File size: 14,328 Bytes
2754782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
from zipfile import ZipFile, ZIP_DEFLATED
import json
import os
import copy
import zipfile
from tqdm import tqdm
import re
from collections import Counter
from shutil import rmtree
from convlab.util.file_util import read_zipped_json, write_zipped_json
from pprint import pprint
import random
descriptions = {
"uber_lyft": {
"uber_lyft": "order a car for a ride inside a city",
"location.from": "pickup location",
"location.to": "destination of the ride",
"type.ride": "type of ride",
"num.people": "number of people",
"price.estimate": "estimated cost of the ride",
"duration.estimate": "estimated duration of the ride",
"time.pickup": "time of pickup",
"time.dropoff": "time of dropoff",
},
"movie_ticket": {
"movie_ticket": "book movie tickets for a film",
"name.movie": "name of the movie",
"name.theater": "name of the theater",
"num.tickets": "number of tickets",
"time.start": "start time of the movie",
"location.theater": "location of the theater",
"price.ticket": "price of the ticket",
"type.screening": "type of the screening",
"time.end": "end time of the movie",
"time.duration": "duration of the movie",
},
"restaurant_reservation": {
"restaurant_reservation": "searching for a restaurant and make reservation",
"name.restaurant": "name of the restaurant",
"name.reservation": "name of the person who make the reservation",
"num.guests": "number of guests",
"time.reservation": "time of the reservation",
"type.seating": "type of the seating",
"location.restaurant": "location of the restaurant",
},
"coffee_ordering": {
"coffee_ordering": "order a coffee drink from either Starbucks or Peets for pick up",
"location.store": "location of the coffee store",
"name.drink": "name of the drink",
"size.drink": "size of the drink",
"num.drink": "number of drinks",
"type.milk": "type of the milk",
"preference": "user preference of the drink",
},
"pizza_ordering": {
"pizza_ordering": "order a pizza",
"name.store": "name of the pizza store",
"name.pizza": "name of the pizza",
"size.pizza": "size of the pizza",
"type.topping": "type of the topping",
"type.crust": "type of the crust",
"preference": "user preference of the pizza",
"location.store": "location of the pizza store",
},
"auto_repair": {
"auto_repair": "set up an auto repair appointment with a repair shop",
"name.store": "name of the repair store",
"name.customer": "name of the customer",
"date.appt": "date of the appointment",
"time.appt": "time of the appointment",
"reason.appt": "reason of the appointment",
"name.vehicle": "name of the vehicle",
"year.vehicle": "year of the vehicle",
"location.store": "location of the repair store",
}
}
def normalize_domain_name(domain):
if domain == 'auto':
return 'auto_repair'
elif domain == 'pizza':
return 'pizza_ordering'
elif domain == 'coffee':
return 'coffee_ordering'
elif domain == 'uber':
return 'uber_lyft'
elif domain == 'restaurant':
return 'restaurant_reservation'
elif domain == 'movie':
return 'movie_ticket'
assert 0
def format_turns(ori_turns):
# delete invalid turns and merge continuous turns
new_turns = []
previous_speaker = None
utt_idx = 0
for i, turn in enumerate(ori_turns):
speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user'
turn['speaker'] = speaker
if turn['text'] == '(deleted)':
continue
if not previous_speaker:
# first turn
assert speaker != previous_speaker
if speaker != previous_speaker:
# switch speaker
previous_speaker = speaker
new_turns.append(copy.deepcopy(turn))
utt_idx += 1
else:
# continuous speaking of the same speaker
last_turn = new_turns[-1]
# skip repeated turn
if turn['text'] in ori_turns[i-1]['text']:
continue
# merge continuous turns
index_shift = len(last_turn['text']) + 1
last_turn['text'] += ' '+turn['text']
if 'segments' in turn:
last_turn.setdefault('segments', [])
for segment in turn['segments']:
segment['start_index'] += index_shift
segment['end_index'] += index_shift
last_turn['segments'] += turn['segments']
return new_turns
def preprocess():
original_data_dir = 'Taskmaster-master'
new_data_dir = 'data'
if not os.path.exists(original_data_dir):
original_data_zip = 'master.zip'
if not os.path.exists(original_data_zip):
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm1/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
else:
archive = ZipFile(original_data_zip)
archive.extractall()
os.makedirs(new_data_dir, exist_ok=True)
ontology = {'domains': {},
'intents': {
'inform': {'description': 'inform the value of a slot or general information.'},
'accept': {'description': 'accept the value of a slot or a transaction'},
'reject': {'description': 'reject the value of a slot or a transaction'}
},
'state': {},
'dialogue_acts': {
"categorical": {},
"non-categorical": {},
"binary": {}
}}
global descriptions
ori_ontology = {}
for _, item in json.load(open(os.path.join(original_data_dir, "TM-1-2019/ontology.json"))).items():
ori_ontology[item["id"]] = item
for domain, item in ori_ontology.items():
ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}}
ontology['state'][domain] = {}
for slot in item['required']+item['optional']:
ontology['domains'][domain]['slots'][slot] = {
'description': descriptions[domain][slot],
'is_categorical': False,
'possible_values': [],
}
ontology['state'][domain][slot] = ''
dataset = 'tm1'
splits = ['train', 'validation', 'test']
dialogues_by_split = {split:[] for split in splits}
dialog_files = ["TM-1-2019/self-dialogs.json", "TM-1-2019/woz-dialogs.json"]
for file_idx, filename in enumerate(dialog_files):
data = json.load(open(os.path.join(original_data_dir, filename)))
if file_idx == 0:
# original split for self dialogs
dial_id2split = {}
for data_split in ['train', 'dev', 'test']:
with open(os.path.join(original_data_dir, f"TM-1-2019/train-dev-test/{data_split}.csv")) as f:
for line in f:
dial_id = line.split(',')[0]
dial_id2split[dial_id] = data_split if data_split != 'dev' else 'validation'
else:
# random split for woz dialogs 8:1:1
random.seed(42)
dial_ids = [d['conversation_id'] for d in data]
random.shuffle(dial_ids)
dial_id2split = {}
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
dial_id2split[dial_id] = 'train'
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
dial_id2split[dial_id] = 'validation'
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
dial_id2split[dial_id] = 'test'
for d in tqdm(data, desc='processing taskmaster-{}'.format(filename)):
# delete empty dialogs and invalid dialogs
if len(d['utterances']) == 0:
continue
if len(set([t['speaker'] for t in d['utterances']])) == 1:
continue
data_split = dial_id2split[d["conversation_id"]]
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
cur_domains = [normalize_domain_name(d["instruction_id"].split('-', 1)[0])]
assert len(cur_domains) == 1 and cur_domains[0] in ontology['domains']
domain = cur_domains[0]
dialogue = {
'dataset': dataset,
'data_split': data_split,
'dialogue_id': dialogue_id,
'original_id': d["conversation_id"],
'domains': cur_domains,
'turns': []
}
turns = format_turns(d['utterances'])
prev_state = {}
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
for utt_idx, uttr in enumerate(turns):
speaker = uttr['speaker']
turn = {
'speaker': speaker,
'utterance': uttr['text'],
'utt_idx': utt_idx,
'dialogue_acts': {
'binary': [],
'categorical': [],
'non-categorical': [],
},
}
in_span = [0] * len(turn['utterance'])
if 'segments' in uttr:
# sort the span according to the length
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
for segment in segments:
# Each conversation was annotated by two workers.
# only keep the first annotation for the span
item = segment['annotations'][0]
intent = 'inform' # default intent
slot = item['name'].split('.', 1)[-1]
if slot.endswith('.accept') or slot.endswith('.reject'):
# intent=accept/reject
intent = slot[-6:]
slot = slot[:-7]
if slot not in ontology['domains'][domain]['slots']:
# no slot, only general reference to a transaction, binary dialog act
turn['dialogue_acts']['binary'].append({
'intent': intent,
'domain': domain,
'slot': '',
})
else:
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
# skip overlapped spans, keep the shortest one
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
continue
else:
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
turn['dialogue_acts']['non-categorical'].append({
'intent': intent,
'domain': domain,
'slot': slot,
'value': segment['text'],
'start': segment['start_index'],
'end': segment['end_index']
})
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
bdas = set()
for da in turn['dialogue_acts']['binary']:
da_tuple = (da['intent'], da['domain'], da['slot'],)
bdas.add(da_tuple)
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
# add to dialogue_acts dictionary in the ontology
for da_type in turn['dialogue_acts']:
das = turn['dialogue_acts'][da_type]
for da in das:
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
for da in turn['dialogue_acts']['non-categorical']:
slot, value = da['slot'], da['value']
assert slot in prev_state[domain]
# not add reject slot-value into state
if da['intent'] != 'reject':
prev_state[domain][slot] = value
if speaker == 'user':
turn['state'] = copy.deepcopy(prev_state)
dialogue['turns'].append(turn)
dialogues_by_split[data_split].append(dialogue)
for da_type in ontology['dialogue_acts']:
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
for filename in os.listdir(new_data_dir):
zf.write(f'{new_data_dir}/{filename}')
rmtree(original_data_dir)
rmtree(new_data_dir)
return dialogues, ontology
if __name__ == '__main__':
preprocess()
|