crosswoz / preprocess.py
zhuqi's picture
update crosswoz data
98b2db6
raw
history blame
19.2 kB
import copy
import json
import os
import re
from collections import Counter
from pprint import pprint
from shutil import copy2, rmtree
from zipfile import ZIP_DEFLATED, ZipFile
from tqdm import tqdm
ontology = {
"domains": {
"景点": {
"description": "查找景点",
"slots": {
"名称": {
"description": "景点名称",
"is_categorical": False,
"possible_values": []
},
"门票": {
"description": "景点门票价格",
"is_categorical": False,
"possible_values": []
},
"游玩时间": {
"description": "景点游玩时间",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "景点评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "景点地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "景点电话",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "景点周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "景点周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "景点周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"餐馆": {
"description": "查找餐馆",
"slots": {
"名称": {
"description": "餐馆名称",
"is_categorical": False,
"possible_values": []
},
"推荐菜": {
"description": "餐馆推荐菜",
"is_categorical": False,
"possible_values": []
},
"人均消费": {
"description": "餐馆人均消费",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "餐馆评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "餐馆地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "餐馆电话",
"is_categorical": False,
"possible_values": []
},
"营业时间": {
"description": "餐馆营业时间",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "餐馆周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "餐馆周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "餐馆周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"酒店": {
"description": "查找酒店",
"slots": {
"名称": {
"description": "酒店名称",
"is_categorical": False,
"possible_values": []
},
"酒店类型": {
"description": "酒店类型",
"is_categorical": True,
"possible_values": [
'高档型', '豪华型', '经济型', '舒适型'
]
},
"酒店设施": {
"description": "酒店设施",
"is_categorical": False,
"possible_values": []
},
"价格": {
"description": "酒店价格",
"is_categorical": False,
"possible_values": []
},
"评分": {
"description": "酒店评分",
"is_categorical": False,
"possible_values": []
},
"地址": {
"description": "酒店地址",
"is_categorical": False,
"possible_values": []
},
"电话": {
"description": "酒店电话",
"is_categorical": False,
"possible_values": []
},
"周边景点": {
"description": "酒店周边景点",
"is_categorical": False,
"possible_values": []
},
"周边餐馆": {
"description": "酒店周边餐馆",
"is_categorical": False,
"possible_values": []
},
"周边酒店": {
"description": "酒店周边酒店",
"is_categorical": False,
"possible_values": []
}
}
},
"地铁": {
"description": "乘坐地铁从某地到某地",
"slots": {
"出发地": {
"description": "地铁出发地",
"is_categorical": False,
"possible_values": []
},
"目的地": {
"description": "地铁目的地",
"is_categorical": False,
"possible_values": []
},
"出发地附近地铁站": {
"description": "出发地附近地铁站",
"is_categorical": False,
"possible_values": []
},
"目的地附近地铁站": {
"description": "目的地附近地铁站",
"is_categorical": False,
"possible_values": []
}
}
},
"出租": {
"description": "乘坐出租车从某地到某地",
"slots": {
"出发地": {
"description": "出租出发地",
"is_categorical": False,
"possible_values": []
},
"目的地": {
"description": "出租目的地",
"is_categorical": False,
"possible_values": []
},
"车型": {
"description": "出租车车型",
"is_categorical": True,
"possible_values": [
"#CX"
]
},
"车牌": {
"description": "出租车车牌",
"is_categorical": True,
"possible_values": [
"#CP"
]
}
}
},
"General": {
"description": "通用领域",
"slots": {}
}
},
"intents": {
"Inform": {
"description": "告知相关属性"
},
"Request": {
"description": "询问相关属性"
},
"Recommend": {
"description": "推荐搜索结果"
},
"Select": {
"description": "在附近搜索"
},
"NoOffer": {
"description": "未找到符合用户要求的结果"
},
"bye": {
"description": "再见"
},
"thank": {
"description": "感谢"
},
"welcome": {
"description": "不客气"
},
"greet": {
"description": "打招呼"
},
},
"state": {
"景点": {
"名称": "",
"门票": "",
"游玩时间": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"餐馆": {
"名称": "",
"推荐菜": "",
"人均消费": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"酒店": {
"名称": "",
"酒店类型": "",
"酒店设施": "",
"价格": "",
"评分": "",
"周边景点": "",
"周边餐馆": "",
"周边酒店": "",
},
"地铁": {
"出发地": "",
"目的地": "",
},
"出租": {
"出发地": "",
"目的地": "",
}
},
"dialogue_acts": {
"categorical": {},
"non-categorical": {},
"binary": {}
}
}
cnt_domain_slot = Counter()
def convert_da(da_list, utt):
'''
convert dialogue acts to required format
:param da_dict: list of (intent, domain, slot, value)
:param utt: user or system utt
'''
global ontology, cnt_domain_slot
converted_da = {
'categorical': [],
'non-categorical': [],
'binary': []
}
for intent, domain, slot, value in da_list:
# if intent in ['Inform', 'Recommend']:
if intent == 'NoOffer':
assert slot == 'none' and value == 'none'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': ''
})
elif intent == 'General':
# intent=General, domain=thank/bye/greet/welcome
assert slot == 'none' and value == 'none'
converted_da['binary'].append({
'intent': domain,
'domain': intent,
'slot': ''
})
elif intent == 'Request':
assert value == '' and slot != 'none'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': slot
})
elif '酒店设施' in slot:
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': f"{slot}-{value}"
})
elif intent == 'Select':
assert slot == '源领域'
converted_da['binary'].append({
'intent': intent,
'domain': domain,
'slot': f"{slot}-{value}"
})
elif slot in ['酒店类型', '车型', '车牌']:
assert intent in ['Inform', 'Recommend']
assert slot != 'none' and value != 'none'
converted_da['categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value
})
else:
assert intent in ['Inform', 'Recommend']
assert slot != 'none' and value != 'none'
matches = utt.count(value)
if matches == 1:
start = utt.index(value)
end = start + len(value)
converted_da['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value,
'start': start,
'end': end
})
cnt_domain_slot['have span'] += 1
else:
# can not find span
converted_da['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': value
})
cnt_domain_slot['no span'] += 1
# cnt_domain_slot.setdefault(f'{domain}-{slot}', set())
# cnt_domain_slot[f'{domain}-{slot}'].add(value)
return converted_da
def transform_user_state(user_state):
goal = []
for subgoal in user_state:
gid, domain, slot, value, mentioned = subgoal
if len(value) != 0:
t = 'inform'
else:
t = 'request'
if len(goal) < gid:
goal.append({domain: {'inform': {}, 'request': {}}})
goal[gid-1][domain][t][slot] = [value, 'mentioned' if mentioned else 'not mentioned']
return goal
def preprocess():
original_data_dir = '../../crosswoz'
new_data_dir = 'data'
os.makedirs(new_data_dir, exist_ok=True)
for filename in os.listdir(os.path.join(original_data_dir,'database')):
copy2(f'{original_data_dir}/database/{filename}', new_data_dir)
global ontology
dataset = 'crosswoz'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split: [] for split in splits}
for split in ['train', 'val', 'test']:
data = json.load(ZipFile(os.path.join(original_data_dir, f'{split}.json.zip'), 'r').open(f'{split}.json'))
if split == 'val':
split = 'validation'
for ori_dialog_id, ori_dialog in data.items():
dialogue_id = f'{dataset}-{split}-{len(dialogues_by_split[split])}'
# get user goal and involved domains
goal = {'inform': {}, 'request': {}}
goal["description"] = '\n'.join(ori_dialog["task description"])
cur_domains = [x[1] for i, x in enumerate(ori_dialog['goal']) if i == 0 or ori_dialog['goal'][i-1][1] != x[1]]
dialogue = {
'dataset': dataset,
'data_split': split,
'dialogue_id': dialogue_id,
'original_id': ori_dialog_id,
'domains': cur_domains,
'goal': goal,
'user_state_init': transform_user_state(ori_dialog['goal']),
'type': ori_dialog['type'],
'turns': [],
'user_state_final': transform_user_state(ori_dialog['final_goal'])
}
for turn_id, turn in enumerate(ori_dialog['messages']):
# skip error turns
if ori_dialog_id == '2660' and turn_id in [8,9]:
continue
elif ori_dialog_id == '7467' and turn_id in [14,15]:
continue
elif ori_dialog_id == '11726' and turn_id in [4,5]:
continue
elif ori_dialog_id == '10550' and turn_id == 6:
dialogue['user_state_final'] = dialogue['turns'][-2]['user_state']
break
elif ori_dialog_id == '11724' and turn_id == 8:
dialogue['user_state_final'] = dialogue['turns'][-2]['user_state']
break
speaker = 'user' if turn['role'] == 'usr' else 'system'
utt = turn['content']
das = turn['dialog_act']
dialogue_acts = convert_da(das, utt)
dialogue['turns'].append({
'speaker': speaker,
'utterance': utt,
'utt_idx': len(dialogue['turns']),
'dialogue_acts': dialogue_acts,
})
# add to dialogue_acts dictionary in the ontology
for da_type in dialogue_acts:
das = dialogue_acts[da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
if speaker == 'user':
dialogue['turns'][-1]['user_state'] = transform_user_state(turn['user_state'])
else:
# add state to last user turn
belief_state = turn['sys_state_init']
for domain in belief_state:
belief_state[domain].pop('selectedResults')
dialogue['turns'][-2]['state'] = belief_state
db_query = turn['sys_state']
db_results = {}
for domain in list(db_query.keys()):
db_res = db_query[domain].pop('selectedResults')
if len(db_res) > 0:
db_results[domain] = [{'名称': x} for x in db_res]
else:
db_query.pop(domain)
dialogue['turns'][-1]['db_query'] = db_query
dialogue['turns'][-1]['db_results'] = db_results
dialogues_by_split[split].append(dialogue)
pprint(cnt_domain_slot.most_common())
dialogues = []
for split in splits:
dialogues += dialogues_by_split[split]
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str(
{'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent': da[0],
'domain': da[1], 'slot': da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(new_data_dir)
return dialogues, ontology
def fix_entity_booked_info(entity_booked_dict, booked):
for domain in entity_booked_dict:
if not entity_booked_dict[domain] and booked[domain]:
entity_booked_dict[domain] = True
booked[domain] = []
return entity_booked_dict, booked
if __name__ == '__main__':
preprocess()