Upload preprocess.py
Browse files- preprocess.py +262 -0
preprocess.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from zipfile import ZipFile, ZIP_DEFLATED
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import copy
|
5 |
+
import zipfile
|
6 |
+
from tqdm import tqdm
|
7 |
+
import re
|
8 |
+
from collections import Counter
|
9 |
+
from shutil import rmtree
|
10 |
+
from convlab.util.file_util import read_zipped_json, write_zipped_json
|
11 |
+
from pprint import pprint
|
12 |
+
import random
|
13 |
+
import glob
|
14 |
+
|
15 |
+
|
16 |
+
descriptions = {
|
17 |
+
'movie': 'Book movie tickets for the user',
|
18 |
+
'name.movie': 'Name of the movie, e.g. Joker, Parasite, The Avengers',
|
19 |
+
'name.theater': 'Name of the theater, e.g. Century City, AMC Mercado 20',
|
20 |
+
'num.tickets': 'Number of tickets, e.g. two, me and my friend, John and I',
|
21 |
+
'time.preference': 'Preferred time or range, e.g. around 2pm, later in the evening, 4:30pm',
|
22 |
+
'time.showing': 'The showtimes published by the theater, e.g. 5:10pm, 8:30pm',
|
23 |
+
'date.showing': 'the date or day of the showing, e.g. today, tonight, tomrrow, April 12th.',
|
24 |
+
'location': 'The city, or city and state, zip code and sometimes more specific regions, e.g. downtown',
|
25 |
+
'type.screening': 'IMAX, Dolby, 3D, standard, or similar phrases for technology offerings',
|
26 |
+
'seating': 'Various phrases from specific "row 1" to "near the back", "on an aisle", etc.',
|
27 |
+
'date.release': 'Movie attribute published for the official movie release date.',
|
28 |
+
'price.ticket': 'Price per ticket',
|
29 |
+
'price.total': 'The total for the purchase of all tickets',
|
30 |
+
'name.genre': 'Includes a wide range from classic genres like action, drama, etc. to categories like "slasher" or series like Marvel or Harry Potter',
|
31 |
+
'description.plot': 'The movie synopsis or shorter description',
|
32 |
+
'description.other': 'Any other movie description that is not captured by genre, name, plot.',
|
33 |
+
'duration.movie': 'The movie runtime, e.g. 120 minutes',
|
34 |
+
'name.person': 'Names of actors, directors, producers but NOT movie characters',
|
35 |
+
'name.character': 'Character names like James Bond, Harry Potter, Wonder Woman',
|
36 |
+
'review.audience': 'The audience review',
|
37 |
+
'review.critic': 'Critic reviews like those from Rotten Tomatoes, IMDB, etc.',
|
38 |
+
'rating.movie': 'G, PG, PG-13, R, etc.',
|
39 |
+
}
|
40 |
+
|
41 |
+
anno2slot = {
|
42 |
+
"movie": {
|
43 |
+
"description.other": False, # transform to binary dialog act
|
44 |
+
"description.plot": False, # too long, 19 words in avg. transform to binary dialog act
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
def format_turns(ori_turns):
|
50 |
+
# delete invalid turns and merge continuous turns
|
51 |
+
new_turns = []
|
52 |
+
previous_speaker = None
|
53 |
+
utt_idx = 0
|
54 |
+
for i, turn in enumerate(ori_turns):
|
55 |
+
speaker = 'system' if turn['speaker'].upper() == 'ASSISTANT' else 'user'
|
56 |
+
turn['speaker'] = speaker
|
57 |
+
if turn['text'] == '(deleted)':
|
58 |
+
continue
|
59 |
+
if not previous_speaker:
|
60 |
+
# first turn
|
61 |
+
assert speaker != previous_speaker
|
62 |
+
if speaker != previous_speaker:
|
63 |
+
# switch speaker
|
64 |
+
previous_speaker = speaker
|
65 |
+
new_turns.append(copy.deepcopy(turn))
|
66 |
+
utt_idx += 1
|
67 |
+
else:
|
68 |
+
# continuous speaking of the same speaker
|
69 |
+
last_turn = new_turns[-1]
|
70 |
+
# skip repeated turn
|
71 |
+
if turn['text'] in ori_turns[i-1]['text']:
|
72 |
+
continue
|
73 |
+
# merge continuous turns
|
74 |
+
index_shift = len(last_turn['text']) + 1
|
75 |
+
last_turn['text'] += ' '+turn['text']
|
76 |
+
if 'segments' in turn:
|
77 |
+
last_turn.setdefault('segments', [])
|
78 |
+
for segment in turn['segments']:
|
79 |
+
segment['start_index'] += index_shift
|
80 |
+
segment['end_index'] += index_shift
|
81 |
+
last_turn['segments'] += turn['segments']
|
82 |
+
return new_turns
|
83 |
+
|
84 |
+
|
85 |
+
def preprocess():
|
86 |
+
original_data_dir = 'Taskmaster-master'
|
87 |
+
new_data_dir = 'data'
|
88 |
+
|
89 |
+
if not os.path.exists(original_data_dir):
|
90 |
+
original_data_zip = 'master.zip'
|
91 |
+
if not os.path.exists(original_data_zip):
|
92 |
+
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm3/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
|
93 |
+
else:
|
94 |
+
archive = ZipFile(original_data_zip)
|
95 |
+
archive.extractall()
|
96 |
+
|
97 |
+
os.makedirs(new_data_dir, exist_ok=True)
|
98 |
+
|
99 |
+
ontology = {'domains': {},
|
100 |
+
'intents': {
|
101 |
+
'inform': {'description': 'inform the value of a slot or general information.'}
|
102 |
+
},
|
103 |
+
'state': {},
|
104 |
+
'dialogue_acts': {
|
105 |
+
"categorical": {},
|
106 |
+
"non-categorical": {},
|
107 |
+
"binary": {}
|
108 |
+
}}
|
109 |
+
global descriptions
|
110 |
+
global anno2slot
|
111 |
+
ori_ontology = json.load(open(os.path.join(original_data_dir, "TM-3-2020/ontology/entities.json")))
|
112 |
+
assert len(ori_ontology) == 1
|
113 |
+
domain = list(ori_ontology.keys())[0]
|
114 |
+
domain_ontology = ori_ontology[domain]
|
115 |
+
ontology['domains'][domain] = {'description': descriptions[domain], 'slots': {}}
|
116 |
+
ontology['state'][domain] = {}
|
117 |
+
for slot in domain_ontology['required']+domain_ontology['optional']:
|
118 |
+
ontology['domains'][domain]['slots'][slot] = {
|
119 |
+
'description': descriptions[slot],
|
120 |
+
'is_categorical': False,
|
121 |
+
'possible_values': [],
|
122 |
+
}
|
123 |
+
if slot not in anno2slot[domain]:
|
124 |
+
ontology['state'][domain][slot] = ''
|
125 |
+
|
126 |
+
dataset = 'tm3'
|
127 |
+
splits = ['train', 'validation', 'test']
|
128 |
+
dialogues_by_split = {split:[] for split in splits}
|
129 |
+
data_files = sorted(glob.glob(os.path.join(original_data_dir, f"TM-3-2020/data/*.json")))
|
130 |
+
for data_file in tqdm(data_files, desc='processing taskmaster-{}'.format(domain)):
|
131 |
+
data = json.load(open(data_file))
|
132 |
+
# random split, train:validation:test = 8:1:1
|
133 |
+
random.seed(42)
|
134 |
+
dial_ids = list(range(len(data)))
|
135 |
+
random.shuffle(dial_ids)
|
136 |
+
dial_id2split = {}
|
137 |
+
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
|
138 |
+
dial_id2split[dial_id] = 'train'
|
139 |
+
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
|
140 |
+
dial_id2split[dial_id] = 'validation'
|
141 |
+
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
|
142 |
+
dial_id2split[dial_id] = 'test'
|
143 |
+
|
144 |
+
for dial_id, d in enumerate(data):
|
145 |
+
# delete empty dialogs and invalid dialogs
|
146 |
+
if len(d['utterances']) == 0:
|
147 |
+
continue
|
148 |
+
if len(set([t['speaker'] for t in d['utterances']])) == 1:
|
149 |
+
continue
|
150 |
+
data_split = dial_id2split[dial_id]
|
151 |
+
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
|
152 |
+
cur_domains = [domain]
|
153 |
+
goal = {
|
154 |
+
'description': d['instructions'],
|
155 |
+
'inform': {},
|
156 |
+
'request': {}
|
157 |
+
}
|
158 |
+
dialogue = {
|
159 |
+
'dataset': dataset,
|
160 |
+
'data_split': data_split,
|
161 |
+
'dialogue_id': dialogue_id,
|
162 |
+
'original_id': d["conversation_id"],
|
163 |
+
'domains': cur_domains,
|
164 |
+
'goal': goal,
|
165 |
+
'turns': []
|
166 |
+
}
|
167 |
+
turns = format_turns(d['utterances'])
|
168 |
+
prev_state = {}
|
169 |
+
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
|
170 |
+
|
171 |
+
for utt_idx, uttr in enumerate(turns):
|
172 |
+
speaker = uttr['speaker']
|
173 |
+
turn = {
|
174 |
+
'speaker': speaker,
|
175 |
+
'utterance': uttr['text'],
|
176 |
+
'utt_idx': utt_idx,
|
177 |
+
'dialogue_acts': {
|
178 |
+
'binary': [],
|
179 |
+
'categorical': [],
|
180 |
+
'non-categorical': [],
|
181 |
+
},
|
182 |
+
}
|
183 |
+
in_span = [0] * len(turn['utterance'])
|
184 |
+
|
185 |
+
if 'segments' in uttr:
|
186 |
+
# sort the span according to the length
|
187 |
+
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
|
188 |
+
for segment in segments:
|
189 |
+
assert len(['annotations']) == 1
|
190 |
+
item = segment['annotations'][0]
|
191 |
+
intent = 'inform' # default intent
|
192 |
+
slot = item['name'].strip()
|
193 |
+
assert slot in ontology['domains'][domain]['slots']
|
194 |
+
if slot in anno2slot[domain]:
|
195 |
+
# binary dialog act
|
196 |
+
turn['dialogue_acts']['binary'].append({
|
197 |
+
'intent': intent,
|
198 |
+
'domain': domain,
|
199 |
+
'slot': slot,
|
200 |
+
})
|
201 |
+
continue
|
202 |
+
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
|
203 |
+
# skip overlapped spans, keep the shortest one
|
204 |
+
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
|
205 |
+
continue
|
206 |
+
else:
|
207 |
+
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
|
208 |
+
turn['dialogue_acts']['non-categorical'].append({
|
209 |
+
'intent': intent,
|
210 |
+
'domain': domain,
|
211 |
+
'slot': slot,
|
212 |
+
'value': segment['text'],
|
213 |
+
'start': segment['start_index'],
|
214 |
+
'end': segment['end_index']
|
215 |
+
})
|
216 |
+
|
217 |
+
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
|
218 |
+
|
219 |
+
bdas = set()
|
220 |
+
for da in turn['dialogue_acts']['binary']:
|
221 |
+
da_tuple = (da['intent'], da['domain'], da['slot'],)
|
222 |
+
bdas.add(da_tuple)
|
223 |
+
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
|
224 |
+
# add to dialogue_acts dictionary in the ontology
|
225 |
+
for da_type in turn['dialogue_acts']:
|
226 |
+
das = turn['dialogue_acts'][da_type]
|
227 |
+
for da in das:
|
228 |
+
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
|
229 |
+
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
|
230 |
+
|
231 |
+
for da in turn['dialogue_acts']['non-categorical']:
|
232 |
+
slot, value = da['slot'], da['value']
|
233 |
+
assert slot in prev_state[domain], print(da)
|
234 |
+
prev_state[domain][slot] = value
|
235 |
+
|
236 |
+
if speaker == 'user':
|
237 |
+
turn['state'] = copy.deepcopy(prev_state)
|
238 |
+
else:
|
239 |
+
turn['db_results'] = {}
|
240 |
+
if 'apis' in turns[utt_idx-1]:
|
241 |
+
turn['db_results'].setdefault(domain, [])
|
242 |
+
apis = turns[utt_idx-1]['apis']
|
243 |
+
turn['db_results'][domain] += apis
|
244 |
+
|
245 |
+
dialogue['turns'].append(turn)
|
246 |
+
dialogues_by_split[data_split].append(dialogue)
|
247 |
+
|
248 |
+
for da_type in ontology['dialogue_acts']:
|
249 |
+
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
|
250 |
+
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
|
251 |
+
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
252 |
+
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
253 |
+
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
254 |
+
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
|
255 |
+
for filename in os.listdir(new_data_dir):
|
256 |
+
zf.write(f'{new_data_dir}/{filename}')
|
257 |
+
rmtree(original_data_dir)
|
258 |
+
rmtree(new_data_dir)
|
259 |
+
return dialogues, ontology
|
260 |
+
|
261 |
+
if __name__ == '__main__':
|
262 |
+
preprocess()
|