Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
4,108
null
Exploring the structure-property relations of thin-walled, 2D extruded lattices using neural networks
This paper investigates the structure-property relations of thin-walled lattices under dynamic longitudinal compression, characterized by their cross-sections and heights. These relations elucidate the interactions of different geometric features of a design on mechanical response, including energy absorption. We proposed a combinatorial, key-based design system to generate different lattice designs and used the finite element method to simulate their response with the Johnson-Cook material model. Using an autoencoder, we encoded the cross-sectional images of the lattices into latent design feature vectors, which were supplied to the neural network model to generate predictions. The trained models can accurately predict lattice energy absorption curves in the key-based design system and can be extended to new designs outside of the system via transfer learning.
4,109
null
Emergent Bartering Behaviour in Multi-Agent Reinforcement Learning
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
4,110
null
Improving Astronomical Time-series Classification via Data Augmentation with Generative Adversarial Networks
Due to the latest advances in technology, telescopes with significant sky coverage will produce millions of astronomical alerts per night that must be classified both rapidly and automatically. Currently, classification consists of supervised machine learning algorithms whose performance is limited by the number of existing annotations of astronomical objects and their highly imbalanced class distributions. In this work, we propose a data augmentation methodology based on Generative Adversarial Networks (GANs) to generate a variety of synthetic light curves from variable stars. Our novel contributions, consisting of a resampling technique and an evaluation metric, can assess the quality of generative models in unbalanced datasets and identify GAN-overfitting cases that the Fr\'echet Inception Distance does not reveal. We applied our proposed model to two datasets taken from the Catalina and Zwicky Transient Facility surveys. The classification accuracy of variable stars is improved significantly when training with synthetic data and testing with real data with respect to the case of using only real data.
4,111
null
Interlock-Free Multi-Aspect Rationalization for Text Classification
Explanation is important for text classification tasks. One prevalent type of explanation is rationales, which are text snippets of input text that suffice to yield the prediction and are meaningful to humans. A lot of research on rationalization has been based on the selective rationalization framework, which has recently been shown to be problematic due to the interlocking dynamics. In this paper, we show that we address the interlocking problem in the multi-aspect setting, where we aim to generate multiple rationales for multiple outputs. More specifically, we propose a multi-stage training method incorporating an additional self-supervised contrastive loss that helps to generate more semantically diverse rationales. Empirical results on the beer review dataset show that our method improves significantly the rationalization performance.
4,112
null
Provably Safe Reinforcement Learning: A Theoretical and Experimental Comparison
Ensuring safety of reinforcement learning (RL) algorithms is crucial for many real-world tasks. However, vanilla RL does not guarantee safety for an agent. In recent years, several methods have been proposed to provide safety guarantees for RL. To the best of our knowledge, there is no comprehensive comparison of these provably safe RL methods. We therefore introduce a categorization for existing provably safe RL methods, and present the theoretical foundations for both continuous and discrete action spaces. Additionally, we evaluate provably safe RL on an inverted pendulum. In the experiments, it is shown that indeed only provably safe RL methods guarantee safety.
4,113
null
A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.
4,114
null
Federated Learning Under Intermittent Client Availability and Time-Varying Communication Constraints
Federated learning systems facilitate training of global models in settings where potentially heterogeneous data is distributed across a large number of clients. Such systems operate in settings with intermittent client availability and/or time-varying communication constraints. As a result, the global models trained by federated learning systems may be biased towards clients with higher availability. We propose F3AST, an unbiased algorithm that dynamically learns an availability-dependent client selection strategy which asymptotically minimizes the impact of client-sampling variance on the global model convergence, enhancing performance of federated learning. The proposed algorithm is tested in a variety of settings for intermittently available clients under communication constraints, and its efficacy demonstrated on synthetic data and realistically federated benchmarking experiments using CIFAR100 and Shakespeare datasets. We show up to 186% and 8% accuracy improvements over FedAvg, and 8% and 7% over FedAdam on CIFAR100 and Shakespeare, respectively.
4,115
null
On the Importance of Architecture and Feature Selection in Differentially Private Machine Learning
We study a pitfall in the typical workflow for differentially private machine learning. The use of differentially private learning algorithms in a "drop-in" fashion -- without accounting for the impact of differential privacy (DP) noise when choosing what feature engineering operations to use, what features to select, or what neural network architecture to use -- yields overly complex and poorly performing models. In other words, by anticipating the impact of DP noise, a simpler and more accurate alternative model could have been trained for the same privacy guarantee. We systematically study this phenomenon through theory and experiments. On the theory front, we provide an explanatory framework and prove that the phenomenon arises naturally from the addition of noise to satisfy differential privacy. On the experimental front, we demonstrate how the phenomenon manifests in practice using various datasets, types of models, tasks, and neural network architectures. We also analyze the factors that contribute to the problem and distill our experimental insights into concrete takeaways that practitioners can follow when training models with differential privacy. Finally, we propose privacy-aware algorithms for feature selection and neural network architecture search. We analyze their differential privacy properties and evaluate them empirically.
4,116
null
A Vision Inspired Neural Network for Unsupervised Anomaly Detection in Unordered Data
A fundamental problem in the field of unsupervised machine learning is the detection of anomalies corresponding to rare and unusual observations of interest; reasons include for their rejection, accommodation or further investigation. Anomalies are intuitively understood to be something unusual or inconsistent, whose occurrence sparks immediate attention. More formally anomalies are those observations-under appropriate random variable modelling-whose expectation of occurrence with respect to a grouping of prior interest is less than one; such a definition and understanding has been used to develop the parameter-free perception anomaly detection algorithm. The present work seeks to establish important and practical connections between the approach used by the perception algorithm and prior decades of research in neurophysiology and computational neuroscience; particularly that of information processing in the retina and visual cortex. The algorithm is conceptualised as a neuron model which forms the kernel of an unsupervised neural network that learns to signal unexpected observations as anomalies. Both the network and neuron display properties observed in biological processes including: immediate intelligence; parallel processing; redundancy; global degradation; contrast invariance; parameter-free computation, dynamic thresholds and non-linear processing. A robust and accurate model for anomaly detection in univariate and multivariate data is built using this network as a concrete application.
4,117
null
Leveraging Global Binary Masks for Structure Segmentation in Medical Images
Deep learning (DL) models for medical image segmentation are highly influenced by intensity variations of input images and lack generalization due to primarily utilizing pixels' intensity information for inference. Acquiring sufficient training data is another challenge limiting models' applications. We proposed to leverage the consistency of organs' anatomical shape and position information in medical images. We introduced a framework leveraging recurring anatomical patterns through global binary masks for organ segmentation. Two scenarios were studied.1) Global binary masks were the only model's (i.e. U-Net) input, forcing exclusively encoding organs' position and shape information for segmentation/localization.2) Global binary masks were incorporated as an additional channel functioning as position/shape clues to mitigate training data scarcity. Two datasets of the brain and heart CT images with their ground-truth were split into (26:10:10) and (12:3:5) for training, validation, and test respectively. Training exclusively on global binary masks led to Dice scores of 0.77(0.06) and 0.85(0.04), with the average Euclidian distance of 3.12(1.43)mm and 2.5(0.93)mm relative to the center of mass of the ground truth for the brain and heart structures respectively. The outcomes indicate that a surprising degree of position and shape information is encoded through global binary masks. Incorporating global binary masks led to significantly higher accuracy relative to the model trained on only CT images in small subsets of training data; the performance improved by 4.3-125.3% and 1.3-48.1% for 1-8 training cases of the brain and heart datasets respectively. The findings imply the advantages of utilizing global binary masks for building generalizable models and to compensate for training data scarcity.
4,118
null
Learning Keypoints from Synthetic Data for Robotic Cloth Folding
Robotic cloth manipulation is challenging due to its deformability, which makes determining its full state infeasible. However, for cloth folding, it suffices to know the position of a few semantic keypoints. Convolutional neural networks (CNN) can be used to detect these keypoints, but require large amounts of annotated data, which is expensive to collect. To overcome this, we propose to learn these keypoint detectors purely from synthetic data, enabling low-cost data collection. In this paper, we procedurally generate images of towels and use them to train a CNN. We evaluate the performance of this detector for folding towels on a unimanual robot setup and find that the grasp and fold success rates are 77% and 53%, respectively. We conclude that learning keypoint detectors from synthetic data for cloth folding and related tasks is a promising research direction, discuss some failures and relate them to future work. A video of the system, as well as the codebase, more details on the CNN architecture and the training setup can be found at https://github.com/tlpss/workshop-icra-2022-cloth-keypoints.git.
4,119
null
DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data Clustering
A Bayesian Deep Restricted Boltzmann-Kohonen architecture for data clustering termed as DRBM-ClustNet is proposed. This core-clustering engine consists of a Deep Restricted Boltzmann Machine (DRBM) for processing unlabeled data by creating new features that are uncorrelated and have large variance with each other. Next, the number of clusters are predicted using the Bayesian Information Criterion (BIC), followed by a Kohonen Network-based clustering layer. The processing of unlabeled data is done in three stages for efficient clustering of the non-linearly separable datasets. In the first stage, DRBM performs non-linear feature extraction by capturing the highly complex data representation by projecting the feature vectors of $d$ dimensions into $n$ dimensions. Most clustering algorithms require the number of clusters to be decided a priori, hence here to automate the number of clusters in the second stage we use BIC. In the third stage, the number of clusters derived from BIC forms the input for the Kohonen network, which performs clustering of the feature-extracted data obtained from the DRBM. This method overcomes the general disadvantages of clustering algorithms like the prior specification of the number of clusters, convergence to local optima and poor clustering accuracy on non-linear datasets. In this research we use two synthetic datasets, fifteen benchmark datasets from the UCI Machine Learning repository, and four image datasets to analyze the DRBM-ClustNet. The proposed framework is evaluated based on clustering accuracy and ranked against other state-of-the-art clustering methods. The obtained results demonstrate that the DRBM-ClustNet outperforms state-of-the-art clustering algorithms.
4,120
null
Heavy-Tail Phenomenon in Decentralized SGD
Recent theoretical studies have shown that heavy-tails can emerge in stochastic optimization due to `multiplicative noise', even under surprisingly simple settings, such as linear regression with Gaussian data. While these studies have uncovered several interesting phenomena, they consider conventional stochastic optimization problems, which exclude decentralized settings that naturally arise in modern machine learning applications. In this paper, we study the emergence of heavy-tails in decentralized stochastic gradient descent (DE-SGD), and investigate the effect of decentralization on the tail behavior. We first show that, when the loss function at each computational node is twice continuously differentiable and strongly convex outside a compact region, the law of the DE-SGD iterates converges to a distribution with polynomially decaying (heavy) tails. To have a more explicit control on the tail exponent, we then consider the case where the loss at each node is a quadratic, and show that the tail-index can be estimated as a function of the step-size, batch-size, and the topological properties of the network of the computational nodes. Then, we provide theoretical and empirical results showing that DE-SGD has heavier tails than centralized SGD. We also compare DE-SGD to disconnected SGD where nodes distribute the data but do not communicate. Our theory uncovers an interesting interplay between the tails and the network structure: we identify two regimes of parameters (stepsize and network size), where DE-SGD can have lighter or heavier tails than disconnected SGD depending on the regime. Finally, to support our theoretical results, we provide numerical experiments conducted on both synthetic data and neural networks.
4,121
null
Local Attention Graph-based Transformer for Multi-target Genetic Alteration Prediction
Classical multiple instance learning (MIL) methods are often based on the identical and independent distributed assumption between instances, hence neglecting the potentially rich contextual information beyond individual entities. On the other hand, Transformers with global self-attention modules have been proposed to model the interdependencies among all instances. However, in this paper we question: Is global relation modeling using self-attention necessary, or can we appropriately restrict self-attention calculations to local regimes in large-scale whole slide images (WSIs)? We propose a general-purpose local attention graph-based Transformer for MIL (LA-MIL), introducing an inductive bias by explicitly contextualizing instances in adaptive local regimes of arbitrary size. Additionally, an efficiently adapted loss function enables our approach to learn expressive WSI embeddings for the joint analysis of multiple biomarkers. We demonstrate that LA-MIL achieves state-of-the-art results in mutation prediction for gastrointestinal cancer, outperforming existing models on important biomarkers such as microsatellite instability for colorectal cancer. Our findings suggest that local self-attention sufficiently models dependencies on par with global modules. Our LA-MIL implementation is available at https://github.com/agentdr1/LA_MIL.
4,122
null
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
The rapid progress of machine learning interatomic potentials over the past couple of years produced a number of new architectures. Particularly notable among these are the Atomic Cluster Expansion (ACE), which unified many of the earlier ideas around atom density-based descriptors, and Neural Equivariant Interatomic Potentials (NequIP), a message passing neural network with equivariant features that showed state of the art accuracy. In this work, we construct a mathematical framework that unifies these models: ACE is generalised so that it can be recast as one layer of a multi-layer architecture. From another point of view, the linearised version of NequIP is understood as a particular sparsification of a much larger polynomial model. Our framework also provides a practical tool for systematically probing different choices in the unified design space. We demonstrate this by an ablation study of NequIP via a set of experiments looking at in- and out-of-domain accuracy and smooth extrapolation very far from the training data, and shed some light on which design choices are critical for achieving high accuracy. Finally, we present BOTNet (Body-Ordered-Tensor-Network), a much-simplified version of NequIP, which has an interpretable architecture and maintains accuracy on benchmark datasets.
4,123
null
Constructing Trajectory and Predicting Estimated Time of Arrival for Long Distance Travelling Vessels: A Probability Density-based Scanning Approach
In this study, a probability density-based approach for constructing trajectories is proposed and validated through an typical use-case application: Estimated Time of Arrival (ETA) prediction given origin-destination pairs. The ETA prediction is based on physics and mathematical laws given by the extracted information of probability density-based trajectories constructed. The overall ETA prediction errors are about 0.106 days (i.e. 2.544 hours) on average with 0.549 days (i.e. 13.176 hours) standard deviation, and the proposed approach has an accuracy of 92.08% with 0.959 R-Squared value for overall trajectories between Singapore and Australia ports selected.
4,124
null
Analyzing Hate Speech Data along Racial, Gender and Intersectional Axes
To tackle the rising phenomenon of hate speech, efforts have been made towards data curation and analysis. When it comes to analysis of bias, previous work has focused predominantly on race. In our work, we further investigate bias in hate speech datasets along racial, gender and intersectional axes. We identify strong bias against African American English (AAE), masculine and AAE+Masculine tweets, which are annotated as disproportionately more hateful and offensive than from other demographics. We provide evidence that BERT-based models propagate this bias and show that balancing the training data for these protected attributes can lead to fairer models with regards to gender, but not race.
4,125
null
FastSTMF: Efficient tropical matrix factorization algorithm for sparse data
Matrix factorization, one of the most popular methods in machine learning, has recently benefited from introducing non-linearity in prediction tasks using tropical semiring. The non-linearity enables a better fit to extreme values and distributions, thus discovering high-variance patterns that differ from those found by standard linear algebra. However, the optimization process of various tropical matrix factorization methods is slow. In our work, we propose a new method FastSTMF based on Sparse Tropical Matrix Factorization (STMF), which introduces a novel strategy for updating factor matrices that results in efficient computational performance. We evaluated the efficiency of FastSTMF on synthetic and real gene expression data from the TCGA database, and the results show that FastSTMF outperforms STMF in both accuracy and running time. Compared to NMF, we show that FastSTMF performs better on some datasets and is not prone to overfitting as NMF. This work sets the basis for developing other matrix factorization techniques based on many other semirings using a new proposed optimization process.
4,126
null
The Devil is in the Details: On the Pitfalls of Vocabulary Selection in Neural Machine Translation
Vocabulary selection, or lexical shortlisting, is a well-known technique to improve latency of Neural Machine Translation models by constraining the set of allowed output words during inference. The chosen set is typically determined by separately trained alignment model parameters, independent of the source-sentence context at inference time. While vocabulary selection appears competitive with respect to automatic quality metrics in prior work, we show that it can fail to select the right set of output words, particularly for semantically non-compositional linguistic phenomena such as idiomatic expressions, leading to reduced translation quality as perceived by humans. Trading off latency for quality by increasing the size of the allowed set is often not an option in real-world scenarios. We propose a model of vocabulary selection, integrated into the neural translation model, that predicts the set of allowed output words from contextualized encoder representations. This restores translation quality of an unconstrained system, as measured by human evaluations on WMT newstest2020 and idiomatic expressions, at an inference latency competitive with alignment-based selection using aggressive thresholds, thereby removing the dependency on separately trained alignment models.
4,127
null
StyLandGAN: A StyleGAN based Landscape Image Synthesis using Depth-map
Despite recent success in conditional image synthesis, prevalent input conditions such as semantics and edges are not clear enough to express `Linear (Ridges)' and `Planar (Scale)' representations. To address this problem, we propose a novel framework StyLandGAN, which synthesizes desired landscape images using a depth map which has higher expressive power. Our StyleLandGAN is extended from the unconditional generation model to accept input conditions. We also propose a '2-phase inference' pipeline which generates diverse depth maps and shifts local parts so that it can easily reflect user's intend. As a comparison, we modified the existing semantic image synthesis models to accept a depth map as well. Experimental results show that our method is superior to existing methods in quality, diversity, and depth-accuracy.
4,128
null
Improving Contextual Representation with Gloss Regularized Pre-training
Though achieving impressive results on many NLP tasks, the BERT-like masked language models (MLM) encounter the discrepancy between pre-training and inference. In light of this gap, we investigate the contextual representation of pre-training and inference from the perspective of word probability distribution. We discover that BERT risks neglecting the contextual word similarity in pre-training. To tackle this issue, we propose an auxiliary gloss regularizer module to BERT pre-training (GR-BERT), to enhance word semantic similarity. By predicting masked words and aligning contextual embeddings to corresponding glosses simultaneously, the word similarity can be explicitly modeled. We design two architectures for GR-BERT and evaluate our model in downstream tasks. Experimental results show that the gloss regularizer benefits BERT in word-level and sentence-level semantic representation. The GR-BERT achieves new state-of-the-art in lexical substitution task and greatly promotes BERT sentence representation in both unsupervised and supervised STS tasks.
4,129
null
Upside-Down Reinforcement Learning Can Diverge in Stochastic Environments With Episodic Resets
Upside-Down Reinforcement Learning (UDRL) is an approach for solving RL problems that does not require value functions and uses only supervised learning, where the targets for given inputs in a dataset do not change over time. Ghosh et al. proved that Goal-Conditional Supervised Learning (GCSL) -- which can be viewed as a simplified version of UDRL -- optimizes a lower bound on goal-reaching performance. This raises expectations that such algorithms may enjoy guaranteed convergence to the optimal policy in arbitrary environments, similar to certain well-known traditional RL algorithms. Here we show that for a specific episodic UDRL algorithm (eUDRL, including GCSL), this is not the case, and give the causes of this limitation. To do so, we first introduce a helpful rewrite of eUDRL as a recursive policy update. This formulation helps to disprove its convergence to the optimal policy for a wide class of stochastic environments. Finally, we provide a concrete example of a very simple environment where eUDRL diverges. Since the primary aim of this paper is to present a negative result, and the best counterexamples are the simplest ones, we restrict all discussions to finite (discrete) environments, ignoring issues of function approximation and limited sample size.
4,130
null
The Fellowship of the Dyson Ring: ACT&Friends' Results and Methods for GTOC 11
Dyson spheres are hypothetical megastructures encircling stars in order to harvest most of their energy output. During the 11th edition of the GTOC challenge, participants were tasked with a complex trajectory planning related to the construction of a precursor Dyson structure, a heliocentric ring made of twelve stations. To this purpose, we developed several new approaches that synthesize techniques from machine learning, combinatorial optimization, planning and scheduling, and evolutionary optimization effectively integrated into a fully automated pipeline. These include a machine learned transfer time estimator, improving the established Edelbaum approximation and thus better informing a Lazy Race Tree Search to identify and collect asteroids with high arrival mass for the stations; a series of optimally-phased low-thrust transfers to all stations computed by indirect optimization techniques, exploiting the synodic periodicity of the system; and a modified Hungarian scheduling algorithm, which utilizes evolutionary techniques to arrange a mass-balanced arrival schedule out of all transfer possibilities. We describe the steps of our pipeline in detail with a special focus on how our approaches mutually benefit from each other. Lastly, we outline and analyze the final solution of our team, ACT&Friends, which ranked second at the GTOC 11 challenge.
4,131
null
Detecting Rumours with Latency Guarantees using Massive Streaming Data
Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions.
4,132
null
Convergence Analysis of Deep Residual Networks
Various powerful deep neural network architectures have made great contribution to the exciting successes of deep learning in the past two decades. Among them, deep Residual Networks (ResNets) are of particular importance because they demonstrated great usefulness in computer vision by winning the first place in many deep learning competitions. Also, ResNets were the first class of neural networks in the development history of deep learning that are really deep. It is of mathematical interest and practical meaning to understand the convergence of deep ResNets. We aim at characterizing the convergence of deep ResNets as the depth tends to infinity in terms of the parameters of the networks. Toward this purpose, we first give a matrix-vector description of general deep neural networks with shortcut connections and formulate an explicit expression for the networks by using the notions of activation domains and activation matrices. The convergence is then reduced to the convergence of two series involving infinite products of non-square matrices. By studying the two series, we establish a sufficient condition for pointwise convergence of ResNets. Our result is able to give justification for the design of ResNets. We also conduct experiments on benchmark machine learning data to verify our results.
4,133
null
Convergence of Deep Neural Networks with General Activation Functions and Pooling
Deep neural networks, as a powerful system to represent high dimensional complex functions, play a key role in deep learning. Convergence of deep neural networks is a fundamental issue in building the mathematical foundation for deep learning. We investigated the convergence of deep ReLU networks and deep convolutional neural networks in two recent researches (arXiv:2107.12530, 2109.13542). Only the Rectified Linear Unit (ReLU) activation was studied therein, and the important pooling strategy was not considered. In this current work, we study the convergence of deep neural networks as the depth tends to infinity for two other important activation functions: the leaky ReLU and the sigmoid function. Pooling will also be studied. As a result, we prove that the sufficient condition established in arXiv:2107.12530, 2109.13542 is still sufficient for the leaky ReLU networks. For contractive activation functions such as the sigmoid function, we establish a weaker sufficient condition for uniform convergence of deep neural networks.
4,134
null
Kronecker Decomposition for Knowledge Graph Embeddings
Knowledge graph embedding research has mainly focused on learning continuous representations of entities and relations tailored towards the link prediction problem. Recent results indicate an ever increasing predictive ability of current approaches on benchmark datasets. However, this effectiveness often comes with the cost of over-parameterization and increased computationally complexity. The former induces extensive hyperparameter optimization to mitigate malicious overfitting. The latter magnifies the importance of winning the hardware lottery. Here, we investigate a remedy for the first problem. We propose a technique based on Kronecker decomposition to reduce the number of parameters in a knowledge graph embedding model, while retaining its expressiveness. Through Kronecker decomposition, large embedding matrices are split into smaller embedding matrices during the training process. Hence, embeddings of knowledge graphs are not plainly retrieved but reconstructed on the fly. The decomposition ensures that elementwise interactions between three embedding vectors are extended with interactions within each embedding vector. This implicitly reduces redundancy in embedding vectors and encourages feature reuse. To quantify the impact of applying Kronecker decomposition on embedding matrices, we conduct a series of experiments on benchmark datasets. Our experiments suggest that applying Kronecker decomposition on embedding matrices leads to an improved parameter efficiency on all benchmark datasets. Moreover, empirical evidence suggests that reconstructed embeddings entail robustness against noise in the input knowledge graph. To foster reproducible research, we provide an open-source implementation of our approach, including training and evaluation scripts as well as pre-trained models in our knowledge graph embedding framework (https://github.com/dice-group/dice-embeddings).
4,135
null
Uninorm-like parametric activation functions for human-understandable neural models
We present a deep learning model for finding human-understandable connections between input features. Our approach uses a parameterized, differentiable activation function, based on the theoretical background of nilpotent fuzzy logic and multi-criteria decision-making (MCDM). The learnable parameter has a semantic meaning indicating the level of compensation between input features. The neural network determines the parameters using gradient descent to find human-understandable relationships between input features. We demonstrate the utility and effectiveness of the model by successfully applying it to classification problems from the UCI Machine Learning Repository.
4,136
null
Accelerometry-based classification of circulatory states during out-of-hospital cardiac arrest
Objective: During cardiac arrest treatment, a reliable detection of spontaneous circulation, usually performed by manual pulse checks, is both vital for patient survival and practically challenging. Methods: We developed a machine learning algorithm to automatically predict the circulatory state during cardiac arrest treatment from 4-second-long snippets of accelerometry and electrocardiogram data from real-world defibrillator records. The algorithm was trained based on 917 cases from the German Resuscitation Registry, for which ground truth labels were created by a manual annotation of physicians. It uses a kernelized Support Vector Machine classifier based on 14 features, which partially reflect the correlation between accelerometry and electrocardiogram data. Results: On a test data set, the proposed algorithm exhibits an accuracy of 94.4 (93.6, 95.2)%, a sensitivity of 95.0 (93.9, 96.1)%, and a specificity of 93.9 (92.7, 95.1)%. Conclusion and significance: In application, the algorithm may be used to simplify retrospective annotation for quality management and, moreover, to support clinicians to assess circulatory state during cardiac arrest treatment.
4,137
null
Productivity Assessment of Neural Code Completion
Neural code synthesis has reached a point where snippet generation is accurate enough to be considered for integration into human software development workflows. Commercial products aim to increase programmers' productivity, without being able to measure it directly. In this case study, we asked users of GitHub Copilot about its impact on their productivity, and sought to find a reflection of their perception in directly measurable user data. We find that the rate with which shown suggestions are accepted, rather than more specific metrics regarding the persistence of completions in the code over time, drives developers' perception of productivity.
4,138
null
Revisiting the Updates of a Pre-trained Model for Few-shot Learning
Most of the recent few-shot learning algorithms are based on transfer learning, where a model is pre-trained using a large amount of source data, and the pre-trained model is updated using a small amount of target data afterward. In transfer-based few-shot learning, sophisticated pre-training methods have been widely studied for universal and improved representation. However, there is little study on updating pre-trained models for few-shot learning. In this paper, we compare the two popular updating methods, fine-tuning (i.e., updating the entire network) and linear probing (i.e., updating only the linear classifier), considering the distribution shift between the source and target data. We find that fine-tuning is better than linear probing as the number of samples increases, regardless of distribution shift. Next, we investigate the effectiveness and ineffectiveness of data augmentation when pre-trained models are fine-tuned. Our fundamental analyses demonstrate that careful considerations of the details about updating pre-trained models are required for better few-shot performance.
4,139
null
Toward A Formalized Approach for Spike Sorting Algorithms and Hardware Evaluation
Spike sorting algorithms are used to separate extracellular recordings of neuronal populations into single-unit spike activities. The development of customized hardware implementing spike sorting algorithms is burgeoning. However, there is a lack of a systematic approach and a set of standardized evaluation criteria to facilitate direct comparison of both software and hardware implementations. In this paper, we formalize a set of standardized criteria and a publicly available synthetic dataset entitled Synthetic Simulations Of Extracellular Recordings (SSOER), which was constructed by aggregating existing synthetic datasets with varying Signal-To-Noise Ratios (SNRs). Furthermore, we present a benchmark for future comparison, and use our criteria to evaluate a simulated Resistive Random-Access Memory (RRAM) In-Memory Computing (IMC) system using the Discrete Wavelet Transform (DWT) for feature extraction. Our system consumes approximately (per channel) 10.72mW and occupies an area of 0.66mm$^2$ in a 22nm FDSOI Complementary Metal-Oxide-Semiconductor (CMOS) process.
4,140
null
Precise Change Point Detection using Spectral Drift Detection
The notion of concept drift refers to the phenomenon that the data generating distribution changes over time; as a consequence machine learning models may become inaccurate and need adjustment. In this paper we consider the problem of detecting those change points in unsupervised learning. Many unsupervised approaches rely on the discrepancy between the sample distributions of two time windows. This procedure is noisy for small windows, hence prone to induce false positives and not able to deal with more than one drift event in a window. In this paper we rely on structural properties of drift induced signals, which use spectral properties of kernel embedding of distributions. Based thereon we derive a new unsupervised drift detection algorithm, investigate its mathematical properties, and demonstrate its usefulness in several experiments.
4,141
null
Collaborative Drug Discovery: Inference-level Data Protection Perspective
Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.
4,142
null
DualCF: Efficient Model Extraction Attack from Counterfactual Explanations
Cloud service providers have launched Machine-Learning-as-a-Service (MLaaS) platforms to allow users to access large-scale cloudbased models via APIs. In addition to prediction outputs, these APIs can also provide other information in a more human-understandable way, such as counterfactual explanations (CF). However, such extra information inevitably causes the cloud models to be more vulnerable to extraction attacks which aim to steal the internal functionality of models in the cloud. Due to the black-box nature of cloud models, however, a vast number of queries are inevitably required by existing attack strategies before the substitute model achieves high fidelity. In this paper, we propose a novel simple yet efficient querying strategy to greatly enhance the querying efficiency to steal a classification model. This is motivated by our observation that current querying strategies suffer from decision boundary shift issue induced by taking far-distant queries and close-to-boundary CFs into substitute model training. We then propose DualCF strategy to circumvent the above issues, which is achieved by taking not only CF but also counterfactual explanation of CF (CCF) as pairs of training samples for the substitute model. Extensive and comprehensive experimental evaluations are conducted on both synthetic and real-world datasets. The experimental results favorably illustrate that DualCF can produce a high-fidelity model with fewer queries efficiently and effectively.
4,143
null
Deep Reinforcement Learning for Computational Fluid Dynamics on HPC Systems
Reinforcement learning (RL) is highly suitable for devising control strategies in the context of dynamical systems. A prominent instance of such a dynamical system is the system of equations governing fluid dynamics. Recent research results indicate that RL-augmented computational fluid dynamics (CFD) solvers can exceed the current state of the art, for example in the field of turbulence modeling. However, while in supervised learning, the training data can be generated a priori in an offline manner, RL requires constant run-time interaction and data exchange with the CFD solver during training. In order to leverage the potential of RL-enhanced CFD, the interaction between the CFD solver and the RL algorithm thus have to be implemented efficiently on high-performance computing (HPC) hardware. To this end, we present Relexi as a scalable RL framework that bridges the gap between machine learning workflows and modern CFD solvers on HPC systems providing both components with its specialized hardware. Relexi is built with modularity in mind and allows easy integration of various HPC solvers by means of the in-memory data transfer provided by the SmartSim library. Here, we demonstrate that the Relexi framework can scale up to hundreds of parallel environment on thousands of cores. This allows to leverage modern HPC resources to either enable larger problems or faster turnaround times. Finally, we demonstrate the potential of an RL-augmented CFD solver by finding a control strategy for optimal eddy viscosity selection in large eddy simulations.
4,144
null
A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification
Gaussian process regression (GPR) has been a well-known machine learning method for various applications such as uncertainty quantifications (UQ). However, GPR is inherently a data-driven method, which requires sufficiently large dataset. If appropriate physics constraints (e.g. expressed in partial differential equations) can be incorporated, the amount of data can be greatly reduced and the accuracy further improved. In this work, we propose a hybrid data driven-physics constrained Gaussian process regression framework. We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach. We apply deep kernel learning method. The proposed model learns from both data and physics constraints through the training of a deep neural network, which serves as part of the covariance function in GPR. The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
4,145
null
OFedQIT: Communication-Efficient Online Federated Learning via Quantization and Intermittent Transmission
Online federated learning (OFL) is a promising framework to collaboratively learn a sequence of non-linear functions (or models) from distributed streaming data incoming to multiple clients while keeping the privacy of their local data. In this framework, we first construct a vanilla method (named OFedAvg) by incorporating online gradient descent (OGD) into the de facto aggregation method (named FedAvg). Despite its optimal asymptotic performance, OFedAvg suffers from heavy communication overhead and long learning delay. To tackle these shortcomings, we propose a communication-efficient OFL algorithm (named OFedQIT) by means of a stochastic quantization and an intermittent transmission. Our major contribution is to theoretically prove that OFedQIT over $T$ time slots can achieve an optimal sublinear regret bound $\mathcal{O}(\sqrt{T})$ for any real data (including non-IID data) while significantly reducing the communication overhead. Furthermore, this optimality is still guaranteed even when a small fraction of clients (having faster processing time and high-quality communication channel) in a network are participated at once. Our analysis reveals that OFedQIT successfully addresses the drawbacks of OFedAvg while maintaining superior learning accuracy. Experiments with real datasets demonstrate the effectiveness of our algorithm on various online classification and regression tasks.
4,146
null
Data-Driven Upper Bounds on Channel Capacity
We consider the problem of estimating an upper bound on the capacity of a memoryless channel with unknown channel law and continuous output alphabet. A novel data-driven algorithm is proposed that exploits the dual representation of capacity where the maximization over the input distribution is replaced with a minimization over a reference distribution on the channel output. To efficiently compute the required divergence maximization between the conditional channel and the reference distribution, we use a modified mutual information neural estimator that takes the channel input as an additional parameter. We evaluate our approach on different memoryless channels and show that the estimated upper bounds closely converge either to the channel capacity or to best-known lower bounds.
4,147
null
l-Leaks: Membership Inference Attacks with Logits
Machine Learning (ML) has made unprecedented progress in the past several decades. However, due to the memorability of the training data, ML is susceptible to various attacks, especially Membership Inference Attacks (MIAs), the objective of which is to infer the model's training data. So far, most of the membership inference attacks against ML classifiers leverage the shadow model with the same structure as the target model. However, empirical results show that these attacks can be easily mitigated if the shadow model is not clear about the network structure of the target model. In this paper, We present attacks based on black-box access to the target model. We name our attack \textbf{l-Leaks}. The l-Leaks follows the intuition that if an established shadow model is similar enough to the target model, then the adversary can leverage the shadow model's information to predict a target sample's membership.The logits of the trained target model contain valuable sample knowledge. We build the shadow model by learning the logits of the target model and making the shadow model more similar to the target model. Then shadow model will have sufficient confidence in the member samples of the target model. We also discuss the effect of the shadow model's different network structures to attack results. Experiments over different networks and datasets demonstrate that both of our attacks achieve strong performance.
4,148
null
Modularity in NEAT Reinforcement Learning Networks
Modularity is essential to many well-performing structured systems, as it is a useful means of managing complexity [8]. An analysis of modularity in neural networks produced by machine learning algorithms can offer valuable insight into the workings of such algorithms and how modularity can be leveraged to improve performance. However, this property is often overlooked in the neuroevolutionary literature, so the modular nature of many learning algorithms is unknown. This property was assessed on the popular algorithm "NeuroEvolution of Augmenting Topologies" (NEAT) for standard simulation benchmark control problems due to NEAT's ability to optimise network topology. This paper shows that NEAT networks seem to rapidly increase in modularity over time with the rate and convergence dependent on the problem. Interestingly, NEAT tends towards increasingly modular networks even when network fitness converges. It was shown that the ideal level of network modularity in the explored parameter space is highly dependent on other network variables, dispelling theories that modularity has a straightforward relationship to network performance. This is further proven in this paper by demonstrating that rewarding modularity directly did not improve fitness.
4,149
null
Test-time Fourier Style Calibration for Domain Generalization
The topic of generalizing machine learning models learned on a collection of source domains to unknown target domains is challenging. While many domain generalization (DG) methods have achieved promising results, they primarily rely on the source domains at train-time without manipulating the target domains at test-time. Thus, it is still possible that those methods can overfit to source domains and perform poorly on target domains. Driven by the observation that domains are strongly related to styles, we argue that reducing the gap between source and target styles can boost models' generalizability. To solve the dilemma of having no access to the target domain during training, we introduce Test-time Fourier Style Calibration (TF-Cal) for calibrating the target domain style on the fly during testing. To access styles, we utilize Fourier transformation to decompose features into amplitude (style) features and phase (semantic) features. Furthermore, we present an effective technique to Augment Amplitude Features (AAF) to complement TF-Cal. Extensive experiments on several popular DG benchmarks and a segmentation dataset for medical images demonstrate that our method outperforms state-of-the-art methods.
4,150
null
Design and Implementation of a Quantum Kernel for Natural Language Processing
Natural language processing (NLP) is the field that attempts to make human language accessible to computers, and it relies on applying a mathematical model to express the meaning of symbolic language. One such model, DisCoCat, defines how to express both the meaning of individual words as well as their compositional nature. This model can be naturally implemented on quantum computers, leading to the field quantum NLP (QNLP). Recent experimental work used quantum machine learning techniques to map from text to class label using the expectation value of the quantum encoded sentence. Theoretical work has been done on computing the similarity of sentences but relies on an unrealized quantum memory store. The main goal of this thesis is to leverage the DisCoCat model to design a quantum-based kernel function that can be used by a support vector machine (SVM) for NLP tasks. Two similarity measures were studied: (i) the transition amplitude approach and (ii) the SWAP test. A simple NLP meaning classification task from previous work was used to train the word embeddings and evaluate the performance of both models. The Python module lambeq and its related software stack was used for implementation. The explicit model from previous work was used to train word embeddings and achieved a testing accuracy of $93.09 \pm 0.01$%. It was shown that both the SVM variants achieved a higher testing accuracy of $95.72 \pm 0.01$% for approach (i) and $97.14 \pm 0.01$% for (ii). The SWAP test was then simulated under a noise model defined by the real quantum device, ibmq_guadalupe. The explicit model achieved an accuracy of $91.94 \pm 0.01$% while the SWAP test SVM achieved 96.7% on the testing dataset, suggesting that the kernelized classifiers are resilient to noise. These are encouraging results and motivate further investigations of our proposed kernelized QNLP paradigm.
4,151
null
Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A Comprehensive Review
Owing to the rapid development of sensor technology, hyperspectral (HS) remote sensing (RS) imaging has provided a significant amount of spatial and spectral information for the observation and analysis of the Earth's surface at a distance of data acquisition devices, such as aircraft, spacecraft, and satellite. The recent advancement and even revolution of the HS RS technique offer opportunities to realize the full potential of various applications, while confronting new challenges for efficiently processing and analyzing the enormous HS acquisition data. Due to the maintenance of the 3-D HS inherent structure, tensor decomposition has aroused widespread concern and research in HS data processing tasks over the past decades. In this article, we aim at presenting a comprehensive overview of tensor decomposition, specifically contextualizing the five broad topics in HS data processing, and they are HS restoration, compressed sensing, anomaly detection, super-resolution, and spectral unmixing. For each topic, we elaborate on the remarkable achievements of tensor decomposition models for HS RS with a pivotal description of the existing methodologies and a representative exhibition on the experimental results. As a result, the remaining challenges of the follow-up research directions are outlined and discussed from the perspective of the real HS RS practices and tensor decomposition merged with advanced priors and even with deep neural networks. This article summarizes different tensor decomposition-based HS data processing methods and categorizes them into different classes from simple adoptions to complex combinations with other priors for the algorithm beginners. We also expect this survey can provide new investigations and development trends for the experienced researchers who understand tensor decomposition and HS RS to some extent.
4,152
null
The Neuro-Symbolic Brain
Neural networks promote a distributed representation with no clear place for symbols. Despite this, we propose that symbols are manufactured simply by training a sparse random noise as a self-sustaining attractor in a feedback spiking neural network. This way, we can generate many of what we shall call prime attractors, and the networks that support them are like registers holding a symbolic value, and we call them registers. Like symbols, prime attractors are atomic and devoid of any internal structure. Moreover, the winner-take-all mechanism naturally implemented by spiking neurons enables registers to recover a prime attractor within a noisy signal. Using this faculty, when considering two connected registers, an input one and an output one, it is possible to bind in one shot using a Hebbian rule the attractor active on the output to the attractor active on the input. Thus, whenever an attractor is active on the input, it induces its bound attractor on the output; even though the signal gets blurrier with more bindings, the winner-take-all filtering faculty can recover the bound prime attractor. However, the capacity is still limited. It is also possible to unbind in one shot, restoring the capacity taken by that binding. This mechanism serves as a basis for working memory, turning prime attractors into variables. Also, we use a random second-order network to amalgamate the prime attractors held by two registers to bind the prime attractor held by a third register to them in one shot, de facto implementing a hash table. Furthermore, we introduce the register switch box composed of registers to move the content of one register to another. Then, we use spiking neurons to build a toy symbolic computer based on the above. The technics used suggest ways to design extrapolating, reusable, sample-efficient deep learning networks at the cost of structural priors.
4,153
null
Fast Conditional Network Compression Using Bayesian HyperNetworks
We introduce a conditional compression problem and propose a fast framework for tackling it. The problem is how to quickly compress a pretrained large neural network into optimal smaller networks given target contexts, e.g. a context involving only a subset of classes or a context where only limited compute resource is available. To solve this, we propose an efficient Bayesian framework to compress a given large network into much smaller size tailored to meet each contextual requirement. We employ a hypernetwork to parameterize the posterior distribution of weights given conditional inputs and minimize a variational objective of this Bayesian neural network. To further reduce the network sizes, we propose a new input-output group sparsity factorization of weights to encourage more sparseness in the generated weights. Our methods can quickly generate compressed networks with significantly smaller sizes than baseline methods.
4,154
null
PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning
Contrastive learning pre-trains an image encoder using a large amount of unlabeled data such that the image encoder can be used as a general-purpose feature extractor for various downstream tasks. In this work, we propose PoisonedEncoder, a data poisoning attack to contrastive learning. In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data, such that the downstream classifiers built based on the poisoned encoder for multiple target downstream tasks simultaneously classify attacker-chosen, arbitrary clean inputs as attacker-chosen, arbitrary classes. We formulate our data poisoning attack as a bilevel optimization problem, whose solution is the set of poisoning inputs; and we propose a contrastive-learning-tailored method to approximately solve it. Our evaluation on multiple datasets shows that PoisonedEncoder achieves high attack success rates while maintaining the testing accuracy of the downstream classifiers built upon the poisoned encoder for non-attacker-chosen inputs. We also evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses. Our results show that these defenses can decrease the attack success rate of PoisonedEncoder, but they also sacrifice the utility of the encoder or require a large clean pre-training dataset.
4,155
null
$α$-GAN: Convergence and Estimation Guarantees
We prove a two-way correspondence between the min-max optimization of general CPE loss function GANs and the minimization of associated $f$-divergences. We then focus on $\alpha$-GAN, defined via the $\alpha$-loss, which interpolates several GANs (Hellinger, vanilla, Total Variation) and corresponds to the minimization of the Arimoto divergence. We show that the Arimoto divergences induced by $\alpha$-GAN equivalently converge, for all $\alpha\in \mathbb{R}_{>0}\cup\{\infty\}$. However, under restricted learning models and finite samples, we provide estimation bounds which indicate diverse GAN behavior as a function of $\alpha$. Finally, we present empirical results on a toy dataset that highlight the practical utility of tuning the $\alpha$ hyperparameter.
4,156
null
KASAM: Spline Additive Models for Function Approximation
Neural networks have been criticised for their inability to perform continual learning due to catastrophic forgetting and rapid unlearning of a past concept when a new concept is introduced. Catastrophic forgetting can be alleviated by specifically designed models and training techniques. This paper outlines a novel Spline Additive Model (SAM). SAM exhibits intrinsic memory retention with sufficient expressive power for many practical tasks, but is not a universal function approximator. SAM is extended with the Kolmogorov-Arnold representation theorem to a novel universal function approximator, called the Kolmogorov-Arnold Spline Additive Model - KASAM. The memory retention, expressive power and limitations of SAM and KASAM are illustrated analytically and empirically. SAM exhibited robust but imperfect memory retention, with small regions of overlapping interference in sequential learning tasks. KASAM exhibited greater susceptibility to catastrophic forgetting. KASAM in combination with pseudo-rehearsal training techniques exhibited superior performance in regression tasks and memory retention.
4,157
null
How to Combine Membership-Inference Attacks on Multiple Updated Models
A large body of research has shown that machine learning models are vulnerable to membership inference (MI) attacks that violate the privacy of the participants in the training data. Most MI research focuses on the case of a single standalone model, while production machine-learning platforms often update models over time, on data that often shifts in distribution, giving the attacker more information. This paper proposes new attacks that take advantage of one or more model updates to improve MI. A key part of our approach is to leverage rich information from standalone MI attacks mounted separately against the original and updated models, and to combine this information in specific ways to improve attack effectiveness. We propose a set of combination functions and tuning methods for each, and present both analytical and quantitative justification for various options. Our results on four public datasets show that our attacks are effective at using update information to give the adversary a significant advantage over attacks on standalone models, but also compared to a prior MI attack that takes advantage of model updates in a related machine-unlearning setting. We perform the first measurements of the impact of distribution shift on MI attacks with model updates, and show that a more drastic distribution shift results in significantly higher MI risk than a gradual shift. Our code is available at https://www.github.com/stanleykywu/model-updates.
4,158
null
Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
We present a decision support system for managing water quality in prawn ponds. The system uses various sources of data and deep learning models in a novel way to provide 24-hour forecasting and anomaly detection of water quality parameters. It provides prawn farmers with tools to proactively avoid a poor growing environment, thereby optimising growth and reducing the risk of losing stock. This is a major shift for farmers who are forced to manage ponds by reactively correcting poor water quality conditions. To our knowledge, we are the first to apply Transformer as an anomaly detection model, and the first to apply anomaly detection in general to this aquaculture problem. Our technical contributions include adapting ForecastNet for multivariate data and adapting Transformer and the Attention model to incorporate weather forecast data into their decoders. We attain an average mean absolute percentage error of 12% for dissolved oxygen forecasts and we demonstrate two anomaly detection case studies. The system is successfully running in its second year of deployment on a commercial prawn farm.
4,159
null
Warm-starting DARTS using meta-learning
Neural architecture search (NAS) has shown great promise in the field of automated machine learning (AutoML). NAS has outperformed hand-designed networks and made a significant step forward in the field of automating the design of deep neural networks, thus further reducing the need for human expertise. However, most research is done targeting a single specific task, leaving research of NAS methods over multiple tasks mostly overlooked. Generally, there exist two popular ways to find an architecture for some novel task. Either searching from scratch, which is ineffective by design, or transferring discovered architectures from other tasks, which provides no performance guarantees and is probably not optimal. In this work, we present a meta-learning framework to warm-start Differentiable architecture search (DARTS). DARTS is a NAS method that can be initialized with a transferred architecture and is able to quickly adapt to new tasks. A task similarity measure is used to determine which transfer architecture is selected, as transfer architectures found on similar tasks will likely perform better. Additionally, we employ a simple meta-transfer architecture that was learned over multiple tasks. Experiments show that warm-started DARTS is able to find competitive performing architectures while reducing searching costs on average by 60%.
4,160
null
Interpretable Climate Change Modeling With Progressive Cascade Networks
Typical deep learning approaches to modeling high-dimensional data often result in complex models that do not easily reveal a new understanding of the data. Research in the deep learning field is very actively pursuing new methods to interpret deep neural networks and to reduce their complexity. An approach is described here that starts with linear models and incrementally adds complexity only as supported by the data. An application is shown in which models that map global temperature and precipitation to years are trained to investigate patterns associated with changes in climate.
4,161
null
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
We develop a framework for generalized variational inference in infinite-dimensional function spaces and use it to construct a method termed Gaussian Wasserstein inference (GWI). GWI leverages the Wasserstein distance between Gaussian measures on the Hilbert space of square-integrable functions in order to determine a variational posterior using a tractable optimisation criterion and avoids pathologies arising in standard variational function space inference. An exciting application of GWI is the ability to use deep neural networks in the variational parametrisation of GWI, combining their superior predictive performance with the principled uncertainty quantification analogous to that of Gaussian processes. The proposed method obtains state-of-the-art performance on several benchmark datasets.
4,162
null
Visuomotor Control in Multi-Object Scenes Using Object-Aware Representations
Perceptual understanding of the scene and the relationship between its different components is important for successful completion of robotic tasks. Representation learning has been shown to be a powerful technique for this, but most of the current methodologies learn task specific representations that do not necessarily transfer well to other tasks. Furthermore, representations learned by supervised methods require large labeled datasets for each task that are expensive to collect in the real world. Using self-supervised learning to obtain representations from unlabeled data can mitigate this problem. However, current self-supervised representation learning methods are mostly object agnostic, and we demonstrate that the resulting representations are insufficient for general purpose robotics tasks as they fail to capture the complexity of scenes with many components. In this paper, we explore the effectiveness of using object-aware representation learning techniques for robotic tasks. Our self-supervised representations are learned by observing the agent freely interacting with different parts of the environment and is queried in two different settings: (i) policy learning and (ii) object location prediction. We show that our model learns control policies in a sample-efficient manner and outperforms state-of-the-art object agnostic techniques as well as methods trained on raw RGB images. Our results show a 20 percent increase in performance in low data regimes (1000 trajectories) in policy training using implicit behavioral cloning (IBC). Furthermore, our method outperforms the baselines for the task of object localization in multi-object scenes.
4,163
null
Collaborative Multi-agent Stochastic Linear Bandits
We study a collaborative multi-agent stochastic linear bandit setting, where $N$ agents that form a network communicate locally to minimize their overall regret. In this setting, each agent has its own linear bandit problem (its own reward parameter) and the goal is to select the best global action w.r.t. the average of their reward parameters. At each round, each agent proposes an action, and one action is randomly selected and played as the network action. All the agents observe the corresponding rewards of the played actions and use an accelerated consensus procedure to compute an estimate of the average of the rewards obtained by all the agents. We propose a distributed upper confidence bound (UCB) algorithm and prove a high probability bound on its $T$-round regret in which we include a linear growth of regret associated with each communication round. Our regret bound is of order $\mathcal{O}\Big(\sqrt{\frac{T}{N \log(1/|\lambda_2|)}}\cdot (\log T)^2\Big)$, where $\lambda_2$ is the second largest (in absolute value) eigenvalue of the communication matrix.
4,164
null
Multi-Environment Meta-Learning in Stochastic Linear Bandits
In this work we investigate meta-learning (or learning-to-learn) approaches in multi-task linear stochastic bandit problems that can originate from multiple environments. Inspired by the work of [1] on meta-learning in a sequence of linear bandit problems whose parameters are sampled from a single distribution (i.e., a single environment), here we consider the feasibility of meta-learning when task parameters are drawn from a mixture distribution instead. For this problem, we propose a regularized version of the OFUL algorithm that, when trained on tasks with labeled environments, achieves low regret on a new task without requiring knowledge of the environment from which the new task originates. Specifically, our regret bound for the new algorithm captures the effect of environment misclassification and highlights the benefits over learning each task separately or meta-learning without recognition of the distinct mixture components.
4,165
null
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics-Informed Neural Networks can seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they can self-adaptively learn the weighting between data and physics. Combined with Bayesian Neural Networks, they can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems.
4,166
null
Detailed Balanced Chemical Reaction Networks as Generalized Boltzmann Machines
Can a micron sized sack of interacting molecules understand, and adapt to a constantly-fluctuating environment? Cellular life provides an existence proof in the affirmative, but the principles that allow for life's existence are far from being proven. One challenge in engineering and understanding biochemical computation is the intrinsic noise due to chemical fluctuations. In this paper, we draw insights from machine learning theory, chemical reaction network theory, and statistical physics to show that the broad and biologically relevant class of detailed balanced chemical reaction networks is capable of representing and conditioning complex distributions. These results illustrate how a biochemical computer can use intrinsic chemical noise to perform complex computations. Furthermore, we use our explicit physical model to derive thermodynamic costs of inference.
4,167
null
Global geomagnetic perturbation forecasting using Deep Learning
Geomagnetically Induced Currents (GICs) arise from spatio-temporal changes to Earth's magnetic field which arise from the interaction of the solar wind with Earth's magnetosphere, and drive catastrophic destruction to our technologically dependent society. Hence, computational models to forecast GICs globally with large forecast horizon, high spatial resolution and temporal cadence are of increasing importance to perform prompt necessary mitigation. Since GIC data is proprietary, the time variability of horizontal component of the magnetic field perturbation (dB/dt) is used as a proxy for GICs. In this work, we develop a fast, global dB/dt forecasting model, which forecasts 30 minutes into the future using only solar wind measurements as input. The model summarizes 2 hours of solar wind measurement using a Gated Recurrent Unit, and generates forecasts of coefficients which are folded with a spherical harmonic basis to enable global forecasts. When deployed, our model produces results in under a second, and generates global forecasts for horizontal magnetic perturbation components at 1-minute cadence. We evaluate our model across models in literature for two specific storms of 5 August 2011 and 17 March 2015, while having a self-consistent benchmark model set. Our model outperforms, or has consistent performance with state-of-the-practice high time cadence local and low time cadence global models, while also outperforming/having comparable performance with the benchmark models. Such quick inferences at high temporal cadence and arbitrary spatial resolutions may ultimately enable accurate forewarning of dB/dt for any place on Earth, resulting in precautionary measures to be taken in an informed manner.
4,168
null
Using Natural Sentences for Understanding Biases in Language Models
Evaluation of biases in language models is often limited to synthetically generated datasets. This dependence traces back to the need for a prompt-style dataset to trigger specific behaviors of language models. In this paper, we address this gap by creating a prompt dataset with respect to occupations collected from real-world natural sentences present in Wikipedia. We aim to understand the differences between using template-based prompts and natural sentence prompts when studying gender-occupation biases in language models. We find bias evaluations are very sensitive to the design choices of template prompts, and we propose using natural sentence prompts for systematic evaluations to step away from design choices that could introduce bias in the observations.
4,169
null
Improving Sequential Query Recommendation with Immediate User Feedback
We propose an algorithm for next query recommendation in interactive data exploration settings, like knowledge discovery for information gathering. The state-of-the-art query recommendation algorithms are based on sequence-to-sequence learning approaches that exploit historical interaction data. We propose to augment the transformer-based causal language models for query recommendations to adapt to the immediate user feedback using multi-armed bandit (MAB) framework. We conduct a large-scale experimental study using log files from a popular online literature discovery service and demonstrate that our algorithm improves the cumulative regret substantially, with respect to the state-of-the-art transformer-based query recommendation models, which do not make use of the immediate user feedback. Our data model and source code are available at ~\url{https://anonymous.4open.science/r/exp3_ss-9985/}.
4,170
null
Integrating User and Item Reviews in Deep Cooperative Neural Networks for Movie Recommendation
User evaluations include a significant quantity of information across online platforms. This information source has been neglected by the majority of existing recommendation systems, despite its potential to ease the sparsity issue and enhance the quality of suggestions. This work presents a deep model for concurrently learning item attributes and user behaviour from review text. Deep Cooperative Neural Network (DeepCoNN) is the suggested model consisting of two parallel neural networks connected in their final layers. One of the networks focuses on learning user behaviour from reviews submitted by the user, while the other network learns item attributes from user reviews. On top, a shared layer is added to connect these two networks. Similar to factorization machine approaches, the shared layer allows latent factors acquired for people and things to interact with each other. On a number of datasets, DeepCoNN surpasses all baseline recommendation systems, according to experimental findings.
4,171
null
Adaptive Block Floating-Point for Analog Deep Learning Hardware
Analog mixed-signal (AMS) devices promise faster, more energy-efficient deep neural network (DNN) inference than their digital counterparts. However, recent studies show that DNNs on AMS devices with fixed-point numbers can incur an accuracy penalty because of precision loss. To mitigate this penalty, we present a novel AMS-compatible adaptive block floating-point (ABFP) number representation. We also introduce amplification (or gain) as a method for increasing the accuracy of the number representation without increasing the bit precision of the output. We evaluate the effectiveness of ABFP on the DNNs in the MLPerf datacenter inference benchmark -- realizing less than $1\%$ loss in accuracy compared to FLOAT32. We also propose a novel method of finetuning for AMS devices, Differential Noise Finetuning (DNF), which samples device noise to speed up finetuning compared to conventional Quantization-Aware Training.
4,172
null
Topologically-Aware Deformation Fields for Single-View 3D Reconstruction
We present a framework for learning 3D object shapes and dense cross-object 3D correspondences from just an unaligned category-specific image collection. The 3D shapes are generated implicitly as deformations to a category-specific signed distance field and are learned in an unsupervised manner solely from unaligned image collections and their poses without any 3D supervision. Generally, image collections on the internet contain several intra-category geometric and topological variations, for example, different chairs can have different topologies, which makes the task of joint shape and correspondence estimation much more challenging. Because of this, prior works either focus on learning each 3D object shape individually without modeling cross-instance correspondences or perform joint shape and correspondence estimation on categories with minimal intra-category topological variations. We overcome these restrictions by learning a topologically-aware implicit deformation field that maps a 3D point in the object space to a higher dimensional point in the category-specific canonical space. At inference time, given a single image, we reconstruct the underlying 3D shape by first implicitly deforming each 3D point in the object space to the learned category-specific canonical space using the topologically-aware deformation field and then reconstructing the 3D shape as a canonical signed distance field. Both canonical shape and deformation field are learned end-to-end in an inverse-graphics fashion using a learned recurrent ray marcher (SRN) as a differentiable rendering module. Our approach, dubbed TARS, achieves state-of-the-art reconstruction fidelity on several datasets: ShapeNet, Pascal3D+, CUB, and Pix3D chairs. Result videos and code at https://shivamduggal4.github.io/tars-3D/
4,173
null
ELODI: Ensemble Logit Difference Inhibition for Positive-Congruent Training
Negative flips are errors introduced in a classification system when a legacy model is replaced with a new one. Existing methods to reduce the negative flip rate (NFR) either do so at the expense of overall accuracy using model distillation, or use ensembles, which multiply inference cost prohibitively. We present a method to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model. Our method introduces a generalized distillation objective, Logit Difference Inhibition (LDI), that penalizes changes in the logits between the new and old model, without forcing them to coincide as in ordinary distillation. LDI affords the model flexibility to reduce error rate along with NFR. The method uses a homogeneous ensemble as the reference model for LDI, hence the name Ensemble LDI, or ELODI. The reference model can then be substituted with a single model at inference time. The method leverages the observation that negative flips are typically not close to the decision boundary, but often exhibit large deviations in the distance among their logits, which are reduced by ELODI.
4,174
null
Evolving SimGANs to Improve Abnormal Electrocardiogram Classification
Machine Learning models are used in a wide variety of domains. However, machine learning methods often require a large amount of data in order to be successful. This is especially troublesome in domains where collecting real-world data is difficult and/or expensive. Data simulators do exist for many of these domains, but they do not sufficiently reflect the real world data due to factors such as a lack of real-world noise. Recently generative adversarial networks (GANs) have been modified to refine simulated image data into data that better fits the real world distribution, using the SimGAN method. While evolutionary computing has been used for GAN evolution, there are currently no frameworks that can evolve a SimGAN. In this paper we (1) extend the SimGAN method to refine one-dimensional data, (2) modify Easy Cartesian Genetic Programming (ezCGP), an evolutionary computing framework, to create SimGANs that more accurately refine simulated data, and (3) create new feature-based quantitative metrics to evaluate refined data. We also use our framework to augment an electrocardiogram (ECG) dataset, a domain that suffers from the issues previously mentioned. In particular, while healthy ECGs can be simulated there are no current simulators of abnormal ECGs. We show that by using an evolved SimGAN to refine simulated healthy ECG data to mimic real-world abnormal ECGs, we can improve the accuracy of abnormal ECG classifiers.
4,175
null
SIBILA: High-performance computing and interpretable machine learning join efforts toward personalised medicine in a novel decision-making tool
Background and Objectives: Personalised medicine remains a major challenge for scientists. The rapid growth of Machine learning and Deep learning has made it a feasible alternative for predicting the most appropriate therapy for individual patients. However, the lack of interpretation of their results and high computational requirements make many reluctant to use these methods. Methods: Several Machine learning and Deep learning models have been implemented into a single software tool, SIBILA. Once the models are trained, SIBILA applies a range of interpretability methods to identify the input features that each model considered the most important to predict. In addition, all the features obtained are put in common to estimate the global attribution of each variable to the predictions. To facilitate its use by non-experts, SIBILA is also available to all users free of charge as a web server at https://bio-hpc.ucam.edu/sibila/. Results: SIBILA has been applied to three case studies to show its accuracy and efficiency in classification and regression problems. The first two cases proved that SIBILA can make accurate predictions even on uncleaned datasets. The last case demonstrates that SIBILA can be applied to medical contexts with real data. Conclusion: With the aim of becoming a powerful decision-making tool for clinicians, SIBILA has been developed. SIBILA is a novel software tool that leverages interpretable machine learning to make accurate predictions and explain how models made those decisions. SIBILA can be run on high-performance computing platforms, drastically reducing computing times.
4,176
null
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Recently the surprising discovery of the Bootstrap Your Own Latent (BYOL) method by Grill et al. shows the negative term in contrastive loss can be removed if we add the so-called prediction head to the network. This initiated the research of non-contrastive self-supervised learning. It is mysterious why even when there exist trivial collapsed global optimal solutions, neural networks trained by (stochastic) gradient descent can still learn competitive representations. This phenomenon is a typical example of implicit bias in deep learning and remains little understood. In this work, we present our empirical and theoretical discoveries on non-contrastive self-supervised learning. Empirically, we find that when the prediction head is initialized as an identity matrix with only its off-diagonal entries being trainable, the network can learn competitive representations even though the trivial optima still exist in the training objective. Theoretically, we present a framework to understand the behavior of the trainable, but identity-initialized prediction head. Under a simple setting, we characterized the substitution effect and acceleration effect of the prediction head. The substitution effect happens when learning the stronger features in some neurons can substitute for learning these features in other neurons through updating the prediction head. And the acceleration effect happens when the substituted features can accelerate the learning of other weaker features to prevent them from being ignored. These two effects enable the neural networks to learn all the features rather than focus only on learning the stronger features, which is likely the cause of the dimensional collapse phenomenon. To the best of our knowledge, this is also the first end-to-end optimization guarantee for non-contrastive methods using nonlinear neural networks with a trainable prediction head and normalization.
4,177
null
ScAN: Suicide Attempt and Ideation Events Dataset
Suicide is an important public health concern and one of the leading causes of death worldwide. Suicidal behaviors, including suicide attempts (SA) and suicide ideations (SI), are leading risk factors for death by suicide. Information related to patients' previous and current SA and SI are frequently documented in the electronic health record (EHR) notes. Accurate detection of such documentation may help improve surveillance and predictions of patients' suicidal behaviors and alert medical professionals for suicide prevention efforts. In this study, we first built Suicide Attempt and Ideation Events (ScAN) dataset, a subset of the publicly available MIMIC III dataset spanning over 12k+ EHR notes with 19k+ annotated SA and SI events information. The annotations also contain attributes such as method of suicide attempt. We also provide a strong baseline model ScANER (Suicide Attempt and Ideation Events Retriever), a multi-task RoBERTa-based model with a retrieval module to extract all the relevant suicidal behavioral evidences from EHR notes of an hospital-stay and, and a prediction module to identify the type of suicidal behavior (SA and SI) concluded during the patient's stay at the hospital. ScANER achieved a macro-weighted F1-score of 0.83 for identifying suicidal behavioral evidences and a macro F1-score of 0.78 and 0.60 for classification of SA and SI for the patient's hospital-stay, respectively. ScAN and ScANER are publicly available.
4,178
null
Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets
This paper performs comprehensive analysis on datasets for occlusion-aware face segmentation, a task that is crucial for many downstream applications. The collection and annotation of such datasets are time-consuming and labor-intensive. Although some efforts have been made in synthetic data generation, the naturalistic aspect of data remains less explored. In our study, we propose two occlusion generation techniques, Naturalistic Occlusion Generation (NatOcc), for producing high-quality naturalistic synthetic occluded faces; and Random Occlusion Generation (RandOcc), a more general synthetic occluded data generation method. We empirically show the effectiveness and robustness of both methods, even for unseen occlusions. To facilitate model evaluation, we present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild, featuring both careful alignment preprocessing and an in-the-wild setting for robustness test. We further conduct a comprehensive analysis on a newly introduced segmentation benchmark, offering insights for future exploration.
4,179
null
Exploiting symmetry in variational quantum machine learning
Variational quantum machine learning is an extensively studied application of near-term quantum computers. The success of variational quantum learning models crucially depends on finding a suitable parametrization of the model that encodes an inductive bias relevant to the learning task. However, precious little is known about guiding principles for the construction of suitable parametrizations. In this work, we holistically explore when and how symmetries of the learning problem can be exploited to construct quantum learning models with outcomes invariant under the symmetry of the learning task. Building on tools from representation theory, we show how a standard gateset can be transformed into an equivariant gateset that respects the symmetries of the problem at hand through a process of gate symmetrization. We benchmark the proposed methods on two toy problems that feature a non-trivial symmetry and observe a substantial increase in generalization performance. As our tools can also be applied in a straightforward way to other variational problems with symmetric structure, we show how equivariant gatesets can be used in variational quantum eigensolvers.
4,180
null
Contingency-constrained economic dispatch with safe reinforcement learning
Future power systems will rely heavily on micro grids with a high share of decentralised renewable energy sources and energy storage systems. The high complexity and uncertainty in this context might make conventional power dispatch strategies infeasible. Reinforcement-learning based (RL) controllers can address this challenge, however, cannot themselves provide safety guarantees, preventing their deployment in practice. To overcome this limitation, we propose a formally validated RL controller for economic dispatch. We extend conventional constraints by a time-dependent constraint encoding the islanding contingency. The contingency constraint is computed using set-based backwards reachability analysis and actions of the RL agent are verified through a safety layer. Unsafe actions are projected into the safe action space while leveraging constrained zonotope set representations for computational efficiency. The developed approach is demonstrated on a residential use case using real-world measurements.
4,181
null
kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval
Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.
4,182
null
Embodied vision for learning object representations
Recent time-contrastive learning approaches manage to learn invariant object representations without supervision. This is achieved by mapping successive views of an object onto close-by internal representations. When considering this learning approach as a model of the development of human object recognition, it is important to consider what visual input a toddler would typically observe while interacting with objects. First, human vision is highly foveated, with high resolution only available in the central region of the field of view. Second, objects may be seen against a blurry background due to infants' limited depth of field. Third, during object manipulation a toddler mostly observes close objects filling a large part of the field of view due to their rather short arms. Here, we study how these effects impact the quality of visual representations learnt through time-contrastive learning. To this end, we let a visually embodied agent "play" with objects in different locations of a near photo-realistic flat. During each play session the agent views an object in multiple orientations before turning its body to view another object. The resulting sequence of views feeds a time-contrastive learning algorithm. Our results show that visual statistics mimicking those of a toddler improve object recognition accuracy in both familiar and novel environments. We argue that this effect is caused by the reduction of features extracted in the background, a neural network bias for large features in the image and a greater similarity between novel and familiar background regions. We conclude that the embodied nature of visual learning may be crucial for understanding the development of human object perception.
4,183
null
Image Segmentation with Topological Priors
Solving segmentation tasks with topological priors proved to make fewer errors in fine-scale structures. In this work, we use topological priors both before and during the deep neural network training procedure. We compared the results of the two approaches with simple segmentation on various accuracy metrics and the Betti number error, which is directly related to topological correctness, and discovered that incorporating topological information into the classical UNet model performed significantly better. We conducted experiments on the ISBI EM segmentation dataset.
4,184
null
A Generalist Agent
Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato.
4,185
null
Mondrian Forest for Data Stream Classification Under Memory Constraints
Supervised learning algorithms generally assume the availability of enough memory to store their data model during the training and test phases. However, in the Internet of Things, this assumption is unrealistic when data comes in the form of infinite data streams, or when learning algorithms are deployed on devices with reduced amounts of memory. In this paper, we adapt the online Mondrian forest classification algorithm to work with memory constraints on data streams. In particular, we design five out-of-memory strategies to update Mondrian trees with new data points when the memory limit is reached. Moreover, we design trimming mechanisms to make Mondrian trees more robust to concept drifts under memory constraints. We evaluate our algorithms on a variety of real and simulated datasets, and we conclude with recommendations on their use in different situations: the Extend Node strategy appears as the best out-of-memory strategy in all configurations, whereas different trimming mechanisms should be adopted depending on whether a concept drift is expected. All our methods are implemented in the OrpailleCC open-source library and are ready to be used on embedded systems and connected objects.
4,186
null
Localized Vision-Language Matching for Open-vocabulary Object Detection
In this work, we propose an open-world object detection method that, based on image-caption pairs, learns to detect novel object classes along with a given set of known classes. It is a two-stage training approach that first uses a location-guided image-caption matching technique to learn class labels for both novel and known classes in a weakly-supervised manner and second specializes the model for the object detection task using known class annotations. We show that a simple language model fits better than a large contextualized language model for detecting novel objects. Moreover, we introduce a consistency-regularization technique to better exploit image-caption pair information. Our method compares favorably to existing open-world detection approaches while being data-efficient.
4,187
null
Neural Network-based OFDM Receiver for Resource Constrained IoT Devices
Orthogonal Frequency Division Multiplexing (OFDM)-based waveforms are used for communication links in many current and emerging Internet of Things (IoT) applications, including the latest WiFi standards. For such OFDM-based transceivers, many core physical layer functions related to channel estimation, demapping, and decoding are implemented for specific choices of channel types and modulation schemes, among others. To decouple hard-wired choices from the receiver chain and thereby enhance the flexibility of IoT deployment in many novel scenarios without changing the underlying hardware, we explore a novel, modular Machine Learning (ML)-based receiver chain design. Here, ML blocks replace the individual processing blocks of an OFDM receiver, and we specifically describe this swapping for the legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs). A unique aspect of this modular design is providing flexible allocation of processing functions to the legacy or ML blocks, allowing them to interchangeably coexist. Furthermore, we study the implementation cost-benefits of the proposed NNs in resource-constrained IoT devices through pruning and quantization, as well as emulation of these compressed NNs within Field Programmable Gate Arrays (FPGAs). Our evaluations demonstrate that the proposed modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61% and 10% for the simulated and over-the-air datasets, respectively. We further show complexity-performance tradeoffs by presenting computational complexity comparisons between the traditional algorithms and the proposed compressed NNs.
4,188
null
Smooth-Reduce: Leveraging Patches for Improved Certified Robustness
Randomized smoothing (RS) has been shown to be a fast, scalable technique for certifying the robustness of deep neural network classifiers. However, methods based on RS require augmenting data with large amounts of noise, which leads to significant drops in accuracy. We propose a training-free, modified smoothing approach, Smooth-Reduce, that leverages patching and aggregation to provide improved classifier certificates. Our algorithm classifies overlapping patches extracted from an input image, and aggregates the predicted logits to certify a larger radius around the input. We study two aggregation schemes -- max and mean -- and show that both approaches provide better certificates in terms of certified accuracy, average certified radii and abstention rates as compared to concurrent approaches. We also provide theoretical guarantees for such certificates, and empirically show significant improvements over other randomized smoothing methods that require expensive retraining. Further, we extend our approach to videos and provide meaningful certificates for video classifiers. A project page can be found at https://nyu-dice-lab.github.io/SmoothReduce/
4,189
null
Multimodal Indoor Localisation for Measuring Mobility in Parkinson's Disease using Transformers
Parkinson's disease (PD) is a slowly progressive debilitating neurodegenerative disease which is prominently characterised by motor symptoms. Indoor localisation, including number and speed of room to room transitions, provides a proxy outcome which represents mobility and could be used as a digital biomarker to quantify how mobility changes as this disease progresses. We use data collected from 10 people with Parkinson's, and 10 controls, each of whom lived for five days in a smart home with various sensors. In order to more effectively localise them indoors, we propose a transformer-based approach utilizing two data modalities, Received Signal Strength Indicator (RSSI) and accelerometer data from wearable devices, which provide complementary views of movement. Our approach makes asymmetric and dynamic correlations by a) learning temporal correlations at different scales and levels, and b) utilizing various gating mechanisms to select relevant features within modality and suppress unnecessary modalities. On a dataset with real patients, we demonstrate that our proposed method gives an average accuracy of 89.9%, outperforming competitors. We also show that our model is able to better predict in-home mobility for people with Parkinson's with an average offset of 1.13 seconds to ground truth.
4,190
null
Fair NLP Models with Differentially Private Text Encoders
Encoded text representations often capture sensitive attributes about individuals (e.g., race or gender), which raise privacy concerns and can make downstream models unfair to certain groups. In this work, we propose FEDERATE, an approach that combines ideas from differential privacy and adversarial training to learn private text representations which also induces fairer models. We empirically evaluate the trade-off between the privacy of the representations and the fairness and accuracy of the downstream model on four NLP datasets. Our results show that FEDERATE consistently improves upon previous methods, and thus suggest that privacy and fairness can positively reinforce each other.
4,191
null
Framework for inferring empirical causal graphs from binary data to support multidimensional poverty analysis
Poverty is one of the fundamental issues that mankind faces. Multidimensional Poverty Index (MPI) is deployed for measuring poverty issues in a population beyond monetary. However, MPI cannot provide information regarding associations and causal relations among poverty factors. Does education cause income inequality in a specific region? Is lacking education a cause of health issues? By not knowing causal relations, policy maker cannot pinpoint root causes of poverty issues of a specific population, which might not be the same across different population. Additionally, MPI requires binary data, which cannot be analyzed by most of causal inference frameworks. In this work, we proposed an exploratory-data-analysis framework for finding possible causal relations with confidence intervals among binary data. The proposed framework provides not only how severe the issue of poverty is, but it also provides the causal relations among poverty factors. Moreover, knowing a confidence interval of degree of causal direction lets us know how strong a causal relation is. We evaluated the proposed framework with several baseline approaches in simulation datasets as well as using two real-world datasets as case studies 1) Twin births of the United States: the relation between birth weight and mortality of twin, and 2) Thailand population surveys from 378k households of Chiang Mai and 353k households of Khon Kaen provinces. Our framework performed better than baselines in most cases. The first case study reveals almost all mortality cases in twins have issues of low birth weights but not all low-birth-weight twins were died. The second case study reveals that smoking associates with drinking alcohol in both provinces and there is a causal relation of smoking causes drinking alcohol in only Chiang Mai province. The framework can be applied beyond the poverty context.
4,192
null
Addressing Census data problems in race imputation via fully Bayesian Improved Surname Geocoding and name supplements
Prediction of an individual's race and ethnicity plays an important role in social science and public health research. Examples include studies of racial disparity in health and voting. Recently, Bayesian Improved Surname Geocoding (BISG), which uses Bayes' rule to combine information from Census surname files with the geocoding of an individual's residence, has emerged as a leading methodology for this prediction task. Unfortunately, BISG suffers from two Census data problems that contribute to unsatisfactory predictive performance for minorities. First, the decennial Census often contains zero counts for minority racial groups in the Census blocks where some members of those groups reside. Second, because the Census surname files only include frequent names, many surnames -- especially those of minorities -- are missing from the list. To address the zero counts problem, we introduce a fully Bayesian Improved Surname Geocoding (fBISG) methodology that accounts for potential measurement error in Census counts by extending the na\"ive Bayesian inference of the BISG methodology to full posterior inference. To address the missing surname problem, we supplement the Census surname data with additional data on last, first, and middle names taken from the voter files of six Southern states where self-reported race is available. Our empirical validation shows that the fBISG methodology and name supplements significantly improve the accuracy of race imputation across all racial groups, and especially for Asians. The proposed methodology, together with additional name data, is available via the open-source software package wru.
4,193
null
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
A fundamental problem in adversarial machine learning is to quantify how much training data is needed in the presence of evasion attacks. In this paper we address this issue within the framework of PAC learning, focusing on the class of decision lists. Given that distributional assumptions are essential in the adversarial setting, we work with probability distributions on the input data that satisfy a Lipschitz condition: nearby points have similar probability. Our key results illustrate that the adversary's budget (that is, the number of bits it can perturb on each input) is a fundamental quantity in determining the sample complexity of robust learning. Our first main result is a sample-complexity lower bound: the class of monotone conjunctions (essentially the simplest non-trivial hypothesis class on the Boolean hypercube) and any superclass has sample complexity at least exponential in the adversary's budget. Our second main result is a corresponding upper bound: for every fixed $k$ the class of $k$-decision lists has polynomial sample complexity against a $\log(n)$-bounded adversary. This sheds further light on the question of whether an efficient PAC learning algorithm can always be used as an efficient $\log(n)$-robust learning algorithm under the uniform distribution.
4,194
null
One Model, Multiple Modalities: A Sparsely Activated Approach for Text, Sound, Image, Video and Code
People perceive the world with multiple senses (e.g., through hearing sounds, reading words and seeing objects). However, most existing AI systems only process an individual modality. This paper presents an approach that excels at handling multiple modalities of information with a single model. In our "{SkillNet}" model, different parts of the parameters are specialized for processing different modalities. Unlike traditional dense models that always activate all the model parameters, our model sparsely activates parts of the parameters whose skills are relevant to the task. Such model design enables SkillNet to learn skills in a more interpretable way. We develop our model for five modalities including text, image, sound, video and code. Results show that, SkillNet performs comparably to five modality-specific fine-tuned models. Moreover, our model supports self-supervised pretraining with the same sparsely activated way, resulting in better initialized parameters for different modalities. We find that pretraining significantly improves the performance of SkillNet on five modalities, on par with or even better than baselines with modality-specific pretraining. On the task of Chinese text-to-image retrieval, our final system achieves higher accuracy than existing leading systems including Wukong{ViT-B} and Wenlan 2.0 while using less number of activated parameters.
4,195
null
Zero-shot Code-Mixed Offensive Span Identification through Rationale Extraction
This paper investigates the effectiveness of sentence-level transformers for zero-shot offensive span identification on a code-mixed Tamil dataset. More specifically, we evaluate rationale extraction methods of Local Interpretable Model Agnostic Explanations (LIME) \cite{DBLP:conf/kdd/Ribeiro0G16} and Integrated Gradients (IG) \cite{DBLP:conf/icml/SundararajanTY17} for adapting transformer based offensive language classification models for zero-shot offensive span identification. To this end, we find that LIME and IG show baseline $F_{1}$ of 26.35\% and 44.83\%, respectively. Besides, we study the effect of data set size and training process on the overall accuracy of span identification. As a result, we find both LIME and IG to show significant improvement with Masked Data Augmentation and Multilabel Training, with $F_{1}$ of 50.23\% and 47.38\% respectively. \textit{Disclaimer : This paper contains examples that may be considered profane, vulgar, or offensive. The examples do not represent the views of the authors or their employers/graduate schools towards any person(s), group(s), practice(s), or entity/entities. Instead they are used to emphasize only the linguistic research challenges.}
4,196
null
Secure Aggregation for Federated Learning in Flower
Federated Learning (FL) allows parties to learn a shared prediction model by delegating the training computation to clients and aggregating all the separately trained models on the server. To prevent private information being inferred from local models, Secure Aggregation (SA) protocols are used to ensure that the server is unable to inspect individual trained models as it aggregates them. However, current implementations of SA in FL frameworks have limitations, including vulnerability to client dropouts or configuration difficulties. In this paper, we present Salvia, an implementation of SA for Python users in the Flower FL framework. Based on the SecAgg(+) protocols for a semi-honest threat model, Salvia is robust against client dropouts and exposes a flexible and easy-to-use API that is compatible with various machine learning frameworks. We show that Salvia's experimental performance is consistent with SecAgg(+)'s theoretical computation and communication complexities.
4,197
null
Equivariant quantum circuits for learning on weighted graphs
Variational quantum algorithms are the leading candidate for near-term advantage on noisy quantum hardware. When training a parametrized quantum circuit to solve a specific task, the choice of ansatz is one of the most important factors that determines the trainability and performance of the algorithm. Problem-tailored ansatzes have become the standard for tasks in optimization or quantum chemistry, and yield more efficient algorithms with better performance than unstructured approaches. In quantum machine learning (QML), however, the literature on ansatzes that are motivated by the training data structure is scarce. Considering that it is widely known that unstructured ansatzes can become untrainable with increasing system size and circuit depth, it is of key importance to also study problem-tailored circuit architectures in a QML context. In this work, we introduce an ansatz for learning tasks on weighted graphs that respects an important graph symmetry, namely equivariance under node permutations. We evaluate the performance of this ansatz on a complex learning task on weighted graphs, where a ML model is used to implement a heuristic for a combinatorial optimization problem. We analytically study the expressivity of our ansatz at depth one, and numerically compare the performance of our model on instances with up to 20 qubits to ansatzes where the equivariance property is gradually broken. We show that our ansatz outperforms all others even in the small-instance regime. Our results strengthen the notion that symmetry-preserving ansatzes are a key to success in QML and should be an active area of research in order to enable near-term advantages in this field.
4,198
null
Social learning via actions in bandit environments
I study a game of strategic exploration with private payoffs and public actions in a Bayesian bandit setting. In particular, I look at cascade equilibria, in which agents switch over time from the risky action to the riskless action only when they become sufficiently pessimistic. I show that these equilibria exist under some conditions and establish their salient properties. Individual exploration in these equilibria can be more or less than the single-agent level depending on whether the agents start out with a common prior or not, but the most optimistic agent always underexplores. I also show that allowing the agents to write enforceable ex-ante contracts will lead to the most ex-ante optimistic agent to buy all payoff streams, providing an explanation to the buying out of smaller start-ups by more established firms.
4,199
null
Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation
News recommendation for anonymous readers is a useful but challenging task for many news portals, where interactions between readers and articles are limited within a temporary login session. Previous works tend to formulate session-based recommendation as a next item prediction task, while they neglect the implicit feedback from user behaviors, which indicates what users really like or dislike. Hence, we propose a comprehensive framework to model user behaviors through positive feedback (i.e., the articles they spend more time on) and negative feedback (i.e., the articles they choose to skip without clicking in). Moreover, the framework implicitly models the user using their session start time, and the article using its initial publishing time, in what we call "neutral feedback". Empirical evaluation on three real-world news datasets shows the framework's promising performance of more accurate, diverse and even unexpectedness recommendations than other state-of-the-art session-based recommendation approaches.
4,200
null
Unified Source-Filter GAN with Harmonic-plus-Noise Source Excitation Generation
This paper introduces a unified source-filter network with a harmonic-plus-noise source excitation generation mechanism. In our previous work, we proposed unified Source-Filter GAN (uSFGAN) for developing a high-fidelity neural vocoder with flexible voice controllability using a unified source-filter neural network architecture. However, the capability of uSFGAN to model the aperiodic source excitation signal is insufficient, and there is still a gap in sound quality between the natural and generated speech. To improve the source excitation modeling and generated sound quality, a new source excitation generation network separately generating periodic and aperiodic components is proposed. The advanced adversarial training procedure of HiFiGAN is also adopted to replace that of Parallel WaveGAN used in the original uSFGAN. Both objective and subjective evaluation results show that the modified uSFGAN significantly improves the sound quality of the basic uSFGAN while maintaining the voice controllability.
4,201
null
Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo sampling
The Plackett-Luce (PL) model is ubiquitous in learning-to-rank (LTR) because it provides a useful and intuitive probabilistic model for sampling ranked lists. Counterfactual offline evaluation and optimization of ranking metrics are pivotal for using LTR methods in production. When adopting the PL model as a ranking policy, both tasks require the computation of expectations with respect to the model. These are usually approximated via Monte-Carlo (MC) sampling, since the combinatorial scaling in the number of items to be ranked makes their analytical computation intractable. Despite recent advances in improving the computational efficiency of the sampling process via the Gumbel top-k trick, the MC estimates can suffer from high variance. We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model by combining the Gumbel top-k trick with quasi-Monte Carlo (QMC) sampling, a well-established technique for variance reduction. We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
4,202
null
Learning Generalized Policies Without Supervision Using GNNs
We consider the problem of learning generalized policies for classical planning domains using graph neural networks from small instances represented in lifted STRIPS. The problem has been considered before but the proposed neural architectures are complex and the results are often mixed. In this work, we use a simple and general GNN architecture and aim at obtaining crisp experimental results and a deeper understanding: either the policy greedy in the learned value function achieves close to 100% generalization over instances larger than those used in training, or the failure must be understood, and possibly fixed, logically. For this, we exploit the relation established between the expressive power of GNNs and the $C_{2}$ fragment of first-order logic (namely, FOL with 2 variables and counting quantifiers). We find for example that domains with general policies that require more expressive features can be solved with GNNs once the states are extended with suitable "derived atoms" encoding role compositions and transitive closures that do not fit into $C_{2}$. The work follows the GNN approach for learning optimal general policies in a supervised fashion (Stahlberg, Bonet, Geffner, 2022); but the learned policies are no longer required to be optimal (which expands the scope, as many planning domains do not have general optimal policies) and are learned without supervision. Interestingly, value-based reinforcement learning methods that aim to produce optimal policies, do not always yield policies that generalize, as the goals of optimality and generality are in conflict in domains where optimal planning is NP-hard.
4,203
null
Unsupervised Driving Behavior Analysis using Representation Learning and Exploiting Group-based Training
Driving behavior monitoring plays a crucial role in managing road safety and decreasing the risk of traffic accidents. Driving behavior is affected by multiple factors like vehicle characteristics, types of roads, traffic, but, most importantly, the pattern of driving of individuals. Current work performs a robust driving pattern analysis by capturing variations in driving patterns. It forms consistent groups by learning compressed representation of time series (Auto Encoded Compact Sequence) using a multi-layer seq-2-seq autoencoder and exploiting hierarchical clustering along with recommending the choice of best distance measure. Consistent groups aid in identifying variations in driving patterns of individuals captured in the dataset. These groups are generated for both train and hidden test data. The consistent groups formed using train data, are exploited for training multiple instances of the classifier. Obtained choice of best distance measure is used to select the best train-test pair of consistent groups. We have experimented on the publicly available UAH-DriveSet dataset considering the signals captured from IMU sensors (accelerometer and gyroscope) for classifying driving behavior. We observe proposed method, significantly outperforms the benchmark performance.
4,204
null
Accounting for the Sequential Nature of States to Learn Features for Reinforcement Learning
In this work, we investigate the properties of data that cause popular representation learning approaches to fail. In particular, we find that in environments where states do not significantly overlap, variational autoencoders (VAEs) fail to learn useful features. We demonstrate this failure in a simple gridworld domain, and then provide a solution in the form of metric learning. However, metric learning requires supervision in the form of a distance function, which is absent in reinforcement learning. To overcome this, we leverage the sequential nature of states in a replay buffer to approximate a distance metric and provide a weak supervision signal, under the assumption that temporally close states are also semantically similar. We modify a VAE with triplet loss and demonstrate that this approach is able to learn useful features for downstream tasks, without additional supervision, in environments where standard VAEs fail.
4,205
null
AiSocrates: Towards Answering Ethical Quandary Questions
Considerable advancements have been made in various NLP tasks based on the impressive power of large pre-trained language models (LLMs). These results have inspired efforts to understand the limits of LLMs so as to evaluate how far we are from achieving human level general natural language understanding. In this work, we challenge the capability of LLMs with the new task of Ethical Quandary Generative Question Answering. Ethical quandary questions are more challenging to address because multiple conflicting answers may exist to a single quandary. We propose a system, AiSocrates, that provides an answer with a deliberative exchange of different perspectives to an ethical quandary, in the approach of Socratic philosophy, instead of providing a closed answer like an oracle. AiSocrates searches for different ethical principles applicable to the ethical quandary and generates an answer conditioned on the chosen principles through prompt-based few-shot learning. We also address safety concerns by providing a human controllability option in choosing ethical principles. We show that AiSocrates generates promising answers to ethical quandary questions with multiple perspectives, 6.92% more often than answers written by human philosophers by one measure, but the system still needs improvement to match the coherence of human philosophers fully. We argue that AiSocrates is a promising step toward developing an NLP system that incorporates human values explicitly by prompt instructions. We are releasing the code for research purposes.
4,206
null
Controlling chaotic itinerancy in laser dynamics for reinforcement learning
Photonic artificial intelligence has attracted considerable interest in accelerating machine learning; however, the unique optical properties have not been fully utilized for achieving higher-order functionalities. Chaotic itinerancy, with its spontaneous transient dynamics among multiple quasi-attractors, can be employed to realize brain-like functionalities. In this paper, we propose a method for controlling the chaotic itinerancy in a multi-mode semiconductor laser to solve a machine learning task, known as the multi-armed bandit problem, which is fundamental to reinforcement learning. The proposed method utilizes ultrafast chaotic itinerant motion in mode competition dynamics controlled via optical injection. We found that the exploration mechanism is completely different from a conventional searching algorithm and is highly scalable, outperforming the conventional approaches for large-scale bandit problems. This study paves the way to utilize chaotic itinerancy for effectively solving complex machine learning tasks as photonic hardware accelerators.
4,207
null
GPN: A Joint Structural Learning Framework for Graph Neural Networks
Graph neural networks (GNNs) have been applied into a variety of graph tasks. Most existing work of GNNs is based on the assumption that the given graph data is optimal, while it is inevitable that there exists missing or incomplete edges in the graph data for training, leading to degraded performance. In this paper, we propose Generative Predictive Network (GPN), a GNN-based joint learning framework that simultaneously learns the graph structure and the downstream task. Specifically, we develop a bilevel optimization framework for this joint learning task, in which the upper optimization (generator) and the lower optimization (predictor) are both instantiated with GNNs. To the best of our knowledge, our method is the first GNN-based bilevel optimization framework for resolving this task. Through extensive experiments, our method outperforms a wide range of baselines using benchmark datasets.