Convert dataset to Parquet

#1
Files changed (3) hide show
  1. DWIE.py +0 -346
  2. README.md +79 -11
  3. Task_1/train-00000-of-00001.parquet +3 -0
DWIE.py DELETED
@@ -1,346 +0,0 @@
1
- # I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
2
- # Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
3
-
4
-
5
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
6
- #
7
- # Licensed under the Apache License, Version 2.0 (the "License");
8
- # you may not use this file except in compliance with the License.
9
- # You may obtain a copy of the License at
10
- #
11
- # http://www.apache.org/licenses/LICENSE-2.0
12
- #
13
- # Unless required by applicable law or agreed to in writing, software
14
- # distributed under the License is distributed on an "AS IS" BASIS,
15
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
- # See the License for the specific language governing permissions and
17
- # limitations under the License.
18
- """DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document."""
19
-
20
- import datasets
21
- from datasets import DownloadManager
22
- import os
23
- import json
24
- import requests
25
- from typing import Optional, List, Union
26
- import argparse
27
- import hashlib
28
- from collections import OrderedDict
29
- from time import sleep
30
-
31
- #from dataset.utils.tokenizer import TokenizerCPN
32
-
33
-
34
- # Find for instance the citation on arxiv or on the dataset repo/website
35
- _CITATION = """\
36
- @article{ZAPOROJETS2021102563,
37
- title = {{DWIE}: An entity-centric dataset for multi-task document-level information extraction},
38
- journal = {Information Processing & Management},
39
- volume = {58},
40
- number = {4},
41
- pages = {102563},
42
- year = {2021},
43
- issn = {0306-4573},
44
- doi = {https://doi.org/10.1016/j.ipm.2021.102563},
45
- url = {https://www.sciencedirect.com/science/article/pii/S0306457321000662},
46
- author = {Klim Zaporojets and Johannes Deleu and Chris Develder and Thomas Demeester}
47
- }
48
- """
49
-
50
- # You can copy an official description
51
- _DESCRIPTION = """\
52
- DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities
53
- on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start
54
- from the detection and classification of named entity mentions in individual sentences. Also, the dataset was
55
- randomly sampled from a news platform (English online content from Deutsche Welle), and the annotation scheme
56
- was generated to cover that content. This makes the setting more realistic than in datasets with pre-determined
57
- annotation schemes, and non-uniform sampling of content to obtain balanced annotations."""
58
-
59
- # Add a link to an official homepage for the dataset here
60
- _HOMEPAGE = "https://github.com/klimzaporojets/DWIE"
61
-
62
- # Add the licence for the dataset here if you can find it
63
- _LICENSE = ""
64
-
65
- # Add link to the official dataset URLs here
66
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
67
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
68
- _URLS = {"Task_1":
69
- {
70
- "url":"https://github.com/klimzaporojets/DWIE/archive/refs/heads/master.zip"
71
- }
72
- }
73
-
74
-
75
-
76
- class DWIE(datasets.GeneratorBasedBuilder):
77
- """
78
- DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document.
79
- """
80
-
81
- VERSION = datasets.Version("1.1.0")
82
-
83
- BUILDER_CONFIGS = [
84
- datasets.BuilderConfig(name="Task_1", version=VERSION,
85
- description="Relation classification"),
86
- ]
87
- DEFAULT_CONFIG_NAME = "Task_1"
88
-
89
- def _info(self):
90
- features = datasets.Features(
91
- {
92
- "id": datasets.Value("string"),
93
- "content": datasets.Value("string"),
94
- "tags": datasets.Value("string"),
95
- "mentions": [
96
- {
97
- "begin": datasets.Value("int32"),
98
- "end": datasets.Value("int32"),
99
- "text": datasets.Value("string"),
100
- "concept": datasets.Value("int32"),
101
- "candidates" : datasets.Sequence(datasets.Value("string")),
102
- "scores": datasets.Sequence(datasets.Value("float32"))
103
- }
104
- ],
105
- "concepts": [
106
- {
107
- "concept": datasets.Value("int32"),
108
- "text": datasets.Value("string"),
109
- "keyword": datasets.Value("bool"),
110
- "count": datasets.Value("int32"),
111
- "link": datasets.Value("string"),
112
- "tags": datasets.Sequence(datasets.Value("string")),
113
-
114
- }
115
- ],
116
- "relations": [
117
- {
118
- "s": datasets.Value("int32"),
119
- "p": datasets.Value("string"),
120
- "o": datasets.Value("int32"),
121
-
122
- }
123
- ],
124
- "frames": [
125
- {
126
- "type": datasets.Value("string"),
127
- "slots": [{
128
- "name": datasets.Value("string"),
129
- "value":datasets.Value("int32")
130
- }]
131
-
132
- }
133
- ],
134
- "iptc": datasets.Sequence(datasets.Value("string"))
135
-
136
- }
137
- )
138
-
139
- return datasets.DatasetInfo(
140
- # This is the description that will appear on the datasets page.
141
- description=_DESCRIPTION,
142
- # This defines the different columns of the dataset and their types
143
- features=features, # Here we define them above because they are different between the two configurations
144
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
145
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
146
- # supervised_keys=("sentence", "label"),
147
- # Homepage of the dataset for documentation
148
- homepage=_HOMEPAGE,
149
- # License for the dataset if available
150
- license=_LICENSE,
151
- # Citation for the dataset
152
- citation=_CITATION,
153
- )
154
-
155
- def _split_generators(self, dl_manager):
156
-
157
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
158
-
159
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
160
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
161
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
162
-
163
- urls = _URLS[self.config.name]
164
- downloaded = dl_manager.download_and_extract(_URLS)
165
- article_id_to_url_json= json.load(open(downloaded['Task_1']['url'] + '/DWIE-master/data/article_id_to_url.json'))
166
- ids_to_new_ids = dict()
167
- # some ids seem to be different, for now only this one:
168
- ids_to_new_ids[18525950] = 19026607
169
-
170
- should_tokenize = False
171
-
172
- content_to_new_content = {'DW_40663341': [('starting with Sunday\'s', 'starting Sunday\'s'),
173
- ('$1 million (€840,000)', 'one million dollars (840,000 euros)'),
174
- ('who kneel in protest during', 'to kneel in protest during')]}
175
-
176
- articles_done = 0
177
- total_articles = len(article_id_to_url_json)
178
- problematic_articles = set()
179
- problematic_hash_articles = set()
180
- all_annos = []
181
- for curr_article in article_id_to_url_json:
182
- article_id = curr_article['id']
183
- article_url = curr_article['url']
184
- article_id_nr = int(article_id[3:])
185
- if article_id_nr in ids_to_new_ids:
186
- article_url = article_url.replace(str(article_id_nr), str(ids_to_new_ids[article_id_nr]))
187
- article_hash = curr_article['hash']
188
- #print('fetching {} out of {} articles -'.format(articles_done, total_articles), curr_article)
189
-
190
- annos_only_art_path = downloaded['Task_1']['url'] + '/DWIE-master/data/annos/' + curr_article['id'] + '.json'
191
- annos_only_json = json.load(open(annos_only_art_path))
192
- done = False
193
- attempts = 0
194
- while not done and attempts <= 3:
195
- # try:
196
- a = requests.get(article_url, allow_redirects=True).json()
197
- if 'name' in a:
198
- article_title = a['name']
199
- else:
200
- print('WARNING: no name detected for ', article_id)
201
- article_title = ''
202
- if 'teaser' in a:
203
- article_teaser = a['teaser']
204
- else:
205
- print('WARNING: no teaser detected for ', article_id)
206
- article_teaser = ''
207
-
208
- if 'text' in a:
209
- article_text = a['text']
210
- else:
211
- print('WARNING: no text detected for ', article_id)
212
- article_text = ''
213
-
214
- article_content_no_strip = '{}\n{}\n{}'.format(article_title, article_teaser, article_text)
215
- article_content = article_content_no_strip
216
-
217
- if article_id in content_to_new_content:
218
- for str_dw, str_dwie in content_to_new_content[article_id]:
219
- article_content = article_content.replace(str_dw, str_dwie)
220
-
221
- if 'mentions' in annos_only_json:
222
- for idx_mention, curr_mention in enumerate(annos_only_json['mentions']):
223
- curr_mention_text = curr_mention['text'].replace(' ', ' ')
224
- curr_mention_text = curr_mention_text.replace('​', '')
225
- solved = False
226
- if "begin" not in curr_mention:
227
- curr_mention["begin"] = 0
228
- if "end" not in curr_mention:
229
- curr_mention["end"] = 0
230
- if "text" not in curr_mention:
231
- curr_mention["text"] = ""
232
- if "concept" not in curr_mention:
233
- curr_mention["concept"] = 0
234
-
235
-
236
- if "candidates" not in curr_mention:
237
- curr_mention["candidates"] = []
238
- if "scores" not in curr_mention:
239
- curr_mention["scores"] = []
240
-
241
- if article_content[curr_mention['begin']:curr_mention['end']] != curr_mention_text:
242
- curr_mention_begin = curr_mention['begin']
243
- curr_mention_end = curr_mention['end']
244
- offset = 0
245
-
246
- if not solved:
247
- print('--------------------------------')
248
- print('ERROR ALIGNMENT: texts don\'t match for {}: "{}" vs "{}", the textual content of '
249
- 'the files won\'t be complete '
250
- .format(article_id, article_content[curr_mention['begin']:curr_mention['end']],
251
- curr_mention_text))
252
- print('--------------------------------')
253
- problematic_articles.add(article_id)
254
- else:
255
- if "candidates" not in curr_mention:
256
- curr_mention["candidates"] = []
257
-
258
- curr_mention['begin'] = curr_mention_begin - offset
259
- curr_mention['end'] = curr_mention_end - offset
260
- if 'concepts' in annos_only_json:
261
- for idx_concept, curr_concept in enumerate(annos_only_json['concepts']):
262
- if "concept" not in curr_concept:
263
- curr_concept["concept"] = 0
264
- if "text" not in curr_concept:
265
- curr_concept["text"] = ""
266
- if "count" not in curr_concept:
267
- curr_concept["count"] = 0
268
- if "link" not in curr_concept:
269
- curr_concept["link"] = ""
270
- if "tags" not in curr_concept:
271
- curr_concept["tags"] = []
272
-
273
- if not should_tokenize:
274
- annos_json = {'id': annos_only_json['id'],
275
- 'content': article_content,
276
- 'tags': annos_only_json['tags'],
277
- 'mentions': annos_only_json['mentions'],
278
- 'concepts': annos_only_json['concepts'],
279
- 'relations': annos_only_json['relations'],
280
- 'frames': annos_only_json['frames'],
281
- 'iptc': annos_only_json['iptc']}
282
- all_annos.append(annos_json)
283
-
284
- #print("annos_json",annos_json)
285
- else:
286
- tokenized = tokenizer.tokenize(article_content)
287
- tokens = list()
288
- begin = list()
289
- end = list()
290
- for curr_token in tokenized:
291
- tokens.append(curr_token['token'])
292
- begin.append(curr_token['offset'])
293
- end.append(curr_token['offset'] + curr_token['length'])
294
- annos_json = OrderedDict({'id': annos_only_json['id'],
295
- 'content': article_content,
296
- 'tokenization': OrderedDict({'tokens': tokens, 'begin': begin, 'end': end}),
297
- 'tags': annos_only_json['tags'],
298
- 'mentions': annos_only_json['mentions'],
299
- 'concepts': annos_only_json['concepts'],
300
- 'relations': annos_only_json['relations'],
301
- 'frames': annos_only_json['frames'],
302
- 'iptc': annos_only_json['iptc']})
303
-
304
- hash_content = hashlib.sha1(article_content.encode("UTF-8")).hexdigest()
305
-
306
- if hash_content != article_hash:
307
- print('!!ERROR - hash doesn\'t match for ', article_id)
308
- problematic_hash_articles.add(article_id)
309
- attempts += 1
310
-
311
- sleep(.1)
312
- done = True
313
- if done:
314
- articles_done += 1
315
-
316
-
317
- return[
318
- datasets.SplitGenerator(
319
- name=datasets.Split.TRAIN,
320
- # These kwargs will be passed to _generate_examples
321
- gen_kwargs={
322
- "all_annos" : all_annos,
323
-
324
- }
325
-
326
- )
327
- ]
328
-
329
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
330
- def _generate_examples(self, all_annos):
331
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
332
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
333
- for data in all_annos:
334
- yield data['id'], {
335
- "id": data['id'],
336
- "content":data['content'],
337
- "tags": data['tags'],
338
- "mentions": data['mentions'],
339
- "concepts": data['concepts'],
340
- "relations": data['relations'],
341
- "frames": data['frames'],
342
- "iptc": data['iptc']
343
- }
344
-
345
-
346
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,28 +1,96 @@
1
  ---
2
- license: other
3
- language:
4
- - en
5
- pretty_name: >-
6
- DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset for
7
- document-level multi-task Information Extraction (IE).
8
- size_categories:
9
- - 10M<n<100M
10
  annotations_creators:
11
  - expert-generated
12
  language_creators:
13
  - found
 
 
 
14
  multilinguality:
15
  - monolingual
16
- paperswithcode_id: acronym-identification
 
17
  source_datasets:
18
  - original
19
- tags:
20
- - Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
21
  task_categories:
22
  - feature-extraction
23
  - text-classification
24
  task_ids:
25
  - entity-linking-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  train-eval-index:
27
  - col_mapping:
28
  labels: tags
 
1
  ---
 
 
 
 
 
 
 
 
2
  annotations_creators:
3
  - expert-generated
4
  language_creators:
5
  - found
6
+ language:
7
+ - en
8
+ license: other
9
  multilinguality:
10
  - monolingual
11
+ size_categories:
12
+ - 10M<n<100M
13
  source_datasets:
14
  - original
 
 
15
  task_categories:
16
  - feature-extraction
17
  - text-classification
18
  task_ids:
19
  - entity-linking-classification
20
+ paperswithcode_id: acronym-identification
21
+ pretty_name: DWIE (Deutsche Welle corpus for Information Extraction) is a new dataset
22
+ for document-level multi-task Information Extraction (IE).
23
+ tags:
24
+ - Named Entity Recognition, Coreference Resolution, Relation Extraction, Entity Linking
25
+ dataset_info:
26
+ config_name: Task_1
27
+ features:
28
+ - name: id
29
+ dtype: string
30
+ - name: content
31
+ dtype: string
32
+ - name: tags
33
+ dtype: string
34
+ - name: mentions
35
+ list:
36
+ - name: begin
37
+ dtype: int32
38
+ - name: end
39
+ dtype: int32
40
+ - name: text
41
+ dtype: string
42
+ - name: concept
43
+ dtype: int32
44
+ - name: candidates
45
+ sequence: string
46
+ - name: scores
47
+ sequence: float32
48
+ - name: concepts
49
+ list:
50
+ - name: concept
51
+ dtype: int32
52
+ - name: text
53
+ dtype: string
54
+ - name: keyword
55
+ dtype: bool
56
+ - name: count
57
+ dtype: int32
58
+ - name: link
59
+ dtype: string
60
+ - name: tags
61
+ sequence: string
62
+ - name: relations
63
+ list:
64
+ - name: s
65
+ dtype: int32
66
+ - name: p
67
+ dtype: string
68
+ - name: o
69
+ dtype: int32
70
+ - name: frames
71
+ list:
72
+ - name: type
73
+ dtype: string
74
+ - name: slots
75
+ list:
76
+ - name: name
77
+ dtype: string
78
+ - name: value
79
+ dtype: int32
80
+ - name: iptc
81
+ sequence: string
82
+ splits:
83
+ - name: train
84
+ num_bytes: 16533390
85
+ num_examples: 802
86
+ download_size: 3822277
87
+ dataset_size: 16533390
88
+ configs:
89
+ - config_name: Task_1
90
+ data_files:
91
+ - split: train
92
+ path: Task_1/train-*
93
+ default: true
94
  train-eval-index:
95
  - col_mapping:
96
  labels: tags
Task_1/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03fd09eda0e5e817a194d85c10d513f0952f0b5596d0f421f50ef5d7a0011b26
3
+ size 3822277