Datasets:

Languages:
English
ArXiv:
License:
File size: 14,328 Bytes
2754782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from zipfile import ZipFile, ZIP_DEFLATED
import json
import os
import copy
import zipfile
from tqdm import tqdm
import re
from collections import Counter
from shutil import rmtree
from convlab.util.file_util import read_zipped_json, write_zipped_json
from pprint import pprint
import random


descriptions = {
    "uber_lyft": {
        "uber_lyft": "order a car for a ride inside a city",
        "location.from": "pickup location",
        "location.to": "destination of the ride",
        "type.ride": "type of ride",
        "num.people": "number of people",
        "price.estimate": "estimated cost of the ride",
        "duration.estimate": "estimated duration of the ride",
        "time.pickup": "time of pickup",
        "time.dropoff": "time of dropoff",
    },
    "movie_ticket": {
        "movie_ticket": "book movie tickets for a film",
        "name.movie": "name of the movie",
        "name.theater": "name of the theater",
        "num.tickets": "number of tickets",
        "time.start": "start time of the movie",
        "location.theater": "location of the theater",
        "price.ticket": "price of the ticket",
        "type.screening": "type of the screening",
        "time.end": "end time of the movie",
        "time.duration": "duration of the movie",
    },
    "restaurant_reservation": {
        "restaurant_reservation": "searching for a restaurant and make reservation",
        "name.restaurant": "name of the restaurant",
        "name.reservation": "name of the person who make the reservation",
        "num.guests": "number of guests",
        "time.reservation": "time of the reservation",
        "type.seating": "type of the seating",
        "location.restaurant": "location of the restaurant",
    },
    "coffee_ordering": {
        "coffee_ordering": "order a coffee drink from either Starbucks or Peets for pick up",
        "location.store": "location of the coffee store",
        "name.drink": "name of the drink",
        "size.drink": "size of the drink",
        "num.drink": "number of drinks",
        "type.milk": "type of the milk",
        "preference": "user preference of the drink",
    },
    "pizza_ordering": {
        "pizza_ordering": "order a pizza",
        "name.store": "name of the pizza store",
        "name.pizza": "name of the pizza",
        "size.pizza": "size of the pizza",
        "type.topping": "type of the topping",
        "type.crust": "type of the crust",
        "preference": "user preference of the pizza",
        "location.store": "location of the pizza store",
    },
    "auto_repair": {
        "auto_repair": "set up an auto repair appointment with a repair shop",
        "name.store": "name of the repair store",
        "name.customer": "name of the customer",
        "date.appt": "date of the appointment",
        "time.appt": "time of the appointment",
        "reason.appt": "reason of the appointment",
        "name.vehicle": "name of the vehicle",
        "year.vehicle": "year of the vehicle",
        "location.store": "location of the repair store",
    }
}

def normalize_domain_name(domain):
    if domain == 'auto':
        return 'auto_repair'
    elif domain == 'pizza':
        return 'pizza_ordering'
    elif domain == 'coffee':
        return 'coffee_ordering'
    elif domain == 'uber':
        return 'uber_lyft'
    elif domain == 'restaurant':
        return 'restaurant_reservation'
    elif domain == 'movie':
        return 'movie_ticket'
    assert 0


def format_turns(ori_turns):
    # delete invalid turns and merge continuous turns
    new_turns = []
    previous_speaker = None
    utt_idx = 0
    for i, turn in enumerate(ori_turns):
        speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user'
        turn['speaker'] = speaker
        if turn['text'] == '(deleted)':
            continue
        if not previous_speaker:
            # first turn
            assert speaker != previous_speaker
        if speaker != previous_speaker:
            # switch speaker
            previous_speaker = speaker
            new_turns.append(copy.deepcopy(turn))
            utt_idx += 1
        else:
            # continuous speaking of the same speaker
            last_turn = new_turns[-1]
            # skip repeated turn
            if turn['text'] in ori_turns[i-1]['text']:
                continue
            # merge continuous turns
            index_shift = len(last_turn['text']) + 1
            last_turn['text'] += ' '+turn['text']
            if 'segments' in turn:
                last_turn.setdefault('segments', [])
                for segment in turn['segments']:
                    segment['start_index'] += index_shift
                    segment['end_index'] += index_shift
                last_turn['segments'] += turn['segments']
    return new_turns


def preprocess():
    original_data_dir = 'Taskmaster-master'
    new_data_dir = 'data'

    if not os.path.exists(original_data_dir):
        original_data_zip = 'master.zip'
        if not os.path.exists(original_data_zip):
            raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm1/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
        else:
            archive = ZipFile(original_data_zip)
            archive.extractall()

    os.makedirs(new_data_dir, exist_ok=True)

    ontology = {'domains': {},
                'intents': {
                    'inform': {'description': 'inform the value of a slot or general information.'},
                    'accept': {'description': 'accept the value of a slot or a transaction'},
                    'reject': {'description': 'reject the value of a slot or a transaction'}
                },
                'state': {},
                'dialogue_acts': {
                    "categorical": {},
                    "non-categorical": {},
                    "binary": {}
                }}
    global descriptions
    ori_ontology = {}
    for _, item in json.load(open(os.path.join(original_data_dir, "TM-1-2019/ontology.json"))).items():
        ori_ontology[item["id"]] = item
    
    for domain, item in ori_ontology.items():
        ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}}
        ontology['state'][domain] = {}
        for slot in item['required']+item['optional']:
            ontology['domains'][domain]['slots'][slot] = {
                'description': descriptions[domain][slot],
                'is_categorical': False,
                'possible_values': [],
            }
            ontology['state'][domain][slot] = ''

    dataset = 'tm1'
    splits = ['train', 'validation', 'test']
    dialogues_by_split = {split:[] for split in splits}
    dialog_files = ["TM-1-2019/self-dialogs.json", "TM-1-2019/woz-dialogs.json"]
    for file_idx, filename in enumerate(dialog_files):
        data = json.load(open(os.path.join(original_data_dir, filename)))
        if file_idx == 0:
            # original split for self dialogs
            dial_id2split = {}
            for data_split in ['train', 'dev', 'test']:
                with open(os.path.join(original_data_dir, f"TM-1-2019/train-dev-test/{data_split}.csv")) as f:
                    for line in f:
                        dial_id = line.split(',')[0]
                        dial_id2split[dial_id] = data_split if data_split != 'dev' else 'validation'
        else:
            # random split for woz dialogs 8:1:1
            random.seed(42)
            dial_ids = [d['conversation_id'] for d in data]
            random.shuffle(dial_ids)
            dial_id2split = {}
            for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
                dial_id2split[dial_id] = 'train'
            for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
                dial_id2split[dial_id] = 'validation'
            for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
                dial_id2split[dial_id] = 'test'

        for d in tqdm(data, desc='processing taskmaster-{}'.format(filename)):
            # delete empty dialogs and invalid dialogs
            if len(d['utterances']) == 0:
                continue
            if len(set([t['speaker'] for t in d['utterances']])) == 1:
                continue
            data_split = dial_id2split[d["conversation_id"]]
            dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
            cur_domains = [normalize_domain_name(d["instruction_id"].split('-', 1)[0])]
            assert len(cur_domains) == 1 and cur_domains[0] in ontology['domains']
            domain = cur_domains[0]
            dialogue = {
                'dataset': dataset,
                'data_split': data_split,
                'dialogue_id': dialogue_id,
                'original_id': d["conversation_id"],
                'domains': cur_domains,
                'turns': []
            }
            turns = format_turns(d['utterances'])
            prev_state = {}
            prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
            
            for utt_idx, uttr in enumerate(turns):
                speaker = uttr['speaker']
                turn = {
                    'speaker': speaker,
                    'utterance': uttr['text'],
                    'utt_idx': utt_idx,
                    'dialogue_acts': {
                        'binary': [],
                        'categorical': [],
                        'non-categorical': [],
                    },
                }
                in_span = [0] * len(turn['utterance'])

                if 'segments' in uttr:
                    # sort the span according to the length
                    segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
                    for segment in segments:
                        # Each conversation was annotated by two workers.
                        # only keep the first annotation for the span
                        item = segment['annotations'][0]
                        intent = 'inform'  # default intent
                        slot = item['name'].split('.', 1)[-1]
                        if slot.endswith('.accept') or slot.endswith('.reject'):
                            # intent=accept/reject
                            intent = slot[-6:]
                            slot = slot[:-7]
                        if slot not in ontology['domains'][domain]['slots']:
                            # no slot, only general reference to a transaction, binary dialog act
                            turn['dialogue_acts']['binary'].append({
                                'intent': intent,
                                'domain': domain,
                                'slot': '',
                            })
                        else:
                            assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
                            # skip overlapped spans, keep the shortest one
                            if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
                                continue
                            else:
                                in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
                            turn['dialogue_acts']['non-categorical'].append({
                                'intent': intent,
                                'domain': domain,
                                'slot': slot,
                                'value': segment['text'],
                                'start': segment['start_index'],
                                'end': segment['end_index']
                            })

                turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])

                bdas = set()
                for da in turn['dialogue_acts']['binary']:
                    da_tuple = (da['intent'], da['domain'], da['slot'],)
                    bdas.add(da_tuple)
                turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
                # add to dialogue_acts dictionary in the ontology
                for da_type in turn['dialogue_acts']:
                    das = turn['dialogue_acts'][da_type]
                    for da in das:
                        ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
                        ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True

                for da in turn['dialogue_acts']['non-categorical']:
                    slot, value = da['slot'], da['value']
                    assert slot in prev_state[domain]
                    # not add reject slot-value into state
                    if da['intent'] != 'reject':
                        prev_state[domain][slot] = value
                
                if speaker == 'user':
                    turn['state'] = copy.deepcopy(prev_state)

                dialogue['turns'].append(turn)
            dialogues_by_split[data_split].append(dialogue)
    
    for da_type in ontology['dialogue_acts']:
        ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
    dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
    json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
    json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
    json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
    with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
        for filename in os.listdir(new_data_dir):
            zf.write(f'{new_data_dir}/{filename}')
    rmtree(original_data_dir)
    rmtree(new_data_dir)
    return dialogues, ontology

if __name__ == '__main__':
    preprocess()