|
from zipfile import ZipFile, ZIP_DEFLATED |
|
import json |
|
import os |
|
import copy |
|
import zipfile |
|
from tqdm import tqdm |
|
import re |
|
from collections import Counter |
|
from shutil import rmtree |
|
from convlab.util.file_util import read_zipped_json, write_zipped_json |
|
from pprint import pprint |
|
import random |
|
|
|
|
|
descriptions = { |
|
"uber_lyft": { |
|
"uber_lyft": "order a car for a ride inside a city", |
|
"location.from": "pickup location", |
|
"location.to": "destination of the ride", |
|
"type.ride": "type of ride", |
|
"num.people": "number of people", |
|
"price.estimate": "estimated cost of the ride", |
|
"duration.estimate": "estimated duration of the ride", |
|
"time.pickup": "time of pickup", |
|
"time.dropoff": "time of dropoff", |
|
}, |
|
"movie_ticket": { |
|
"movie_ticket": "book movie tickets for a film", |
|
"name.movie": "name of the movie", |
|
"name.theater": "name of the theater", |
|
"num.tickets": "number of tickets", |
|
"time.start": "start time of the movie", |
|
"location.theater": "location of the theater", |
|
"price.ticket": "price of the ticket", |
|
"type.screening": "type of the screening", |
|
"time.end": "end time of the movie", |
|
"time.duration": "duration of the movie", |
|
}, |
|
"restaurant_reservation": { |
|
"restaurant_reservation": "searching for a restaurant and make reservation", |
|
"name.restaurant": "name of the restaurant", |
|
"name.reservation": "name of the person who make the reservation", |
|
"num.guests": "number of guests", |
|
"time.reservation": "time of the reservation", |
|
"type.seating": "type of the seating", |
|
"location.restaurant": "location of the restaurant", |
|
}, |
|
"coffee_ordering": { |
|
"coffee_ordering": "order a coffee drink from either Starbucks or Peets for pick up", |
|
"location.store": "location of the coffee store", |
|
"name.drink": "name of the drink", |
|
"size.drink": "size of the drink", |
|
"num.drink": "number of drinks", |
|
"type.milk": "type of the milk", |
|
"preference": "user preference of the drink", |
|
}, |
|
"pizza_ordering": { |
|
"pizza_ordering": "order a pizza", |
|
"name.store": "name of the pizza store", |
|
"name.pizza": "name of the pizza", |
|
"size.pizza": "size of the pizza", |
|
"type.topping": "type of the topping", |
|
"type.crust": "type of the crust", |
|
"preference": "user preference of the pizza", |
|
"location.store": "location of the pizza store", |
|
}, |
|
"auto_repair": { |
|
"auto_repair": "set up an auto repair appointment with a repair shop", |
|
"name.store": "name of the repair store", |
|
"name.customer": "name of the customer", |
|
"date.appt": "date of the appointment", |
|
"time.appt": "time of the appointment", |
|
"reason.appt": "reason of the appointment", |
|
"name.vehicle": "name of the vehicle", |
|
"year.vehicle": "year of the vehicle", |
|
"location.store": "location of the repair store", |
|
} |
|
} |
|
|
|
def normalize_domain_name(domain): |
|
if domain == 'auto': |
|
return 'auto_repair' |
|
elif domain == 'pizza': |
|
return 'pizza_ordering' |
|
elif domain == 'coffee': |
|
return 'coffee_ordering' |
|
elif domain == 'uber': |
|
return 'uber_lyft' |
|
elif domain == 'restaurant': |
|
return 'restaurant_reservation' |
|
elif domain == 'movie': |
|
return 'movie_ticket' |
|
assert 0 |
|
|
|
|
|
def format_turns(ori_turns): |
|
|
|
new_turns = [] |
|
previous_speaker = None |
|
utt_idx = 0 |
|
for i, turn in enumerate(ori_turns): |
|
speaker = 'system' if turn['speaker'] == 'ASSISTANT' else 'user' |
|
turn['speaker'] = speaker |
|
if turn['text'] == '(deleted)': |
|
continue |
|
if not previous_speaker: |
|
|
|
assert speaker != previous_speaker |
|
if speaker != previous_speaker: |
|
|
|
previous_speaker = speaker |
|
new_turns.append(copy.deepcopy(turn)) |
|
utt_idx += 1 |
|
else: |
|
|
|
last_turn = new_turns[-1] |
|
|
|
if turn['text'] in ori_turns[i-1]['text']: |
|
continue |
|
|
|
index_shift = len(last_turn['text']) + 1 |
|
last_turn['text'] += ' '+turn['text'] |
|
if 'segments' in turn: |
|
last_turn.setdefault('segments', []) |
|
for segment in turn['segments']: |
|
segment['start_index'] += index_shift |
|
segment['end_index'] += index_shift |
|
last_turn['segments'] += turn['segments'] |
|
return new_turns |
|
|
|
|
|
def preprocess(): |
|
original_data_dir = 'Taskmaster-master' |
|
new_data_dir = 'data' |
|
|
|
if not os.path.exists(original_data_dir): |
|
original_data_zip = 'master.zip' |
|
if not os.path.exists(original_data_zip): |
|
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm1/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip') |
|
else: |
|
archive = ZipFile(original_data_zip) |
|
archive.extractall() |
|
|
|
os.makedirs(new_data_dir, exist_ok=True) |
|
|
|
ontology = {'domains': {}, |
|
'intents': { |
|
'inform': {'description': 'inform the value of a slot or general information.'}, |
|
'accept': {'description': 'accept the value of a slot or a transaction'}, |
|
'reject': {'description': 'reject the value of a slot or a transaction'} |
|
}, |
|
'state': {}, |
|
'dialogue_acts': { |
|
"categorical": {}, |
|
"non-categorical": {}, |
|
"binary": {} |
|
}} |
|
global descriptions |
|
ori_ontology = {} |
|
for _, item in json.load(open(os.path.join(original_data_dir, "TM-1-2019/ontology.json"))).items(): |
|
ori_ontology[item["id"]] = item |
|
|
|
for domain, item in ori_ontology.items(): |
|
ontology['domains'][domain] = {'description': descriptions[domain][domain], 'slots': {}} |
|
ontology['state'][domain] = {} |
|
for slot in item['required']+item['optional']: |
|
ontology['domains'][domain]['slots'][slot] = { |
|
'description': descriptions[domain][slot], |
|
'is_categorical': False, |
|
'possible_values': [], |
|
} |
|
ontology['state'][domain][slot] = '' |
|
|
|
dataset = 'tm1' |
|
splits = ['train', 'validation', 'test'] |
|
dialogues_by_split = {split:[] for split in splits} |
|
dialog_files = ["TM-1-2019/self-dialogs.json", "TM-1-2019/woz-dialogs.json"] |
|
for file_idx, filename in enumerate(dialog_files): |
|
data = json.load(open(os.path.join(original_data_dir, filename))) |
|
if file_idx == 0: |
|
|
|
dial_id2split = {} |
|
for data_split in ['train', 'dev', 'test']: |
|
with open(os.path.join(original_data_dir, f"TM-1-2019/train-dev-test/{data_split}.csv")) as f: |
|
for line in f: |
|
dial_id = line.split(',')[0] |
|
dial_id2split[dial_id] = data_split if data_split != 'dev' else 'validation' |
|
else: |
|
|
|
random.seed(42) |
|
dial_ids = [d['conversation_id'] for d in data] |
|
random.shuffle(dial_ids) |
|
dial_id2split = {} |
|
for dial_id in dial_ids[:int(0.8*len(dial_ids))]: |
|
dial_id2split[dial_id] = 'train' |
|
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]: |
|
dial_id2split[dial_id] = 'validation' |
|
for dial_id in dial_ids[int(0.9*len(dial_ids)):]: |
|
dial_id2split[dial_id] = 'test' |
|
|
|
for d in tqdm(data, desc='processing taskmaster-{}'.format(filename)): |
|
|
|
if len(d['utterances']) == 0: |
|
continue |
|
if len(set([t['speaker'] for t in d['utterances']])) == 1: |
|
continue |
|
data_split = dial_id2split[d["conversation_id"]] |
|
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}' |
|
cur_domains = [normalize_domain_name(d["instruction_id"].split('-', 1)[0])] |
|
assert len(cur_domains) == 1 and cur_domains[0] in ontology['domains'] |
|
domain = cur_domains[0] |
|
dialogue = { |
|
'dataset': dataset, |
|
'data_split': data_split, |
|
'dialogue_id': dialogue_id, |
|
'original_id': d["conversation_id"], |
|
'domains': cur_domains, |
|
'turns': [] |
|
} |
|
turns = format_turns(d['utterances']) |
|
prev_state = {} |
|
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain])) |
|
|
|
for utt_idx, uttr in enumerate(turns): |
|
speaker = uttr['speaker'] |
|
turn = { |
|
'speaker': speaker, |
|
'utterance': uttr['text'], |
|
'utt_idx': utt_idx, |
|
'dialogue_acts': { |
|
'binary': [], |
|
'categorical': [], |
|
'non-categorical': [], |
|
}, |
|
} |
|
in_span = [0] * len(turn['utterance']) |
|
|
|
if 'segments' in uttr: |
|
|
|
segments = sorted(uttr['segments'], key=lambda x: len(x['text'])) |
|
for segment in segments: |
|
|
|
|
|
item = segment['annotations'][0] |
|
intent = 'inform' |
|
slot = item['name'].split('.', 1)[-1] |
|
if slot.endswith('.accept') or slot.endswith('.reject'): |
|
|
|
intent = slot[-6:] |
|
slot = slot[:-7] |
|
if slot not in ontology['domains'][domain]['slots']: |
|
|
|
turn['dialogue_acts']['binary'].append({ |
|
'intent': intent, |
|
'domain': domain, |
|
'slot': '', |
|
}) |
|
else: |
|
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text'] |
|
|
|
if sum(in_span[segment['start_index']: segment['end_index']]) > 0: |
|
continue |
|
else: |
|
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index']) |
|
turn['dialogue_acts']['non-categorical'].append({ |
|
'intent': intent, |
|
'domain': domain, |
|
'slot': slot, |
|
'value': segment['text'], |
|
'start': segment['start_index'], |
|
'end': segment['end_index'] |
|
}) |
|
|
|
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start']) |
|
|
|
bdas = set() |
|
for da in turn['dialogue_acts']['binary']: |
|
da_tuple = (da['intent'], da['domain'], da['slot'],) |
|
bdas.add(da_tuple) |
|
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)] |
|
|
|
for da_type in turn['dialogue_acts']: |
|
das = turn['dialogue_acts'][da_type] |
|
for da in das: |
|
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {}) |
|
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True |
|
|
|
for da in turn['dialogue_acts']['non-categorical']: |
|
slot, value = da['slot'], da['value'] |
|
assert slot in prev_state[domain] |
|
|
|
if da['intent'] != 'reject': |
|
prev_state[domain][slot] = value |
|
|
|
if speaker == 'user': |
|
turn['state'] = copy.deepcopy(prev_state) |
|
|
|
dialogue['turns'].append(turn) |
|
dialogues_by_split[data_split].append(dialogue) |
|
|
|
for da_type in ontology['dialogue_acts']: |
|
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()]) |
|
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test'] |
|
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf: |
|
for filename in os.listdir(new_data_dir): |
|
zf.write(f'{new_data_dir}/{filename}') |
|
rmtree(original_data_dir) |
|
rmtree(new_data_dir) |
|
return dialogues, ontology |
|
|
|
if __name__ == '__main__': |
|
preprocess() |
|
|