.1, %get-tuple-element.185, %gte.2, %set-dimension-size) } ENTRY main { param = f32[] parameter(0) param.1 = f32[<=32,216]{1,0} parameter(1) const = s32[] constant(3) const2 = s32[] constant(4) %tuple.18877 = (s32[], s32[], f32[], f32[<=32,216]{1,0}) tuple(const, const2, param, param.1) %while.19451 = (s32[], s32[], f32[], f32[<=32,216]{1,0}) while((s32[], s32[], f32[], f32[<=32,216]{1,0}) %tuple.18877), condition=%cond_wrapper.19447, body=%while_body_78894_grad_83711__.18882 ROOT result = f32[<=32,216]{1,0} get-tuple-element(while.19451), index=3 } )"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); XLA_LOG_LINES(INFO, module_->ToString()); auto* root = module_->entry_computation()->root_instruction(); EXPECT_EQ(root->shape(), ShapeUtil::MakeShape(F32, {32, 216}, {true, false})); HloInstruction* while_inst = nullptr; for (HloInstruction* inst : module_->entry_computation()->MakeInstructionPostOrder()) { if (inst->opcode() == HloOpcode::kWhile) { ASSERT_EQ(while_inst, nullptr) << "while_inst: " << while_inst->name() << ", inst: " << inst->name(); while_inst = inst; } } EXPECT_EQ(while_inst->shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeScalarShape(S32), ShapeUtil::MakeScalarShape(S32), ShapeUtil::MakeScalarShape(F32), ShapeUtil::MakeShape(F32, {32, 216}), ShapeUtil::MakeScalarShape(S32)})); } TEST_F(DynamicPadderTest, WhileLoopCarriesRequiredDynamicShape) { const std::string hlo_text = R"( HloModule WhileLoopCarriesRequiredDynamicShape %cond { param = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) parameter(0) current = s32[] get-tuple-element(param), index=5 last = s32[] get-tuple-element(param), index=6 ROOT result = pred[] compare(current, last), direction=LT } %body { param = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) parameter(0) var = f32[1024] get-tuple-element(param), index=0 input0 = f32[<=64] get-tuple-element(param), index=1 grad0 = f32[32] get-tuple-element(param), index=2 input1 = f32[<=64] get-tuple-element(param), index=3 act1 = f32[32] get-tuple-element(param), index=4 grad1 = f32[32] custom-call(act1), custom_call_target="ComputeGradients" var1 = f32[1024] custom-call(var, input0, grad0), custom_call_target="ApplyGradients", output_to_operand_aliasing={{}: (0, {})} token2 = token[] get-tuple-element(param), index=7 infeed2 = (f32[<=64], token[]) infeed(token2) input2 = f32[<=64] get-tuple-element(infeed2), index=0 act2 = f32[32] custom-call(var1, input2), custom_call_target="ComputeActivations" current = s32[] get-tuple-element(param), index=5 constant1 = s32[] constant(1) add = s32[] add(current, constant1) last = s32[] get-tuple-element(param), index=6 token3 = token[] get-tuple-element(infeed2), index=1 ROOT result = (f32[1024], f32[<=64], f32[32], f32[<=64], f32[32], s32[], s32[], token[]) tuple(var1, input1, grad1, input2, act2, add, last, token3) } ENTRY main { last = s32[] parameter(0) var = f32[1024] parameter(1) token0 = token[] after-all() infeed0 = (f32[<=64], token[]) infeed(token0) input0 = f32[<=64] get-tuple-element(infeed0), index=0 act0 = f32[32] custom-call(var, input0), custom_call_target="ComputeActivations" grad0 = f32[32] custom-call(act0), custom_call_target="ComputeGradients" token1 = token[] get-tuple-element(infeed0), index=1 infeed1 = (f32[<=64], token[]) infeed(token1) input1 = f32[<=64] get-tuple-element(infeed1), index=0 act1 = f32[32] custom-call(var, input1), custom_call_target="ComputeActivations" token2 = token[] get-tuple-element(infeed1), index=1 zero = s32[] constant(0) tuple = (f32[1024], f32[<=64], f32[32]{0}, f32[<=64], f32[32]{0}, s32[], s32[], token[]) tuple(var, input0, grad0, input1, act1, zero, last, token2) while = (f32[1024], f32[<=64], f32[32]{0}, f32[<=64], f32[32]{0}, s32[], s32[], token[]) while(tuple), condition=%cond, body=%body ROOT result = f32[1024] get-tuple-element(while), index=0 } )"; module_ = GetHloModule(hlo_text); auto op_supports_dynamism = [](HloInstruction* hlo) { if (hlo->opcode() != HloOpcode::kCustomCall) { return OpDynamismSupport::kNoSupport; } if (hlo->custom_call_target() == "ComputeActivations" || hlo->custom_call_target() == "ApplyGradients") { return OpDynamismSupport::kRequired; } return OpDynamismSupport::kNoSupport; }; auto custom_call_handler = [](HloInstruction* hlo, DynamicDimensionInference* inference) { return absl::OkStatus(); }; TF_ASSERT_OK( RunPadder( true, std::move(op_supports_dynamism), std::move(custom_call_handler)) .status()); XLA_VLOG_LINES(1, module_->ToString()); for (HloComputation* computation : module_->computations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCustomCall) { EXPECT_NE(instruction->custom_call_target(), "PadToStatic"); EXPECT_NE(instruction->custom_call_target(), "SliceToDynamic"); if (instruction->custom_call_target() == "ComputeActivations") { EXPECT_TRUE(instruction->operand(1)->shape().is_dynamic()); } else if (instruction->custom_call_target() == "ApplyGradients") { EXPECT_TRUE(instruction->operand(1)->shape().is_dynamic()); } } else if (instruction->opcode() == HloOpcode::kWhile) { const Shape& shape = instruction->shape(); EXPECT_TRUE(shape.tuple_shapes(1).is_dynamic()); EXPECT_TRUE(shape.tuple_shapes(3).is_dynamic()); } } } } TEST_F(DynamicPadderTest, HandleReshapeCheckPastReshape) { auto hlo_text = R"( HloModule ReshapeDynamicDimension ENTRY main { p0 = f32[4,511,432]{2,1,0} parameter(0) p1 = s32[] parameter(1) p2 = f32[432,337]{1,0:T(8,128)} parameter(2) p0_dynamic = f32[<=4,511,432] set-dimension-size(p0, p1), dimensions={0} reshape.4179 = f32[<=2044,432]{1,0} reshape(p0_dynamic) dot.4180 = f32[<=2044,337]{1,0} dot(reshape.4179, p2), lhs_contracting_dims={1}, rhs_contracting_dims={0} transpose.4181 = f32[<=2044,337]{1,0} transpose(dot.4180), dimensions={0,1} ROOT reshape.4183 = f32[<=4,511,337]{2,1,0} reshape(transpose.4181) })"; module_ = GetHloModule(hlo_text); TF_ASSERT_OK(RunPadder(true).status()); VLOG(3) << module_->ToString(); CHECK(module_->is_dynamic()); CHECK(module_->entry_computation() ->root_instruction() ->shape() .is_dynamic_dimension(0)); } class ExecutionTest : public HloTestBase { protected: std::unique_ptr<HloModule> GetHloModule(const std::string& hlo_text) { std::unique_ptr<HloModule> module = ParseAndReturnVerifiedModule(hlo_text).value(); return module; } absl::StatusOr<Literal> PadAndExecute(std::unique_ptr<HloModule> module, absl::Span<Literal* const> arguments, bool slice_dynamic_output = true) { if (!slice_dynamic_output) { auto new_config = module->config(); new_config.mutable_entry_computation_layout() ->mutable_result_layout() ->ClearDynamicShape(); module->set_config(new_config); } DynamicPadderOptions options; options.slice_dynamic_output = slice_dynamic_output; DynamicPadder padder(options); TF_CHECK_OK(padder.Run(module.get()).status()); HloDCE dce; TF_CHECK_OK(dce.Run(module.get()).status()); return Execute(std::move(module), {arguments}); } }; XLA_TEST_F(ExecutionTest, ScatterUpdate) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[INDICES_BOUND] parameter(1) updates = s32[INDICES_BOUND,3] parameter(2) dynamic_size = s32[] parameter(3) indices_dynamic = s32[<=INDICES_BOUND] set-dimension-size(indices, dynamic_size), dimensions={0} updates_dynamic = s32[<=INDICES_BOUND,3] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = s32[3,3] scatter(operand, indices_dynamic, updates_dynamic), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; const std::string hlo_text_not_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "2"}}); auto module_not_padded = GetHloModule(hlo_text_not_padded); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(2); Literal not_padded = ExecuteAndTransfer(std::move(module_not_padded), {&operand, &scatter_indices, &updates, &dynamic_size}); const std::string hlo_text_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "4"}}); auto module_padded = GetHloModule(hlo_text_padded); Literal scatter_indices_padded = LiteralUtil::CreateR1<int32_t>({0, 2, 0, 4}); Literal updates_padded = LiteralUtil::CreateR2<int32_t>( {{10, 20, 30}, {70, 80, 90}, {30, 22, 11}, {-1, 20, -1}}); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal padded, PadAndExecute(std::move(module_padded), {&operand, &scatter_indices_padded, &updates_padded, &dynamic_size})); EXPECT_EQ(padded, not_padded); } XLA_TEST_F(ExecutionTest, ScatterUpdateWindowDim) { const std::string hlo_text = R"( HloModule ScatterUpdateWindowDim update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[1,2,3] parameter(0) indices = s32[1] parameter(1) updates = s32[2,3,1] parameter(2) dynamic_size = s32[] constant(1) operand_dynamic = s32[1, <=2, 3] set-dimension-size(operand, dynamic_size), dimensions={1} updates_dynamic = s32[<=2, 3, 1] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = s32[1, <=2, 3] scatter(operand_dynamic, indices, updates_dynamic), to_apply=update_s32, update_window_dims={0, 1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; auto hlo_module = GetHloModule(hlo_text); Literal operand = LiteralUtil::CreateR3<int32_t>({{{0, 0, 0}, {0, 0, 0}}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{10}, {20}, {30}}, {{70}, {80}, {90}}}); TF_ASSERT_OK_AND_ASSIGN( Literal padded, PadAndExecute(std::move(hlo_module), {&operand, &scatter_indices, &updates}, false)); Literal expected = LiteralUtil::CreateR3<int32_t>({{{10, 20, 30}, {70, 80, 90}}}); EXPECT_EQ(padded, expected); } XLA_TEST_F(ExecutionTest, ScatterUpdateF32) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_f32 (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) ROOT rhs = f32[] parameter(1) } ENTRY main { operand = f32[3,3] parameter(0) indices = s32[2] parameter(1) updates = f32[2,3] parameter(2) dynamic_size = s32[] parameter(3) indices_dynamic = s32[<=2] set-dimension-size(indices, dynamic_size), dimensions={0} updates_dynamic = f32[<=2,3] set-dimension-size(updates, dynamic_size), dimensions={0} ROOT scatter = f32[3,3] scatter(operand, indices_dynamic, updates_dynamic), to_apply=update_f32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; auto module_not_padded = GetHloModule(hlo_text); Literal operand = LiteralUtil::CreateR2<float>( {{1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<float>({{10.0, 20.0, 30.0}, {70.0, 80.0, 90.0}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(1); auto module_padded = GetHloModule(hlo_text); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN( Literal not_padded, PadAndExecute(std::move(module_padded), {&operand, &scatter_indices, &updates, &dynamic_size})); EXPECT_EQ(LiteralUtil::CreateR2<float>( {{10.0, 20.0, 30.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0}}), not_padded); } XLA_TEST_F(ExecutionTest, WholeDimensionGather) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[3, 2, 1] parameter(0) size = s32[] constant(1) param_padded = s32[3, <=2, 1] set-dimension-size(param, size), dimensions={1} index = s32[] constant(1) gather = s32[<=2,1]{1,0} gather(param_padded, index), offset_dims={0,1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=0, slice_sizes={1,2,1} init = s32[] constant(0) ROOT reduce = s32[] reduce(gather, init), dimensions={0, 1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>({{{1}, {2}}, {{3}, {4}}, {{5}, {6}}}); auto module = GetHloModule(hlo_text); DynamicPadder padder; TF_CHECK_OK(padder.Run(module.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(3); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, TwoDimensionReduce) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[INDICES_BOUND, INDICES_BOUND] parameter(0) dynamic_size = s32[] parameter(1) param_0 = s32[<=INDICES_BOUND,INDICES_BOUND] set-dimension-size(param, dynamic_size), dimensions={0} param_1 = s32[<=INDICES_BOUND,INDICES_BOUND] set-dimension-size(param_0, dynamic_size), dimensions={1} const = s32[] constant(0) ROOT reduce = s32[] reduce(param_1, const), dimensions={0, 1}, to_apply=update_s32 } )"; const std::string hlo_text_not_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "2"}}); auto module_not_padded = GetHloModule(hlo_text_not_padded); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2}, {4, 5}}); Literal dynamic_size = LiteralUtil::CreateR0<int32_t>(2); Literal not_padded = ExecuteAndTransfer(std::move(module_not_padded), {&operand, &dynamic_size}); const std::string hlo_text_padded = absl::StrReplaceAll(hlo_text, {{"INDICES_BOUND", "4"}}); auto module_padded = GetHloModule(hlo_text_padded); Literal operand_padded = LiteralUtil::CreateR2<int32_t>( {{1, 2, 3, 4}, {4, 5, 6, 7}, {1, 2, 3, 4}, {4, 5, 6, 7}}); DynamicPadder padder; TF_CHECK_OK(padder.Run(module_padded.get()).status()); TF_ASSERT_OK_AND_ASSIGN(Literal padded, PadAndExecute(std::move(module_padded), {&operand_padded, &dynamic_size})); EXPECT_EQ(padded, not_padded); } XLA_TEST_F(ExecutionTest, DynamicDimensionClamp) { const std::string hlo_text = R"( HloModule TensorFlowTenaryV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} clamp = s32[<=5] clamp(param_padded, param_padded, param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(clamp, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicConcat) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3] parameter(0) param_1 = s32[3] parameter(1) param_2 = s32[3] parameter(2) size = s32[] constant(2) param_padded_0 = s32[<=3] set-dimension-size(param_0, size), dimensions={0} param_padded_2 = s32[<=3] set-dimension-size(param_2, size), dimensions={0} ROOT %concatenate = s32[<=9] concatenate(s32[<=3] param_padded_0, s32[<=3] param_1, s32[<=3] param_padded_2), dimensions={0} } )"; Literal operand_0 = LiteralUtil::CreateR1<int32_t>({1, 2, -1}); Literal operand_1 = LiteralUtil::CreateR1<int32_t>({3, 4, 5}); Literal operand_2 = LiteralUtil::CreateR1<int32_t>({6, 7, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0, &operand_1, &operand_2}, false)); result.SetDynamicSize(0, 7); Literal expected = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5, 6, 7}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReverseSingleDim) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3] parameter(0) size = s32[] constant(2) param_padded_0 = s32[<=3] set-dimension-size(param_0, size), dimensions={0} ROOT %reverse = s32[<=3] reverse(s32[<=3] param_padded_0), dimensions={0} } )"; Literal operand_0 = LiteralUtil::CreateR1<int32_t>({1, 2, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0}, false)); result.SetDynamicSize(0, 2); Literal expected = LiteralUtil::CreateR1<int32_t>({2, 1}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReverseMultiDims) { const std::string hlo_text = R"( HloModule DynamicConcat ENTRY main { param_0 = s32[3, 3] parameter(0) size = s32[] constant(2) param_padded_0 = s32[<=3, 3] set-dimension-size(param_0, size), dimensions={0} param_padded_1 = s32[<=3, <=3] set-dimension-size(param_padded_0, size), dimensions={1} ROOT %reverse = s32[<=3, <=3] reverse(s32[<=3, <=3] param_padded_1), dimensions={0, 1} } )"; Literal operand_0 = LiteralUtil::CreateR2<int32_t>( {{1, 2, -1}, {3, 4, -1}, {-1, -1, -1}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN( Literal result, PadAndExecute(std::move(module), {&operand_0}, false)); result.SetDynamicSize(0, 2); result.SetDynamicSize(1, 2); Literal expected = LiteralUtil::CreateR2<int32_t>({{4, 3}, {2, 1}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicDimensionReduce) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} init = s32[] constant(0) ROOT reduce = s32[] reduce(param_padded, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4, 5}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, InputMinorDimensionReshape) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) const = s32[] constant(3) param_padded = s32[1, 2, <=5, 1] set-dimension-size(param, const), dimensions={2} reshaped = s32[<=10] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(18); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, SliceSingleElement) { const std::string hlo_text = R"( HloModule Slicing ENTRY main { param = s32[5] parameter(0) const = s32[] constant(3) param_padded = s32[<=5] set-dimension-size(param, const), dimensions={0} ROOT slice = s32[1]{0} slice(param_padded), slice={[0:1]} } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2, 3, 4}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR1<int32_t>({0}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshape) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[12] parameter(0) const = s32[] constant(8) param_padded = s32[<=12] set-dimension-size(param, const), dimensions={0} reshaped = s32[2, <=3, 2] reshape(param_padded), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{2, 4}, {10, 12}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshapeWithUnchangedDimMajor) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 6] parameter(0) const = s32[] constant(4) param_padded = s32[2, <=6] set-dimension-size(param, const), dimensions={1} reshaped = s32[2, 2, <=3] reshape(param_padded), inferred_dimension=2 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={2}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>( {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 5}, {13, 17}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, OutputMinorDimensionReshapeWithUnchangedDimMinor) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[6, 2] parameter(0) const = s32[] constant(4) param_padded = s32[<=6, 2] set-dimension-size(param, const), dimensions={0} reshaped = s32[2, <=3, 2] reshape(param_padded), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[2, 2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>( {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR2<int32_t>({{2, 4}, {10, 12}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicInputFeature) { const std::string hlo_text = R"( HloModule DynamicInputFeature ENTRY main { param = f32[1, 1, 5] parameter(0) const = s32[] constant(5) one = f32[] constant(1) kernel = f32[1,5,1]{2,1,0} broadcast(f32[] one), dimensions={} param_dynamic = f32[1,1,<=5] set-dimension-size(param, const), dimensions={2} ROOT conv = f32[1, 1, 1]{2,1,0} custom-call(f32[1, 1, <=5] param_dynamic, f32[1,<=5,1]{2,1,0} kernel), window={size=1 pad=0_0}, dim_labels=b0f_0io->b0f, padding_type=PADDING_VALID, custom_call_target="DynamicConvolutionForward" } )"; Literal operand = LiteralUtil::CreateR3<float>({{{1, 2, 3, 4, 5}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR3<float>({{{15}}}); EXPECT_EQ(result, expected); } XLA_TEST_F(LlvmIrGenTestBase, LargeDynamicInput) { #ifndef XLA_TEST_BACKEND_GPU GTEST_SKIP(); #endif const std::string hlo_text = R"( HloModule LargeDynamicInput add (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { param = f32[<=20,<=20,<=20,<=20,<=20,<=20,<=20,<=20] parameter(0) zero = f32[] constant(0) ROOT out = reduce(param, zero), to_apply=add, dimensions={0,1,2,3,4,5,6,7} } )"; CompileAndVerifyIr(hlo_text, R"( CHECK: ret void )", true); } XLA_TEST_F(ExecutionTest, DynamicDimensionReshapeUnchanged) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) const = s32[] constant(3) param_padded = s32[1, 2, <=5, 1] set-dimension-size(param, const), dimensions={2} reshaped = s32[2, <=5] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[2] reduce(reshaped, init), dimensions={1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR1<int32_t>({6, 12}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DegeneratedDimension) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[1, 2, 5, 1] parameter(0) size = s32[] constant(0) param_padded = s32[<=1, 2, 5, 1] set-dimension-size(param, size), dimensions={0} reshaped = s32[<=10] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR4<int32_t>( {{{{1}, {2}, {3}, {4}, {5}}, {{2}, {4}, {6}, {7}, {8}}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(0); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, ReshapeSplitCombineSameTime) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4, 2, 2] parameter(0) two = s32[] constant(2) one = s32[] constant(1) param_padded_partial = s32[<=4, 2, 2] set-dimension-size(param, two), dimensions={0} param_padded_dynamic = s32[<=4, 2, <=2] set-dimension-size(param_padded_partial, one), dimensions={2} reshaped = s32[2, <=2, <=4] reshape(param_padded_dynamic), inferred_dimension=1 init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0, 1, 2}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>({{{0, -1}, {1, -1}}, {{2, -1}, {3, -1}}, {{-1, -1}, {-1, -1}}, {{-1, -1}, {-1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(6); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, ReshapeComplicated) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 4, 4] parameter(0) two = s32[] constant(2) param_padded_dynamic = s32[2, <=4, 4] set-dimension-size(param, two), dimensions={1} reshaped = s32[<=16, 2] reshape(param_padded_dynamic), inferred_dimension=0 init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0, 1}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{1, 2, 3, 4}, {5, 6, 7, 8}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}, {{9, 10, 11, 12}, {13, 14, 15, 16}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(136); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, WhileLoopStack) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } body { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4, 2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} zero = s32[] constant(0) one = s32[] constant(1) new_data = s32[1, 2] broadcast(s32[] stack_size), dimensions={} new_stack_size = s32[] add(stack_size, one) new_stack_buffer = s32[<=4, 2] set-dimension-size(stack_buffer, new_stack_size), dimensions={0} new_stack = s32[<=4, 2] dynamic-update-slice(new_stack_buffer, new_data, stack_size, zero) ROOT new_stack_tuple = (s32[<=4,2]) tuple(new_stack) } condition { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4, 2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} three = s32[] constant(3) ROOT less-than = pred[] compare(s32[] stack_size, s32[] three), direction=LT } ENTRY entry { zero = s32[] constant(0) pad = s32[] constant(-1) stack_buffer_input = s32[4, 2] broadcast(s32[] pad), dimensions={} stack_buffer_input_dynamic = s32[<=4, 2] set-dimension-size(stack_buffer_input, zero), dimensions={0} input_tuple = (s32[<=4 ,2]) tuple(stack_buffer_input_dynamic) while = (s32[<=4, 2]) while(input_tuple), body=body, condition=condition stack_buffer = s32[<=4, 2] get-tuple-element(while), index=0 ROOT reduce = s32[2] reduce(stack_buffer, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{3, 3}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicAddWithImplicitBroadcast) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry { zero = s32[] constant(0) one = s32[] constant(1) two = s32[] constant(2) three = s32[] constant(3) input1 = s32[4, 2] iota(), iota_dimension=0 ones = s32[4, 2] broadcast(one), dimensions={} input1_added = s32[4, 2] add(input1, ones) input1_dynamic = s32[<=4, 2] set-dimension-size(input1_added, one), dimensions={0} input2 = s32[4, 2] broadcast(two), dimensions={} input2_dynamic = s32[<=4, 2] set-dimension-size(input2, three), dimensions={0} add = s32[<=4, 2] add(input1_dynamic, input2_dynamic) ROOT reduce = s32[2] reduce(add, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{9, 9}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicAddWithImplicitSlice) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY entry { zero = s32[] constant(0) one = s32[] constant(1) two = s32[] constant(2) three = s32[] constant(3) input1 = s32[4, 2] broadcast(one), dimensions={} input1_dynamic = s32[<=4, 2] set-dimension-size(input1, three), dimensions={0} input2 = s32[4, 2] broadcast(two), dimensions={} input2_dynamic = s32[<=4, 2] set-dimension-size(input2, two), dimensions={0} add = s32[<=4, 2] add(input1_dynamic, input2_dynamic) ROOT reduce = s32[2] reduce(add, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{6, 6}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicStackPop) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } body { param_tuple = (s32[<=4,2]) parameter(0) param = s32[<=4, 2] get-tuple-element(param_tuple), index=0 one = s32[] constant(1) size = s32[] get-dimension-size(param), dimensions={0} new_size = s32[] subtract(size, one) output = s32[<=4, 2] set-dimension-size(param, new_size), dimensions={0} ROOT root = (s32[<=4, 2]) tuple(output) } condition { stack = (s32[<=4,2]) parameter(0) stack_buffer = s32[<=4,2] get-tuple-element(stack), index=0 stack_size = s32[] get-dimension-size(stack_buffer), dimensions={0} two = s32[] constant(2) ROOT greater-than = pred[] compare(s32[] stack_size, s32[] two), direction=GT } ENTRY entry { one = s32[] constant(1) zero = s32[] constant(0) four = s32[] constant(4) stack_buffer_input = s32[4, 2] broadcast(s32[] one), dimensions={} stack_buffer_dynamic = s32[<=4, 2] set-dimension-size(stack_buffer_input, four), dimensions={0} input_tuple = (s32[<=4, 2]) tuple(stack_buffer_dynamic) while = (s32[<=4, 2]) while(input_tuple), body=body, condition=condition stack_buffer = s32[<=4, 2] get-tuple-element(while), index=0 ROOT reduce = s32[2] reduce(stack_buffer, zero), dimensions={0}, to_apply=update_s32 } )"; auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {})); Literal expected = LiteralUtil::CreateR1<int32_t>({{2, 2}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DoubleDynamicDimension) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[2, 3, 3] parameter(0) size = s32[] constant(2) param_padded_partial = s32[2, <=3, 3] set-dimension-size(param, size), dimensions={1} param_padded = s32[2, 3, <=3] set-dimension-size(param_padded_partial, size), dimensions={2} reshaped = s32[<=18] reshape(param_padded) init = s32[] constant(0) ROOT reduce = s32[] reduce(reshaped, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}, {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(16); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeDoubleDynamicDimensions) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[2, 3, 3] parameter(0) size = s32[] constant(2) param_padded_partial = s32[2, <=3, 3] set-dimension-size(param, size), dimensions={1} param_padded = s32[2, <=3, <=3] set-dimension-size(param_padded_partial, size), dimensions={2} result_size = s32[] constant(8) ROOT reshaped = s32[<=18] dynamic-reshape(param_padded, result_size) } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}, {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); result.SetDynamicSize(0, 8); Literal expected = LiteralUtil::CreateR1<int32_t>({0, 1, 3, 4, 0, 1, 3, 4}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeOutputDoubleDynamicDimensions) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[18] parameter(0) eight = s32[] constant(8) param_dynamic = s32[<=18] set-dimension-size(param, eight), dimensions={0} two = s32[] constant(2) ROOT reshaped = s32[2, <=3, <=3] dynamic-reshape(param_dynamic, two, two, two) } )"; Literal operand = LiteralUtil::CreateR1<int32_t>( {0, 1, 3, 4, 0, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); VLOG(1) << " result: " << result.ToString(); result.SetDynamicSize(1, 2); result.SetDynamicSize(2, 2); Literal expected = LiteralUtil::CreateR3<int32_t>({{{0, 1}, {3, 4}}, {{0, 1}, {3, 4}}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicReshapeComplicated) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[3, 4, 4] parameter(0) two = s32[] constant(2) param_dynamic = s32[<=3, 4, 4] set-dimension-size(param, two), dimensions={0} three = s32[] constant(3) param_dynamic1 = s32[<=3, <=4, 4] set-dimension-size(param_dynamic, three), dimensions={1} param_dynamic2 = s32[<=3, <=4, <=4] set-dimension-size(param_dynamic1, three), dimensions={2} six = s32[] constant(6) ROOT reshaped = s32[<=6, <=8] dynamic-reshape(param_dynamic2, three, six) } )"; Literal operand = LiteralUtil::CreateR3<int32_t>( {{{0, 1, 2, -1}, {3, 4, 5, -1}, {6, 7, 8, -1}, {-1, -1, -1, -1}}, {{9, 8, 7, -1}, {6, 5, 4, -1}, {3, 2, 1, -1}, {-1, -1, -1, -1}}, {{-1, -1, -1, -1}, {-1, -1, -1, -1}, {-1, -1, -1, -1}, {-1, -1, -1, -1}}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); result.SetDynamicSize(0, 3); result.SetDynamicSize(1, 6); Literal expected = LiteralUtil::CreateR2<int32_t>( {{0, 1, 2, 3, 4, 5}, {6, 7, 8, 9, 8, 7}, {6, 5, 4, 3, 2, 1}}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, SetGetDimensionSize) { const std::string hlo_text = R"( HloModule TensorFlowScatterV1 ENTRY main { param = s32[3] parameter(0) size = s32[] constant(2) param_dynamic_size = s32[3] set-dimension-size(param, size), dimensions={0} ROOT gds = s32[] get-dimension-size(param_dynamic_size), dimensions={0} } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 2, 3}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand})); Literal expected = LiteralUtil::CreateR0<int32_t>(2); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicSort) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } %compare-greater-than (lhs: s32[], rhs: s32[]) -> pred[] { %lhs = s32[] parameter(0) %rhs = s32[] parameter(1) ROOT %compare = pred[] compare(s32[] %lhs, s32[] %rhs), direction=GT } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) param_dynamic_size = s32[<=4] set-dimension-size(param, size), dimensions={0} ROOT sort = s32[<=4]{0} sort(s32[4]{0} %param_dynamic_size), dimensions={0}, is_stable=false, to_apply=%compare-greater-than } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 2}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 3, 1, 2}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicPad) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) padding = s32[] constant(2) param_dynamic = s32[<=4] set-dimension-size(param, size), dimensions={0} pad = s32[<=6] pad(param_dynamic, padding), padding=1_1 init = s32[] constant(0) ROOT reduce = s32[] reduce(pad, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 5}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicPadInteriorPadding) { const std::string hlo_text = R"( HloModule TEST update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[4] parameter(0) size = s32[] constant(3) padding = s32[] constant(2) param_dynamic = s32[<=4] set-dimension-size(param, size), dimensions={0} pad = s32[<=7] pad(param_dynamic, padding), padding=0_0_1 init = s32[] constant(0) ROOT reduce = s32[] reduce(pad, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({1, 4, 3, 5}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicConditionalDimension) { const std::string hlo_text = R"( HloModule module update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } true_branch { true_param = (s32[<=3,2]) parameter(0) param = s32[<=3, 2] get-tuple-element(true_param), index=0 add = s32[<=3,2] add(param, param) ROOT true_tuple = (s32[<=3,2], s32[<=3,2]) tuple(add, add) } false_branch { false_param = (s32[<=3,2]) parameter(0) param = s32[<=3, 2] get-tuple-element(false_param), index=0 add = s32[<=3,2] add(param, param) ROOT false_tuple = (s32[<=3,2], s32[<=3,2]) tuple(add, add) } ENTRY entry { param0 = s32[3,2] parameter(0) size = s32[] constant(2) branch = pred[] constant(false) param_dynamic = s32[<=3, 2] set-dimension-size(param0, size), dimensions={0} param_tuple = (s32[<=3 ,2]) tuple(param_dynamic) conditional = (s32[<=3, 2], s32[<=3, 2]) conditional(branch, param_tuple, param_tuple), true_computation=true_branch, false_computation=false_branch gte0 = s32[<=3,2] get-tuple-element(conditional), index=1 init = s32[] constant(0) ROOT reduce = s32[2] reduce(gte0, init), dimensions={0}, to_apply=update_s32 } )"; Literal operand = LiteralUtil::CreateR2<int32_t>({{0, 1}, {2, 3}, {4, 5}}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 8}); EXPECT_EQ(result, expected); } XLA_TEST_F(ExecutionTest, DynamicTupleSort) { const std::string hlo_text = R"( HloModule TEST %compare-greater-than (lhs: s32[], rhs: s32[], lhs_2: s32[], lhs_2: s32[]) -> pred[] { %lhs = s32[] parameter(0) %rhs = s32[] parameter(1) %lhs_2 = s32[] parameter(2) %rhs_2 = s32[] parameter(3) ROOT %compare = pred[] compare(s32[] %lhs, s32[] %rhs), direction=GT } update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(lhs, rhs) } ENTRY main { param = s32[3] parameter(0) size = s32[] constant(2) param_dynamic_size = s32[<=3] set-dimension-size(param, size), dimensions={0} sort = (s32[<=3]{0}, s32[<=3]{0}) sort(s32[<=3]{0} %param_dynamic_size, s32[<=3]{0} %param_dynamic_size), dimensions={0}, is_stable=true, to_apply=%compare-greater-than ROOT get-tuple-element = s32[<=3]{0} get-tuple-element((s32[<=3]{0}, s32[<=3]{0}) %sort), index=0 } )"; Literal operand = LiteralUtil::CreateR1<int32_t>({0, 4, 2}); auto module = GetHloModule(hlo_text); TF_ASSERT_OK_AND_ASSIGN(Literal result, PadAndExecute(std::move(module), {&operand}, false)); Literal expected = LiteralUtil::CreateR1<int32_t>({4, 0, 2}); EXPECT_EQ(result, expected); } namespace op = xla::testing::opcode_matchers; class HloDimensionSizeLegalizerTest : public HloTestBase { protected: HloDimensionSizeLegalizerTest() {} }; TEST_F(HloDimensionSizeLegalizerTest, Ok) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ ENTRY gds { p = s32[3,4] parameter(0) size0 = s32[] get-dimension-size(p), dimensions={0} size1 = s32[] get-dimension-size(p), dimensions={1} ROOT mul = s32[] multiply(size0, size1) })") .value(); DynamicPadder pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Constant(), op::Constant())); } TEST_F(HloDimensionSizeLegalizerTest, GetSetSetDimensionSizeRewriter) { auto module = ParseAndReturnVerifiedModule(R"( HloModule _ ENTRY gds { p = s32[3,4] parameter(0) size0 = s32[] get-dimension-size(p), dimensions={0} p_copy = s32[3,4] copy(p) p_copy_dynamic = s32[<=3, 4] set-dimension-size(p_copy, size0), dimensions={0} size1 = s32[] get-dimension-size(p_copy_dynamic), dimensions={0} ROOT mul = s32[] multiply(size0, size1) })") .value(); DynamicPadder pass; EXPECT_TRUE(pass.Run(module.get()).value()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Multiply(op::Constant(), op::Constant())); } TEST_F(HloDimensionSizeLegalizerTest, IllegalType) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { p = s32[3]{0} parameter(0) ROOT gds = s64[] get-dimension-size(p), dimensions={0} })") .value(); DynamicPadder pass; EXPECT_FALSE(pass.Run(module.get()).ok()); } TEST_F(HloDimensionSizeLegalizerTest, IllegalDimension) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { p = f32[2,5] parameter(0) ROOT gds = s32[] get-dimension-size(p), dimensions={2} })") .value(); DynamicPadder pass; EXPECT_FALSE(pass.Run(module.get()).ok()); } class SizeCheckTest : public HloTestBase { protected: SizeCheckTest() {} }; TEST_F(SizeCheckTest, CompileTimeCheckBinaryOpFail) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { size_0 = s32[] parameter(0) size_1 = s32[] parameter(1) arg = s32[4]{0} parameter(2) dynamic_arg_0 = s32[<=4] set-dimension-size(arg, size_0), dimensions={0} dynamic_arg_1 = s32[<=4] set-dimension-size(arg, size_1), dimensions={0} ROOT add = s32[<=4] add(dynamic_arg_0, dynamic_arg_1) })") .value(); auto options = DynamicPadderOptions(); options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kCompileTime; DynamicPadder pass(options); auto status = pass.Run(module.get()).status(); EXPECT_THAT(status.code(), tsl::error::INVALID_ARGUMENT); } TEST_F(SizeCheckTest, CompileTimeCheckBinaryOpPass) { auto module = ParseAndReturnUnverifiedModule(R"( HloModule _ ENTRY gds { size_0 = s32[] parameter(0) size_0_reshape = s32[1] reshape(size_0) size_1 = s32[] reshape(size_0_reshape) arg = s32[4]{0} parameter(1) dynamic_arg_0 = s32[<=4] set-dimension-size(arg, size_0), dimensions={0} dynamic_arg_1 = s32[<=4] set-dimension-size(arg, size_1), dimensions={0} ROOT add = s32[<=4] add(dynamic_arg_0, dynamic_arg_1) })") .value(); auto options = DynamicPadderOptions(); options.shape_check_mode = DynamicDimensionInference::ShapeCheckMode::kCompileTime; DynamicDimensionSimplifier simplifier; EXPECT_TRUE(simplifier.Run(module.get()).ok()); DynamicPadder pass(options); auto status = pass.Run(module.get()).status(); EXPECT_TRUE(status.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_padder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dynamic_padder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2b3d12ac-68d3-49d6-91a9-b5472a2b113e
cpp
google/cel-cpp
duration_value
common/values/duration_value.cc
common/values/duration_value_test.cc
#include <cstddef> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/value.h" #include "internal/serialize.h" #include "internal/status_macros.h" #include "internal/time.h" namespace cel { namespace { std::string DurationDebugString(absl::Duration value) { return internal::DebugStringDuration(value); } } std::string DurationValue::DebugString() const { return DurationDebugString(NativeValue()); } absl::Status DurationValue::SerializeTo(AnyToJsonConverter&, absl::Cord& value) const { return internal::SerializeDuration(NativeValue(), value); } absl::StatusOr<Json> DurationValue::ConvertToJson(AnyToJsonConverter&) const { CEL_ASSIGN_OR_RETURN(auto json, internal::EncodeDurationToJson(NativeValue())); return JsonString(std::move(json)); } absl::Status DurationValue::Equal(ValueManager&, const Value& other, Value& result) const { if (auto other_value = As<DurationValue>(other); other_value.has_value()) { result = BoolValue{NativeValue() == other_value->NativeValue()}; return absl::OkStatus(); } result = BoolValue{false}; return absl::OkStatus(); } absl::StatusOr<Value> DurationValue::Equal(ValueManager& value_manager, const Value& other) const { Value result; CEL_RETURN_IF_ERROR(Equal(value_manager, other, result)); return result; } }
#include <sstream> #include "absl/strings/cord.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "common/any.h" #include "common/casting.h" #include "common/json.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::An; using ::testing::Ne; using DurationValueTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(DurationValueTest, Kind) { EXPECT_EQ(DurationValue().kind(), DurationValue::kKind); EXPECT_EQ(Value(DurationValue(absl::Seconds(1))).kind(), DurationValue::kKind); } TEST_P(DurationValueTest, DebugString) { { std::ostringstream out; out << DurationValue(absl::Seconds(1)); EXPECT_EQ(out.str(), "1s"); } { std::ostringstream out; out << Value(DurationValue(absl::Seconds(1))); EXPECT_EQ(out.str(), "1s"); } } TEST_P(DurationValueTest, ConvertToJson) { EXPECT_THAT(DurationValue().ConvertToJson(value_manager()), IsOkAndHolds(Json(JsonString("0s")))); } TEST_P(DurationValueTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(DurationValue(absl::Seconds(1))), NativeTypeId::For<DurationValue>()); EXPECT_EQ(NativeTypeId::Of(Value(DurationValue(absl::Seconds(1)))), NativeTypeId::For<DurationValue>()); } TEST_P(DurationValueTest, InstanceOf) { EXPECT_TRUE(InstanceOf<DurationValue>(DurationValue(absl::Seconds(1)))); EXPECT_TRUE( InstanceOf<DurationValue>(Value(DurationValue(absl::Seconds(1))))); } TEST_P(DurationValueTest, Cast) { EXPECT_THAT(Cast<DurationValue>(DurationValue(absl::Seconds(1))), An<DurationValue>()); EXPECT_THAT(Cast<DurationValue>(Value(DurationValue(absl::Seconds(1)))), An<DurationValue>()); } TEST_P(DurationValueTest, As) { EXPECT_THAT(As<DurationValue>(Value(DurationValue(absl::Seconds(1)))), Ne(absl::nullopt)); } TEST_P(DurationValueTest, Equality) { EXPECT_NE(DurationValue(absl::ZeroDuration()), absl::Seconds(1)); EXPECT_NE(absl::Seconds(1), DurationValue(absl::ZeroDuration())); EXPECT_NE(DurationValue(absl::ZeroDuration()), DurationValue(absl::Seconds(1))); } INSTANTIATE_TEST_SUITE_P( DurationValueTest, DurationValueTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), DurationValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/duration_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/duration_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
58149a92-130e-465a-897d-2bb9af5d8f4b
cpp
google/quiche
quic_endpoint
quiche/quic/test_tools/simulator/quic_endpoint.cc
quiche/quic/test_tools/simulator/quic_endpoint_test.cc
#include "quiche/quic/test_tools/simulator/quic_endpoint.h" #include <algorithm> #include <memory> #include <string> #include <utility> #include "quiche/quic/core/crypto/crypto_handshake_message.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/platform/api/quic_test_output.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simulator/simulator.h" namespace quic { namespace simulator { const QuicStreamId kDataStream = 3; const QuicByteCount kWriteChunkSize = 128 * 1024; const char kStreamDataContents = 'Q'; QuicEndpoint::QuicEndpoint(Simulator* simulator, std::string name, std::string peer_name, Perspective perspective, QuicConnectionId connection_id) : QuicEndpointBase(simulator, name, peer_name), bytes_to_transfer_(0), bytes_transferred_(0), wrong_data_received_(false), notifier_(nullptr) { connection_ = std::make_unique<QuicConnection>( connection_id, GetAddressFromName(name), GetAddressFromName(peer_name), simulator, simulator->GetAlarmFactory(), &writer_, false, perspective, ParsedVersionOfIndex(CurrentSupportedVersions(), 0), connection_id_generator_); connection_->set_visitor(this); connection_->SetEncrypter(ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::TaggingEncrypter>( ENCRYPTION_FORWARD_SECURE)); connection_->SetEncrypter(ENCRYPTION_INITIAL, nullptr); if (connection_->version().KnowsWhichDecrypterToUse()) { connection_->InstallDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::StrictTaggingDecrypter>( ENCRYPTION_FORWARD_SECURE)); connection_->RemoveDecrypter(ENCRYPTION_INITIAL); } else { connection_->SetDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<quic::test::StrictTaggingDecrypter>( ENCRYPTION_FORWARD_SECURE)); } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); connection_->OnHandshakeComplete(); if (perspective == Perspective::IS_SERVER) { test::QuicConnectionPeer::SetNegotiatedVersion(connection_.get()); } test::QuicConnectionPeer::SetAddressValidated(connection_.get()); connection_->SetDataProducer(&producer_); connection_->SetSessionNotifier(this); notifier_ = std::make_unique<test::SimpleSessionNotifier>(connection_.get()); std::string error; CryptoHandshakeMessage peer_hello; peer_hello.SetValue(kICSL, static_cast<uint32_t>(kMaximumIdleTimeoutSecs - 1)); peer_hello.SetValue(kMIBS, static_cast<uint32_t>(kDefaultMaxStreamsPerConnection)); QuicConfig config; QuicErrorCode error_code = config.ProcessPeerHello( peer_hello, perspective == Perspective::IS_CLIENT ? SERVER : CLIENT, &error); QUICHE_DCHECK_EQ(error_code, QUIC_NO_ERROR) << "Configuration failed: " << error; if (connection_->version().UsesTls()) { if (connection_->perspective() == Perspective::IS_CLIENT) { test::QuicConfigPeer::SetReceivedOriginalConnectionId( &config, connection_->connection_id()); test::QuicConfigPeer::SetReceivedInitialSourceConnectionId( &config, connection_->connection_id()); } else { test::QuicConfigPeer::SetReceivedInitialSourceConnectionId( &config, connection_->client_connection_id()); } } connection_->SetFromConfig(config); connection_->DisableMtuDiscovery(); } QuicByteCount QuicEndpoint::bytes_received() const { QuicByteCount total = 0; for (auto& interval : offsets_received_) { total += interval.max() - interval.min(); } return total; } QuicByteCount QuicEndpoint::bytes_to_transfer() const { if (notifier_ != nullptr) { return notifier_->StreamBytesToSend(); } return bytes_to_transfer_; } QuicByteCount QuicEndpoint::bytes_transferred() const { if (notifier_ != nullptr) { return notifier_->StreamBytesSent(); } return bytes_transferred_; } void QuicEndpoint::AddBytesToTransfer(QuicByteCount bytes) { if (notifier_ != nullptr) { if (notifier_->HasBufferedStreamData()) { Schedule(clock_->Now()); } notifier_->WriteOrBufferData(kDataStream, bytes, NO_FIN); return; } if (bytes_to_transfer_ > 0) { Schedule(clock_->Now()); } bytes_to_transfer_ += bytes; WriteStreamData(); } void QuicEndpoint::OnStreamFrame(const QuicStreamFrame& frame) { QUICHE_DCHECK(frame.stream_id == kDataStream); for (size_t i = 0; i < frame.data_length; i++) { if (frame.data_buffer[i] != kStreamDataContents) { wrong_data_received_ = true; } } offsets_received_.Add(frame.offset, frame.offset + frame.data_length); QUICHE_DCHECK_LE(offsets_received_.Size(), 1000u); } void QuicEndpoint::OnCryptoFrame(const QuicCryptoFrame& ) {} void QuicEndpoint::OnCanWrite() { if (notifier_ != nullptr) { notifier_->OnCanWrite(); return; } WriteStreamData(); } bool QuicEndpoint::WillingAndAbleToWrite() const { if (notifier_ != nullptr) { return notifier_->WillingToWrite(); } return bytes_to_transfer_ != 0; } bool QuicEndpoint::ShouldKeepConnectionAlive() const { return true; } bool QuicEndpoint::AllowSelfAddressChange() const { return false; } bool QuicEndpoint::OnFrameAcked(const QuicFrame& frame, QuicTime::Delta ack_delay_time, QuicTime receive_timestamp) { if (notifier_ != nullptr) { return notifier_->OnFrameAcked(frame, ack_delay_time, receive_timestamp); } return false; } void QuicEndpoint::OnFrameLost(const QuicFrame& frame) { QUICHE_DCHECK(notifier_); notifier_->OnFrameLost(frame); } bool QuicEndpoint::RetransmitFrames(const QuicFrames& frames, TransmissionType type) { QUICHE_DCHECK(notifier_); return notifier_->RetransmitFrames(frames, type); } bool QuicEndpoint::IsFrameOutstanding(const QuicFrame& frame) const { QUICHE_DCHECK(notifier_); return notifier_->IsFrameOutstanding(frame); } bool QuicEndpoint::HasUnackedCryptoData() const { return false; } bool QuicEndpoint::HasUnackedStreamData() const { if (notifier_ != nullptr) { return notifier_->HasUnackedStreamData(); } return false; } HandshakeState QuicEndpoint::GetHandshakeState() const { return HANDSHAKE_COMPLETE; } WriteStreamDataResult QuicEndpoint::DataProducer::WriteStreamData( QuicStreamId , QuicStreamOffset , QuicByteCount data_length, QuicDataWriter* writer) { writer->WriteRepeatedByte(kStreamDataContents, data_length); return WRITE_SUCCESS; } bool QuicEndpoint::DataProducer::WriteCryptoData(EncryptionLevel , QuicStreamOffset , QuicByteCount , QuicDataWriter* ) { QUIC_BUG(quic_bug_10157_1) << "QuicEndpoint::DataProducer::WriteCryptoData is unimplemented"; return false; } void QuicEndpoint::WriteStreamData() { QuicConnection::ScopedPacketFlusher flusher(connection_.get()); while (bytes_to_transfer_ > 0) { const size_t transmission_size = std::min(kWriteChunkSize, bytes_to_transfer_); QuicConsumedData consumed_data = connection_->SendStreamData( kDataStream, transmission_size, bytes_transferred_, NO_FIN); QUICHE_DCHECK(consumed_data.bytes_consumed <= transmission_size); bytes_transferred_ += consumed_data.bytes_consumed; bytes_to_transfer_ -= consumed_data.bytes_consumed; if (consumed_data.bytes_consumed != transmission_size) { return; } } } } }
#include "quiche/quic/test_tools/simulator/quic_endpoint.h" #include <memory> #include <utility> #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simulator/simulator.h" #include "quiche/quic/test_tools/simulator/switch.h" using ::testing::_; using ::testing::NiceMock; using ::testing::Return; namespace quic { namespace simulator { const QuicBandwidth kDefaultBandwidth = QuicBandwidth::FromKBitsPerSecond(10 * 1000); const QuicTime::Delta kDefaultPropagationDelay = QuicTime::Delta::FromMilliseconds(20); const QuicByteCount kDefaultBdp = kDefaultBandwidth * kDefaultPropagationDelay; class QuicEndpointTest : public quic::test::QuicTest { public: QuicEndpointTest() : simulator_(), switch_(&simulator_, "Switch", 8, kDefaultBdp * 2) {} protected: Simulator simulator_; Switch switch_; std::unique_ptr<SymmetricLink> Link(Endpoint* a, Endpoint* b) { return std::make_unique<SymmetricLink>(a, b, kDefaultBandwidth, kDefaultPropagationDelay); } std::unique_ptr<SymmetricLink> CustomLink(Endpoint* a, Endpoint* b, uint64_t extra_rtt_ms) { return std::make_unique<SymmetricLink>( a, b, kDefaultBandwidth, kDefaultPropagationDelay + QuicTime::Delta::FromMilliseconds(extra_rtt_ms)); } }; TEST_F(QuicEndpointTest, OneWayTransmission) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); endpoint_a.AddBytesToTransfer(600); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromMilliseconds(1000); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(600u, endpoint_a.bytes_transferred()); ASSERT_EQ(600u, endpoint_b.bytes_received()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); endpoint_a.AddBytesToTransfer(2 * 1024 * 1024); end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(5); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); const QuicByteCount total_bytes_transferred = 600 + 2 * 1024 * 1024; EXPECT_EQ(total_bytes_transferred, endpoint_a.bytes_transferred()); EXPECT_EQ(total_bytes_transferred, endpoint_b.bytes_received()); EXPECT_EQ(0u, endpoint_a.write_blocked_count()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, WriteBlocked) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); auto* sender = new NiceMock<test::MockSendAlgorithm>(); EXPECT_CALL(*sender, CanSend(_)).WillRepeatedly(Return(true)); EXPECT_CALL(*sender, PacingRate(_)) .WillRepeatedly(Return(10 * kDefaultBandwidth)); EXPECT_CALL(*sender, BandwidthEstimate()) .WillRepeatedly(Return(10 * kDefaultBandwidth)); EXPECT_CALL(*sender, GetCongestionWindow()) .WillRepeatedly(Return(kMaxOutgoingPacketSize * GetQuicFlag(quic_max_congestion_window))); test::QuicConnectionPeer::SetSendAlgorithm(endpoint_a.connection(), sender); QuicByteCount bytes_to_transfer = 3 * 1024 * 1024; endpoint_a.AddBytesToTransfer(bytes_to_transfer); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(30); simulator_.RunUntil([this, &endpoint_b, bytes_to_transfer, end_time]() { return endpoint_b.bytes_received() == bytes_to_transfer || simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(bytes_to_transfer, endpoint_a.bytes_transferred()); EXPECT_EQ(bytes_to_transfer, endpoint_b.bytes_received()); EXPECT_GT(endpoint_a.write_blocked_count(), 0u); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, TwoWayTransmission) { QuicEndpoint endpoint_a(&simulator_, "Endpoint A", "Endpoint B", Perspective::IS_CLIENT, test::TestConnectionId(42)); QuicEndpoint endpoint_b(&simulator_, "Endpoint B", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto link_a = Link(&endpoint_a, switch_.port(1)); auto link_b = Link(&endpoint_b, switch_.port(2)); endpoint_a.RecordTrace(); endpoint_b.RecordTrace(); endpoint_a.AddBytesToTransfer(1024 * 1024); endpoint_b.AddBytesToTransfer(1024 * 1024); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(5); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); EXPECT_EQ(1024u * 1024u, endpoint_a.bytes_transferred()); EXPECT_EQ(1024u * 1024u, endpoint_b.bytes_transferred()); EXPECT_EQ(1024u * 1024u, endpoint_a.bytes_received()); EXPECT_EQ(1024u * 1024u, endpoint_b.bytes_received()); EXPECT_FALSE(endpoint_a.wrong_data_received()); EXPECT_FALSE(endpoint_b.wrong_data_received()); } TEST_F(QuicEndpointTest, Competition) { auto endpoint_a = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint A", "Endpoint D (A)", Perspective::IS_CLIENT, test::TestConnectionId(42)); auto endpoint_b = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint B", "Endpoint D (B)", Perspective::IS_CLIENT, test::TestConnectionId(43)); auto endpoint_c = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint C", "Endpoint D (C)", Perspective::IS_CLIENT, test::TestConnectionId(44)); auto endpoint_d_a = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (A)", "Endpoint A", Perspective::IS_SERVER, test::TestConnectionId(42)); auto endpoint_d_b = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (B)", "Endpoint B", Perspective::IS_SERVER, test::TestConnectionId(43)); auto endpoint_d_c = std::make_unique<QuicEndpoint>( &simulator_, "Endpoint D (C)", "Endpoint C", Perspective::IS_SERVER, test::TestConnectionId(44)); QuicEndpointMultiplexer endpoint_d( "Endpoint D", {endpoint_d_a.get(), endpoint_d_b.get(), endpoint_d_c.get()}); auto link_a = CustomLink(endpoint_a.get(), switch_.port(1), 0); auto link_b = CustomLink(endpoint_b.get(), switch_.port(2), 1); auto link_c = CustomLink(endpoint_c.get(), switch_.port(3), 2); auto link_d = Link(&endpoint_d, switch_.port(4)); endpoint_a->AddBytesToTransfer(2 * 1024 * 1024); endpoint_b->AddBytesToTransfer(2 * 1024 * 1024); endpoint_c->AddBytesToTransfer(2 * 1024 * 1024); QuicTime end_time = simulator_.GetClock()->Now() + QuicTime::Delta::FromSeconds(12); simulator_.RunUntil( [this, end_time]() { return simulator_.GetClock()->Now() >= end_time; }); for (QuicEndpoint* endpoint : {endpoint_a.get(), endpoint_b.get(), endpoint_c.get()}) { EXPECT_EQ(2u * 1024u * 1024u, endpoint->bytes_transferred()); EXPECT_GE(endpoint->connection()->GetStats().packets_lost, 0u); } for (QuicEndpoint* endpoint : {endpoint_d_a.get(), endpoint_d_b.get(), endpoint_d_c.get()}) { EXPECT_EQ(2u * 1024u * 1024u, endpoint->bytes_received()); EXPECT_FALSE(endpoint->wrong_data_received()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simulator/quic_endpoint.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simulator/quic_endpoint_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
23a79605-f8d1-470f-b2fc-6fc4ba7ce262
cpp
tensorflow/tensorflow
hlo_dfs_reachability
third_party/xla/xla/hlo/ir/hlo_dfs_reachability.cc
third_party/xla/xla/service/hlo_dfs_reachability_test.cc
#include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" namespace xla { bool HloDfsReachability::IsPresent(const HloInstruction* instruction) const { return instruction_to_idx_.contains(instruction); } bool HloDfsReachability::IsReachable(const HloInstruction* from, const HloInstruction* to) const { if (from == to) { return true; } if (to->operand_count() == 0 && from->control_predecessors().empty()) { return false; } size_t target_node_idx = instruction_to_idx_.at(from); size_t dfs_root_idx = instruction_to_idx_.at(to); if (dfs_root_idx < target_node_idx) { return false; } llvm::SmallVector<const HloInstruction*> stack{to}; llvm::BitVector visited_idxs(1 + (dfs_root_idx - target_node_idx)); visited_idxs.set(dfs_root_idx - target_node_idx); auto check_and_enqueue = [&](const HloInstruction* instr) { if (instr == from) { return true; } size_t instr_idx = instruction_to_idx_.at(instr); if (instr_idx < target_node_idx) { return false; } size_t visited_idx = instr_idx - target_node_idx; if (visited_idxs.test(visited_idx)) { return false; } visited_idxs.set(visited_idx); stack.push_back(instr); return false; }; while (!stack.empty()) { const HloInstruction* instr = stack.pop_back_val(); if (absl::c_any_of(instr->operands(), check_and_enqueue) || absl::c_any_of(instr->control_predecessors(), check_and_enqueue)) { return true; } } return false; } bool HloDfsReachability::IsConnected(const HloInstruction* a, const HloInstruction* b) const { return IsReachable(a, b) || IsReachable(b, a); } std::unique_ptr<HloDfsReachability> HloDfsReachability::Build( const HloComputation* computation) { auto res = std::make_unique<HloDfsReachability>(); HloComputation::ChannelDependencies empty_channel_dependencies; std::vector<HloInstruction*> instructions = computation->MakeInstructionPostOrder(empty_channel_dependencies); res->instruction_to_idx_.reserve(instructions.size()); for (size_t i = 0; i < instructions.size(); ++i) { res->instruction_to_idx_[instructions[i]] = i; } return res; } }
#include "xla/hlo/ir/hlo_dfs_reachability.h" #include <cstddef> #include <memory> #include <string> #include <string_view> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/computation_placer.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/status.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { class HloDfsReachabilityTest : public HloTestBase {}; TEST_F(HloDfsReachabilityTest, NonTrivialReachability) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( r0f32, HloOpcode::kAdd, constant1, constant2)); auto negate = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kNegate, constant2)); auto exp = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, negate)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(r0f32, HloOpcode::kMultiply, add, exp)); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kCopy, exp)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build(mul)); TF_CHECK_OK(add->AddControlDependencyTo(exp)); auto reachability = HloDfsReachability::Build(computation); EXPECT_TRUE(reachability->IsReachable(constant1, constant1)); EXPECT_FALSE(reachability->IsReachable(constant1, constant2)); EXPECT_TRUE(reachability->IsReachable(constant1, add)); EXPECT_FALSE(reachability->IsReachable(constant1, negate)); EXPECT_TRUE(reachability->IsReachable(constant1, exp)); EXPECT_TRUE(reachability->IsReachable(constant1, mul)); EXPECT_TRUE(reachability->IsReachable(constant1, copy)); EXPECT_FALSE(reachability->IsReachable(constant2, constant1)); EXPECT_TRUE(reachability->IsReachable(constant2, constant2)); EXPECT_TRUE(reachability->IsReachable(constant2, add)); EXPECT_TRUE(reachability->IsReachable(constant2, negate)); EXPECT_TRUE(reachability->IsReachable(constant2, exp)); EXPECT_TRUE(reachability->IsReachable(constant2, mul)); EXPECT_TRUE(reachability->IsReachable(constant2, copy)); EXPECT_FALSE(reachability->IsReachable(exp, constant1)); EXPECT_FALSE(reachability->IsReachable(exp, constant2)); EXPECT_FALSE(reachability->IsReachable(exp, add)); EXPECT_FALSE(reachability->IsReachable(exp, negate)); EXPECT_TRUE(reachability->IsReachable(exp, exp)); EXPECT_TRUE(reachability->IsReachable(exp, mul)); EXPECT_TRUE(reachability->IsReachable(exp, copy)); EXPECT_FALSE(reachability->IsReachable(mul, constant1)); EXPECT_FALSE(reachability->IsReachable(mul, constant2)); EXPECT_FALSE(reachability->IsReachable(mul, add)); EXPECT_FALSE(reachability->IsReachable(mul, negate)); EXPECT_FALSE(reachability->IsReachable(mul, exp)); EXPECT_TRUE(reachability->IsReachable(mul, mul)); EXPECT_FALSE(reachability->IsReachable(mul, copy)); EXPECT_TRUE(reachability->IsConnected(constant1, copy)); EXPECT_TRUE(reachability->IsConnected(copy, constant1)); EXPECT_FALSE(reachability->IsConnected(negate, add)); EXPECT_FALSE(reachability->IsConnected(add, negate)); } TEST_F(HloDfsReachabilityTest, ChannelReachability) { const Shape shape = ShapeUtil::MakeShape(F32, {5, 7}); HloComputation::Builder builder("ChannelReachability"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param")); auto token0 = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction(HloInstruction::CreateSend(param, token0, 1)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); auto token1 = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv(shape, token1, 1)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); auto module = CreateNewVerifiedModule(); module->mutable_config().set_use_spmd_partitioning(false); module->mutable_config().set_static_device_assignment(DeviceAssignment(1, 2)); auto computation = module->AddEntryComputation(builder.Build(recv_done)); auto reachability = HloDfsReachability::Build(computation); EXPECT_FALSE(reachability->IsReachable(param, recv_done)); EXPECT_FALSE(reachability->IsReachable(send, recv)); EXPECT_FALSE(reachability->IsReachable(send_done, recv)); } class HloDfsReachabilityBenchmark { public: HloDfsReachabilityBenchmark(int size, std::string_view name) : name_(name) { Shape r0f32 = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(name); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0f))); HloInstruction* prev = constant; for (int i = 1; i < size; ++i) { prev = builder.AddInstruction( HloInstruction::CreateUnary(r0f32, HloOpcode::kExp, prev)); } HloModuleConfig hlo_config; module_ = std::make_unique<HloModule>(name_, hlo_config); computation_ = module_->AddEntryComputation(builder.Build(prev)); } std::unique_ptr<HloDfsReachability> Build() { return HloDfsReachability::Build(computation_); } const HloComputation* computation() { return computation_; } private: std::unique_ptr<HloModule> module_; HloComputation* computation_; const std::string name_; }; void BM_HloDfsReachabilityBuild(benchmark::State& state) { int num_nodes = state.range(0); HloDfsReachabilityBenchmark bm(num_nodes, state.name()); while (state.KeepRunningBatch(num_nodes)) { benchmark::DoNotOptimize(bm.Build()); } } void BM_HloDfsReachabilityCheck(benchmark::State& state) { size_t size = state.range(0); HloDfsReachabilityBenchmark bm(size, state.name()); auto reachability = bm.Build(); auto instrs = bm.computation()->MakeInstructionPostOrder(); size_t i = 0; for (auto s : state) { size_t from = i % size; size_t to = (++i + size / 2) % size; reachability->IsReachable(instrs[from], instrs[to]); } } #define BM_ARGS Arg(1)->Arg(64)->Arg(128)->Arg(256)->Range(512, 256 * 1024) BENCHMARK(BM_HloDfsReachabilityBuild)->BM_ARGS; BENCHMARK(BM_HloDfsReachabilityCheck)->BM_ARGS; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_dfs_reachability.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_dfs_reachability_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d3540fdf-f66a-4c00-8171-5490a9676f89
cpp
google/cel-cpp
activation
eval/public/activation.cc
eval/public/activation_test.cc
#include "eval/public/activation.h" #include <algorithm> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "eval/public/cel_function.h" namespace google { namespace api { namespace expr { namespace runtime { absl::optional<CelValue> Activation::FindValue(absl::string_view name, google::protobuf::Arena* arena) const { auto entry = value_map_.find(name); if (entry == value_map_.end()) { return {}; } return entry->second.RetrieveValue(arena); } absl::Status Activation::InsertFunction(std::unique_ptr<CelFunction> function) { auto& overloads = function_map_[function->descriptor().name()]; for (const auto& overload : overloads) { if (overload->descriptor().ShapeMatches(function->descriptor())) { return absl::InvalidArgumentError( "Function with same shape already defined in activation"); } } overloads.emplace_back(std::move(function)); return absl::OkStatus(); } std::vector<const CelFunction*> Activation::FindFunctionOverloads( absl::string_view name) const { const auto map_entry = function_map_.find(name); std::vector<const CelFunction*> overloads; if (map_entry == function_map_.end()) { return overloads; } overloads.resize(map_entry->second.size()); std::transform(map_entry->second.begin(), map_entry->second.end(), overloads.begin(), [](const auto& func) { return func.get(); }); return overloads; } bool Activation::RemoveFunctionEntries( const CelFunctionDescriptor& descriptor) { auto map_entry = function_map_.find(descriptor.name()); if (map_entry == function_map_.end()) { return false; } std::vector<std::unique_ptr<CelFunction>>& overloads = map_entry->second; bool funcs_removed = false; auto func_iter = overloads.begin(); while (func_iter != overloads.end()) { if (descriptor.ShapeMatches(func_iter->get()->descriptor())) { func_iter = overloads.erase(func_iter); funcs_removed = true; } else { ++func_iter; } } if (overloads.empty()) { function_map_.erase(map_entry); } return funcs_removed; } void Activation::InsertValue(absl::string_view name, const CelValue& value) { value_map_.try_emplace(name, ValueEntry(value)); } void Activation::InsertValueProducer( absl::string_view name, std::unique_ptr<CelValueProducer> value_producer) { value_map_.try_emplace(name, ValueEntry(std::move(value_producer))); } bool Activation::RemoveValueEntry(absl::string_view name) { return value_map_.erase(name); } bool Activation::ClearValueEntry(absl::string_view name) { auto entry = value_map_.find(name); if (entry == value_map_.end()) { return false; } return entry->second.ClearValue(); } int Activation::ClearCachedValues() { int n = 0; for (auto& entry : value_map_) { if (entry.second.HasProducer()) { if (entry.second.ClearValue()) { n++; } } } return n; } } } } }
#include "eval/public/activation.h" #include <memory> #include <string> #include <utility> #include "eval/eval/attribute_trail.h" #include "eval/eval/ident_step.h" #include "eval/public/cel_attribute.h" #include "eval/public/cel_function.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "parser/parser.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { using ::absl_testing::StatusIs; using ::cel::extensions::ProtoMemoryManager; using ::google::api::expr::v1alpha1::Expr; using ::google::protobuf::Arena; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::Property; using ::testing::Return; class MockValueProducer : public CelValueProducer { public: MOCK_METHOD(CelValue, Produce, (Arena*), (override)); }; class ConstCelFunction : public CelFunction { public: explicit ConstCelFunction(absl::string_view name) : CelFunction({std::string(name), false, {}}) {} explicit ConstCelFunction(const CelFunctionDescriptor& desc) : CelFunction(desc) {} absl::Status Evaluate(absl::Span<const CelValue> args, CelValue* output, google::protobuf::Arena* arena) const override { *output = CelValue::CreateInt64(42); return absl::OkStatus(); } }; TEST(ActivationTest, CheckValueInsertFindAndRemove) { Activation activation; Arena arena; activation.InsertValue("value42", CelValue::CreateInt64(42)); EXPECT_FALSE(activation.FindValue("value43", &arena)); EXPECT_TRUE(activation.FindValue("value42", &arena)); CelValue value = activation.FindValue("value42", &arena).value(); EXPECT_THAT(value.Int64OrDie(), Eq(42)); EXPECT_FALSE(activation.RemoveValueEntry("value43")); EXPECT_TRUE(activation.RemoveValueEntry("value42")); EXPECT_FALSE(activation.FindValue("value42", &arena)); } TEST(ActivationTest, CheckValueProducerInsertFindAndRemove) { const std::string kValue = "42"; auto producer = std::make_unique<MockValueProducer>(); google::protobuf::Arena arena; ON_CALL(*producer, Produce(&arena)) .WillByDefault(Return(CelValue::CreateString(&kValue))); EXPECT_CALL(*producer, Produce(&arena)).Times(1); Activation activation; activation.InsertValueProducer("value42", std::move(producer)); EXPECT_FALSE(activation.FindValue("value43", &arena)); for (int i = 0; i < 2; i++) { auto opt_value = activation.FindValue("value42", &arena); EXPECT_TRUE(opt_value.has_value()) << " for pass " << i; CelValue value = opt_value.value(); EXPECT_THAT(value.StringOrDie().value(), Eq(kValue)) << " for pass " << i; } EXPECT_TRUE(activation.RemoveValueEntry("value42")); EXPECT_FALSE(activation.FindValue("value42", &arena)); } TEST(ActivationTest, CheckInsertFunction) { Activation activation; ASSERT_OK(activation.InsertFunction( std::make_unique<ConstCelFunction>("ConstFunc"))); auto overloads = activation.FindFunctionOverloads("ConstFunc"); EXPECT_THAT(overloads, ElementsAre(Property( &CelFunction::descriptor, Property(&CelFunctionDescriptor::name, Eq("ConstFunc"))))); EXPECT_THAT(activation.InsertFunction( std::make_unique<ConstCelFunction>("ConstFunc")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Function with same shape"))); EXPECT_THAT(activation.FindFunctionOverloads("ConstFunc0"), IsEmpty()); } TEST(ActivationTest, CheckRemoveFunction) { Activation activation; ASSERT_OK(activation.InsertFunction(std::make_unique<ConstCelFunction>( CelFunctionDescriptor{"ConstFunc", false, {CelValue::Type::kInt64}}))); EXPECT_OK(activation.InsertFunction(std::make_unique<ConstCelFunction>( CelFunctionDescriptor{"ConstFunc", false, {CelValue::Type::kUint64}}))); auto overloads = activation.FindFunctionOverloads("ConstFunc"); EXPECT_THAT( overloads, ElementsAre( Property(&CelFunction::descriptor, Property(&CelFunctionDescriptor::name, Eq("ConstFunc"))), Property(&CelFunction::descriptor, Property(&CelFunctionDescriptor::name, Eq("ConstFunc"))))); EXPECT_TRUE(activation.RemoveFunctionEntries( {"ConstFunc", false, {CelValue::Type::kAny}})); EXPECT_THAT(activation.FindFunctionOverloads("ConstFunc"), IsEmpty()); } TEST(ActivationTest, CheckValueProducerClear) { const std::string kValue1 = "42"; const std::string kValue2 = "43"; auto producer1 = std::make_unique<MockValueProducer>(); auto producer2 = std::make_unique<MockValueProducer>(); google::protobuf::Arena arena; ON_CALL(*producer1, Produce(&arena)) .WillByDefault(Return(CelValue::CreateString(&kValue1))); ON_CALL(*producer2, Produce(&arena)) .WillByDefault(Return(CelValue::CreateString(&kValue2))); EXPECT_CALL(*producer1, Produce(&arena)).Times(2); EXPECT_CALL(*producer2, Produce(&arena)).Times(1); Activation activation; activation.InsertValueProducer("value42", std::move(producer1)); activation.InsertValueProducer("value43", std::move(producer2)); auto opt_value = activation.FindValue("value42", &arena); EXPECT_TRUE(opt_value.has_value()); EXPECT_THAT(opt_value->StringOrDie().value(), Eq(kValue1)); EXPECT_TRUE(activation.ClearValueEntry("value42")); EXPECT_FALSE(activation.ClearValueEntry("value43")); auto opt_value2 = activation.FindValue("value43", &arena); EXPECT_TRUE(opt_value2.has_value()); EXPECT_THAT(opt_value2->StringOrDie().value(), Eq(kValue2)); EXPECT_EQ(1, activation.ClearCachedValues()); EXPECT_FALSE(activation.ClearValueEntry("value42")); EXPECT_FALSE(activation.ClearValueEntry("value43")); auto opt_value3 = activation.FindValue("value42", &arena); EXPECT_TRUE(opt_value3.has_value()); EXPECT_THAT(opt_value3->StringOrDie().value(), Eq(kValue1)); EXPECT_EQ(1, activation.ClearCachedValues()); } TEST(ActivationTest, ErrorPathTest) { Activation activation; Expr expr; auto* select_expr = expr.mutable_select_expr(); select_expr->set_field("ip"); Expr* ident_expr = select_expr->mutable_operand(); ident_expr->mutable_ident_expr()->set_name("destination"); const CelAttributePattern destination_ip_pattern( "destination", {CreateCelAttributeQualifierPattern(CelValue::CreateStringView("ip"))}); AttributeTrail trail("destination"); trail = trail.Step(CreateCelAttributeQualifier(CelValue::CreateStringView("ip"))); ASSERT_EQ(destination_ip_pattern.IsMatch(trail.attribute()), CelAttributePattern::MatchType::FULL); EXPECT_TRUE(activation.missing_attribute_patterns().empty()); activation.set_missing_attribute_patterns({destination_ip_pattern}); EXPECT_EQ( activation.missing_attribute_patterns()[0].IsMatch(trail.attribute()), CelAttributePattern::MatchType::FULL); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/activation.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/activation_test.cc
4552db5798fb0853b131b783d8875794334fae7f
db986006-b216-4ed1-9076-c2e7bc628ce6
cpp
tensorflow/tensorflow
bitwise_xor
tensorflow/lite/kernels/bitwise_xor.cc
tensorflow/lite/kernels/bitwise_xor_test.cc
#include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/binary_function.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace bitwise_xor { constexpr int kInputTensor1 = 0; constexpr int kInputTensor2 = 1; constexpr int kOutputTensor = 0; struct OpData { bool requires_broadcast = false; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new OpData; return data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); output->type = input1->type; data->requires_broadcast = !HaveSameShapes(input1, input2); TfLiteIntArray* output_size = nullptr; if (data->requires_broadcast) { TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast( context, input1, input2, &output_size)); } else { output_size = TfLiteIntArrayCopy(input1->dims); } return context->ResizeTensor(context, output, output_size); } template <typename T> T BitwiseXor(T x, T y) { return x ^ y; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input1; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor1, &input1)); const TfLiteTensor* input2; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor2, &input2)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const TfLiteType type = output->type; switch (type) { case kTfLiteUInt8: case kTfLiteInt8: { if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<int8_t, int8_t, int8_t>( GetTensorShape(input1), GetTensorData<int8_t>(input1), GetTensorShape(input2), GetTensorData<int8_t>(input2), GetTensorShape(output), GetTensorData<int8_t>(output), BitwiseXor); } else { reference_ops::BinaryFunction<int8_t, int8_t, int8_t>( GetTensorShape(input1), GetTensorData<int8_t>(input1), GetTensorShape(input2), GetTensorData<int8_t>(input2), GetTensorShape(output), GetTensorData<int8_t>(output), BitwiseXor); } break; } case kTfLiteUInt16: case kTfLiteInt16: { if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<int16_t, int16_t, int16_t>( GetTensorShape(input1), GetTensorData<int16_t>(input1), GetTensorShape(input2), GetTensorData<int16_t>(input2), GetTensorShape(output), GetTensorData<int16_t>(output), BitwiseXor); } else { reference_ops::BinaryFunction<int16_t, int16_t, int16_t>( GetTensorShape(input1), GetTensorData<int16_t>(input1), GetTensorShape(input2), GetTensorData<int16_t>(input2), GetTensorShape(output), GetTensorData<int16_t>(output), BitwiseXor); } break; } case kTfLiteUInt32: case kTfLiteInt32: { if (data->requires_broadcast) { reference_ops::BroadcastBinaryFunction4DSlow<int32_t, int32_t, int32_t>( GetTensorShape(input1), GetTensorData<int32_t>(input1), GetTensorShape(input2), GetTensorData<int32_t>(input2), GetTensorShape(output), GetTensorData<int32_t>(output), BitwiseXor); } else { reference_ops::BinaryFunction<int32_t, int32_t, int32_t>( GetTensorShape(input1), GetTensorData<int32_t>(input1), GetTensorShape(input2), GetTensorData<int32_t>(input2), GetTensorShape(output), GetTensorData<int32_t>(output), BitwiseXor); } break; } default: TF_LITE_KERNEL_LOG(context, "BitwiseXor currently only supports " "8-bit/16-bit/32-bit integer/unsigned integer, got %s", TfLiteTypeGetName(type)); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_BITWISE_XOR() { static TfLiteRegistration r = {bitwise_xor::Init, bitwise_xor::Free, bitwise_xor::Prepare, bitwise_xor::Eval}; return &r; } } } }
#include <cstdint> #include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class BitwiseXorOpModel : public SingleOpModel { public: BitwiseXorOpModel(std::initializer_list<int> input1_shape, std::initializer_list<int> input2_shape, TensorType tensor_type) { input1_ = AddInput(tensor_type); input2_ = AddInput(tensor_type); output_ = AddOutput(tensor_type); SetBuiltinOp(BuiltinOperator_BITWISE_XOR, BuiltinOptions_BitwiseXorOptions, CreateBitwiseXorOptions(builder_).Union()); BuildInterpreter({input1_shape, input2_shape}); } int input1() const { return input1_; } int input2() const { return input2_; } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input1_; int input2_; int output_; }; TEST(BitwiseXorOpTest, SimpleTestInt8) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT8); model.PopulateTensor<int8_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<int8_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<int8_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, SimpleTestInt16) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT16); model.PopulateTensor<int16_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<int16_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<int16_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, SimpleTestInt32) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_INT32); model.PopulateTensor<int32_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<int32_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, SimpleTestUInt8) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_UINT8); model.PopulateTensor<uint8_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<uint8_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<uint8_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, SimpleTestUInt16) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_UINT16); model.PopulateTensor<uint16_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<uint16_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<uint16_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, SimpleTestUInt32) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_UINT32); model.PopulateTensor<uint32_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<uint32_t>(model.input2(), {5, 0, 7, 11}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<uint32_t>(), ElementsAreArray({5, 5, 4, 5})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, BroadcastLhs) { BitwiseXorOpModel model({1, 1, 1, 1}, {1, 1, 1, 4}, TensorType_INT32); model.PopulateTensor<int32_t>(model.input1(), {5}); model.PopulateTensor<int32_t>(model.input2(), {0, -5, -3, 14}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<int32_t>(), ElementsAreArray({5, -2, -8, 11})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } TEST(BitwiseXorOpTest, BroadcastRhs) { BitwiseXorOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, TensorType_UINT32); model.PopulateTensor<uint32_t>(model.input1(), {0, 5, 3, 14}); model.PopulateTensor<uint32_t>(model.input2(), {5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput<uint32_t>(), ElementsAreArray({5, 0, 6, 11})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bitwise_xor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bitwise_xor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea