Convert dataset to Parquet
#1
by
phucdev
- opened
- DWIE.py +0 -346
- README.md +79 -11
- Task_1/train-00000-of-00001.parquet +3 -0
DWIE.py
DELETED
@@ -1,346 +0,0 @@
|
|
1 |
-
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
|
2 |
-
# Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
|
3 |
-
|
4 |
-
|
5 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
6 |
-
#
|
7 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
-
# you may not use this file except in compliance with the License.
|
9 |
-
# You may obtain a copy of the License at
|
10 |
-
#
|
11 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
-
#
|
13 |
-
# Unless required by applicable law or agreed to in writing, software
|
14 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
-
# See the License for the specific language governing permissions and
|
17 |
-
# limitations under the License.
|
18 |
-
"""DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document."""
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
from datasets import DownloadManager
|
22 |
-
import os
|
23 |
-
import json
|
24 |
-
import requests
|
25 |
-
from typing import Optional, List, Union
|
26 |
-
import argparse
|
27 |
-
import hashlib
|
28 |
-
from collections import OrderedDict
|
29 |
-
from time import sleep
|
30 |
-
|
31 |
-
#from dataset.utils.tokenizer import TokenizerCPN
|
32 |
-
|
33 |
-
|
34 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
35 |
-
_CITATION = """\
|
36 |
-
@article{ZAPOROJETS2021102563,
|
37 |
-
title = {{DWIE}: An entity-centric dataset for multi-task document-level information extraction},
|
38 |
-
journal = {Information Processing & Management},
|
39 |
-
volume = {58},
|
40 |
-
number = {4},
|
41 |
-
pages = {102563},
|
42 |
-
year = {2021},
|
43 |
-
issn = {0306-4573},
|
44 |
-
doi = {https://doi.org/10.1016/j.ipm.2021.102563},
|
45 |
-
url = {https://www.sciencedirect.com/science/article/pii/S0306457321000662},
|
46 |
-
author = {Klim Zaporojets and Johannes Deleu and Chris Develder and Thomas Demeester}
|
47 |
-
}
|
48 |
-
"""
|
49 |
-
|
50 |
-
# You can copy an official description
|
51 |
-
_DESCRIPTION = """\
|
52 |
-
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities
|
53 |
-
on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start
|
54 |
-
from the detection and classification of named entity mentions in individual sentences. Also, the dataset was
|
55 |
-
randomly sampled from a news platform (English online content from Deutsche Welle), and the annotation scheme
|
56 |
-
was generated to cover that content. This makes the setting more realistic than in datasets with pre-determined
|
57 |
-
annotation schemes, and non-uniform sampling of content to obtain balanced annotations."""
|
58 |
-
|
59 |
-
# Add a link to an official homepage for the dataset here
|
60 |
-
_HOMEPAGE = "https://github.com/klimzaporojets/DWIE"
|
61 |
-
|
62 |
-
# Add the licence for the dataset here if you can find it
|
63 |
-
_LICENSE = ""
|
64 |
-
|
65 |
-
# Add link to the official dataset URLs here
|
66 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
67 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
68 |
-
_URLS = {"Task_1":
|
69 |
-
{
|
70 |
-
"url":"https://github.com/klimzaporojets/DWIE/archive/refs/heads/master.zip"
|
71 |
-
}
|
72 |
-
}
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
class DWIE(datasets.GeneratorBasedBuilder):
|
77 |
-
"""
|
78 |
-
DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document.
|
79 |
-
"""
|
80 |
-
|
81 |
-
VERSION = datasets.Version("1.1.0")
|
82 |
-
|
83 |
-
BUILDER_CONFIGS = [
|
84 |
-
datasets.BuilderConfig(name="Task_1", version=VERSION,
|
85 |
-
description="Relation classification"),
|
86 |
-
]
|
87 |
-
DEFAULT_CONFIG_NAME = "Task_1"
|
88 |
-
|
89 |
-
def _info(self):
|
90 |
-
features = datasets.Features(
|
91 |
-
{
|
92 |
-
"id": datasets.Value("string"),
|
93 |
-
"content": datasets.Value("string"),
|
94 |
-
"tags": datasets.Value("string"),
|
95 |
-
"mentions": [
|
96 |
-
{
|
97 |
-
"begin": datasets.Value("int32"),
|
98 |
-
"end": datasets.Value("int32"),
|
99 |
-
"text": datasets.Value("string"),
|
100 |
-
"concept": datasets.Value("int32"),
|
101 |
-
"candidates" : datasets.Sequence(datasets.Value("string")),
|
102 |
-
"scores": datasets.Sequence(datasets.Value("float32"))
|
103 |
-
}
|
104 |
-
],
|
105 |
-
"concepts": [
|
106 |
-
{
|
107 |
-
"concept": datasets.Value("int32"),
|
108 |
-
"text": datasets.Value("string"),
|
109 |
-
"keyword": datasets.Value("bool"),
|
110 |
-
"count": datasets.Value("int32"),
|
111 |
-
"link": datasets.Value("string"),
|
112 |
-
"tags": datasets.Sequence(datasets.Value("string")),
|
113 |
-
|
114 |
-
}
|
115 |
-
],
|
116 |
-
"relations": [
|
117 |
-
{
|
118 |
-
"s": datasets.Value("int32"),
|
119 |
-
"p": datasets.Value("string"),
|
120 |
-
"o": datasets.Value("int32"),
|
121 |
-
|
122 |
-
}
|
123 |
-
],
|
124 |
-
"frames": [
|
125 |
-
{
|
126 |
-
"type": datasets.Value("string"),
|
127 |
-
"slots": [{
|
128 |
-
"name": datasets.Value("string"),
|
129 |
-
"value":datasets.Value("int32")
|
130 |
-
}]
|
131 |
-
|
132 |
-
}
|
133 |
-
],
|
134 |
-
"iptc": datasets.Sequence(datasets.Value("string"))
|
135 |
-
|
136 |
-
}
|
137 |
-
)
|
138 |
-
|
139 |
-
return datasets.DatasetInfo(
|
140 |
-
# This is the description that will appear on the datasets page.
|
141 |
-
description=_DESCRIPTION,
|
142 |
-
# This defines the different columns of the dataset and their types
|
143 |
-
features=features, # Here we define them above because they are different between the two configurations
|
144 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
145 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
146 |
-
# supervised_keys=("sentence", "label"),
|
147 |
-
# Homepage of the dataset for documentation
|
148 |
-
homepage=_HOMEPAGE,
|
149 |
-
# License for the dataset if available
|
150 |
-
license=_LICENSE,
|
151 |
-
# Citation for the dataset
|
152 |
-
citation=_CITATION,
|
153 |
-
)
|
154 |
-
|
155 |
-
def _split_generators(self, dl_manager):
|
156 |
-
|
157 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
158 |
-
|
159 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
160 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
161 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
162 |
-
|
163 |
-
urls = _URLS[self.config.name]
|
164 |
-
downloaded = dl_manager.download_and_extract(_URLS)
|
165 |
-
article_id_to_url_json= json.load(open(downloaded['Task_1']['url'] + '/DWIE-master/data/article_id_to_url.json'))
|
166 |
-
ids_to_new_ids = dict()
|
167 |
-
# some ids seem to be different, for now only this one:
|
168 |
-
ids_to_new_ids[18525950] = 19026607
|
169 |
-
|
170 |
-
should_tokenize = False
|
171 |
-
|
172 |
-
content_to_new_content = {'DW_40663341': [('starting with Sunday\'s', 'starting Sunday\'s'),
|
173 |
-
('$1 million (€840,000)', 'one million dollars (840,000 euros)'),
|
174 |
-
('who kneel in protest during', 'to kneel in protest during')]}
|
175 |
-
|
176 |
-
articles_done = 0
|
177 |
-
total_articles = len(article_id_to_url_json)
|
178 |
-
problematic_articles = set()
|
179 |
-
problematic_hash_articles = set()
|
180 |
-
all_annos = []
|
181 |
-
for curr_article in article_id_to_url_json:
|
182 |
-
article_id = curr_article['id']
|
183 |
-
article_url = curr_article['url']
|
184 |
-
article_id_nr = int(article_id[3:])
|
185 |
-
if article_id_nr in ids_to_new_ids:
|
186 |
-
article_url = article_url.replace(str(article_id_nr), str(ids_to_new_ids[article_id_nr]))
|
187 |
-
article_hash = curr_article['hash']
|
188 |
-
#print('fetching {} out of {} articles -'.format(articles_done, total_articles), curr_article)
|
189 |
-
|
190 |
-
annos_only_art_path = downloaded['Task_1']['url'] + '/DWIE-master/data/annos/' + curr_article['id'] + '.json'
|
191 |
-
annos_only_json = json.load(open(annos_only_art_path))
|
192 |
-
done = False
|
193 |
-
attempts = 0
|
194 |
-
while not done and attempts <= 3:
|
195 |
-
# try:
|
196 |
-
a = requests.get(article_url, allow_redirects=True).json()
|
197 |
-
if 'name' in a:
|
198 |
-
article_title = a['name']
|
199 |
-
else:
|
200 |
-
print('WARNING: no name detected for ', article_id)
|
201 |
-
article_title = ''
|
202 |
-
if 'teaser' in a:
|
203 |
-
article_teaser = a['teaser']
|
204 |
-
else:
|
205 |
-
print('WARNING: no teaser detected for ', article_id)
|
206 |
-
article_teaser = ''
|
207 |
-
|
208 |
-
if 'text' in a:
|
209 |
-
article_text = a['text']
|
210 |
-
else:
|
211 |
-
print('WARNING: no text detected for ', article_id)
|
212 |
-
article_text = ''
|
213 |
-
|
214 |
-
article_content_no_strip = '{}\n{}\n{}'.format(article_title, article_teaser, article_text)
|
215 |
-
article_content = article_content_no_strip
|
216 |
-
|
217 |
-
if article_id in content_to_new_content:
|
218 |
-
for str_dw, str_dwie in content_to_new_content[article_id]:
|
219 |
-
article_content = article_content.replace(str_dw, str_dwie)
|
220 |
-
|
221 |
-
if 'mentions' in annos_only_json:
|
222 |
-
for idx_mention, curr_mention in enumerate(annos_only_json['mentions']):
|
223 |
-
curr_mention_text = curr_mention['text'].replace(' ', ' ')
|
224 |
-
curr_mention_text = curr_mention_text.replace('', '')
|
225 |
-
solved = False
|
226 |
-
if "begin" not in curr_mention:
|
227 |
-
curr_mention["begin"] = 0
|
228 |
-
if "end" not in curr_mention:
|
229 |
-
curr_mention["end"] = 0
|
230 |
-
if "text" not in curr_mention:
|
231 |
-
curr_mention["text"] = ""
|
232 |
-
if "concept" not in curr_mention:
|
233 |
-
curr_mention["concept"] = 0
|
234 |
-
|
235 |
-
|
236 |
-
if "candidates" not in curr_mention:
|
237 |
-
curr_mention["candidates"] = []
|
238 |
-
if "scores" not in curr_mention:
|
239 |
-
curr_mention["scores"] = []
|
240 |
-
|
241 |
-
if article_content[curr_mention['begin']:curr_mention['end']] != curr_mention_text:
|
242 |
-
curr_mention_begin = curr_mention['begin']
|
243 |
-
curr_mention_end = curr_mention['end']
|
244 |
-
offset = 0
|
245 |
-
|
246 |
-
if not solved:
|
247 |
-
print('--------------------------------')
|
248 |
-
print('ERROR ALIGNMENT: texts don\'t match for {}: "{}" vs "{}", the textual content of '
|
249 |
-
'the files won\'t be complete '
|
250 |
-
.format(article_id, article_content[curr_mention['begin']:curr_mention['end']],
|
251 |
-
curr_mention_text))
|
252 |
-
print('--------------------------------')
|
253 |
-
problematic_articles.add(article_id)
|
254 |
-
else:
|
255 |
-
if "candidates" not in curr_mention:
|
256 |
-
curr_mention["candidates"] = []
|
257 |
-
|
258 |
-
curr_mention['begin'] = curr_mention_begin - offset
|
259 |
-
curr_mention['end'] = curr_mention_end - offset
|
260 |
-
if 'concepts' in annos_only_json:
|
261 |
-
for idx_concept, curr_concept in enumerate(annos_only_json['concepts']):
|
262 |
-
if "concept" not in curr_concept:
|
263 |
-
curr_concept["concept"] = 0
|
264 |
-
if "text" not in curr_concept:
|
265 |
-
curr_concept["text"] = ""
|
266 |
-
if "count" not in curr_concept:
|
267 |
-
curr_concept["count"] = 0
|
268 |
-
if "link" not in curr_concept:
|
269 |
-
curr_concept["link"] = ""
|
270 |
-
if "tags" not in curr_concept:
|
271 |
-
curr_concept["tags"] = []
|
272 |
-
|
273 |
-
if not should_tokenize:
|
274 |
-
annos_json = {'id': annos_only_json['id'],
|
275 |
-
'content': article_content,
|
276 |
-
'tags': annos_only_json['tags'],
|
277 |
-
'mentions': annos_only_json['mentions'],
|
278 |
-
'concepts': annos_only_json['concepts'],
|
279 |
-
'relations': annos_only_json['relations'],
|
280 |
-
'frames': annos_only_json['frames'],
|
281 |
-
'iptc': annos_only_json['iptc']}
|
282 |
-
all_annos.append(annos_json)
|
283 |
-
|
284 |
-
#print("annos_json",annos_json)
|
285 |
-
else:
|
286 |
-
tokenized = tokenizer.tokenize(article_content)
|
287 |
-
tokens = list()
|
288 |
-
begin = list()
|
289 |
-
end = list()
|
290 |
-
for curr_token in tokenized:
|
291 |
-
tokens.append(curr_token['token'])
|
292 |
-
begin.append(curr_token['offset'])
|
293 |
-
end.append(curr_token['offset'] + curr_token['length'])
|
294 |
-
annos_json = OrderedDict({'id': annos_only_json['id'],
|
295 |
-
'content': article_content,
|
296 |
-
'tokenization': OrderedDict({'tokens': tokens, 'begin': begin, 'end': end}),
|
297 |
-
'tags': annos_only_json['tags'],
|
298 |
-
'mentions': annos_only_json['mentions'],
|
299 |
-
'concepts': annos_only_json['concepts'],
|
300 |
-
'relations': annos_only_json['relations'],
|
301 |
-
'frames': annos_only_json['frames'],
|
302 |
-
'iptc': annos_only_json['iptc']})
|
303 |
-
|
304 |
-
hash_content = hashlib.sha1(article_content.encode("UTF-8")).hexdigest()
|
305 |
-
|
306 |
-
if hash_content != article_hash:
|
307 |
-
print('!!ERROR - hash doesn\'t match for ', article_id)
|
308 |
-
problematic_hash_articles.add(article_id)
|
309 |
-
attempts += 1
|
310 |
-
|
311 |
-
sleep(.1)
|
312 |
-
done = True
|
313 |
-
if done:
|
314 |
-
articles_done += 1
|
315 |
-
|
316 |
-
|
317 |
-
return[
|
318 |
-
datasets.SplitGenerator(
|
319 |
-
name=datasets.Split.TRAIN,
|
320 |
-
# These kwargs will be passed to _generate_examples
|
321 |
-
gen_kwargs={
|
322 |
-
"all_annos" : all_annos,
|
323 |
-
|
324 |
-
}
|
325 |
-
|
326 |
-
)
|
327 |
-
]
|
328 |
-
|
329 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
330 |
-
def _generate_examples(self, all_annos):
|
331 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
332 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
333 |
-
for data in all_annos:
|
334 |
-
yield data['id'], {
|
335 |
-
"id": data['id'],
|
336 |
-
"content":data['content'],
|
337 |
-
"tags": data['tags'],
|
338 |
-
"mentions": data['mentions'],
|
339 |
-
"concepts": data['concepts'],
|
340 |
-
"relations": data['relations'],
|
341 |
-
"frames": data['frames'],
|
342 |
-
"iptc": data['iptc']
|
343 |
-
}
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,28 +1,96 @@
|
|
1 |
---
|
2 |
-
license: other
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
pretty_name: >-
|
6 |
-
DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset for
|
7 |
-
document-level multi-task Information Extraction (IE).
|
8 |
-
size_categories:
|
9 |
-
- 10M<n<100M
|
10 |
annotations_creators:
|
11 |
- expert-generated
|
12 |
language_creators:
|
13 |
- found
|
|
|
|
|
|
|
14 |
multilinguality:
|
15 |
- monolingual
|
16 |
-
|
|
|
17 |
source_datasets:
|
18 |
- original
|
19 |
-
tags:
|
20 |
-
- Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
|
21 |
task_categories:
|
22 |
- feature-extraction
|
23 |
- text-classification
|
24 |
task_ids:
|
25 |
- entity-linking-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
train-eval-index:
|
27 |
- col_mapping:
|
28 |
labels: tags
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
annotations_creators:
|
3 |
- expert-generated
|
4 |
language_creators:
|
5 |
- found
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: other
|
9 |
multilinguality:
|
10 |
- monolingual
|
11 |
+
size_categories:
|
12 |
+
- 10M<n<100M
|
13 |
source_datasets:
|
14 |
- original
|
|
|
|
|
15 |
task_categories:
|
16 |
- feature-extraction
|
17 |
- text-classification
|
18 |
task_ids:
|
19 |
- entity-linking-classification
|
20 |
+
paperswithcode_id: acronym-identification
|
21 |
+
pretty_name: DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset
|
22 |
+
for document-level multi-task Information Extraction (IE).
|
23 |
+
tags:
|
24 |
+
- Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
|
25 |
+
dataset_info:
|
26 |
+
config_name: Task_1
|
27 |
+
features:
|
28 |
+
- name: id
|
29 |
+
dtype: string
|
30 |
+
- name: content
|
31 |
+
dtype: string
|
32 |
+
- name: tags
|
33 |
+
dtype: string
|
34 |
+
- name: mentions
|
35 |
+
list:
|
36 |
+
- name: begin
|
37 |
+
dtype: int32
|
38 |
+
- name: end
|
39 |
+
dtype: int32
|
40 |
+
- name: text
|
41 |
+
dtype: string
|
42 |
+
- name: concept
|
43 |
+
dtype: int32
|
44 |
+
- name: candidates
|
45 |
+
sequence: string
|
46 |
+
- name: scores
|
47 |
+
sequence: float32
|
48 |
+
- name: concepts
|
49 |
+
list:
|
50 |
+
- name: concept
|
51 |
+
dtype: int32
|
52 |
+
- name: text
|
53 |
+
dtype: string
|
54 |
+
- name: keyword
|
55 |
+
dtype: bool
|
56 |
+
- name: count
|
57 |
+
dtype: int32
|
58 |
+
- name: link
|
59 |
+
dtype: string
|
60 |
+
- name: tags
|
61 |
+
sequence: string
|
62 |
+
- name: relations
|
63 |
+
list:
|
64 |
+
- name: s
|
65 |
+
dtype: int32
|
66 |
+
- name: p
|
67 |
+
dtype: string
|
68 |
+
- name: o
|
69 |
+
dtype: int32
|
70 |
+
- name: frames
|
71 |
+
list:
|
72 |
+
- name: type
|
73 |
+
dtype: string
|
74 |
+
- name: slots
|
75 |
+
list:
|
76 |
+
- name: name
|
77 |
+
dtype: string
|
78 |
+
- name: value
|
79 |
+
dtype: int32
|
80 |
+
- name: iptc
|
81 |
+
sequence: string
|
82 |
+
splits:
|
83 |
+
- name: train
|
84 |
+
num_bytes: 16533390
|
85 |
+
num_examples: 802
|
86 |
+
download_size: 3822277
|
87 |
+
dataset_size: 16533390
|
88 |
+
configs:
|
89 |
+
- config_name: Task_1
|
90 |
+
data_files:
|
91 |
+
- split: train
|
92 |
+
path: Task_1/train-*
|
93 |
+
default: true
|
94 |
train-eval-index:
|
95 |
- col_mapping:
|
96 |
labels: tags
|
Task_1/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03fd09eda0e5e817a194d85c10d513f0952f0b5596d0f421f50ef5d7a0011b26
|
3 |
+
size 3822277
|