File size: 9,138 Bytes
43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 4e3375f 5e22f7a 43edbf4 970a024 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 5e22f7a 43edbf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CoQA dataset.
This `CoQA` adds the "additional_answers" feature that's missing in the original
datasets version:
https://github.com/huggingface/datasets/blob/master/datasets/coqa/coqa.py
"""
import json
import datasets
_CITATION = """\
@misc{reddy2018coqa,
title={CoQA: A Conversational Question Answering Challenge},
author={Siva Reddy and Danqi Chen and Christopher D. Manning},
year={2018},
eprint={1808.07042},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
CoQA is a large-scale dataset for building Conversational Question Answering
systems. The goal of the CoQA challenge is to measure the ability of machines to
understand a text passage and answer a series of interconnected questions that
appear in a conversation.
"""
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
_LICENSE = "Different licenses depending on the content (see https://stanfordnlp.github.io/coqa/ for details)"
_URLS = {
"train": "https://downloads.cs.stanford.edu/nlp/data/coqa/coqa-train-v1.0.json",
"validation": "https://downloads.cs.stanford.edu/nlp/data/coqa/coqa-dev-v1.0.json",
}
# `additional_answers` are not available in the train set so we fill them with
# empty dicts of the same form.
_EMPTY_ADDITIONAL_ANSWER = {
"0": [
{
"span_start": -1,
"span_end": -1,
"span_text": "",
"input_text": "",
"turn_id": -1,
}
],
"1": [
{
"span_start": -1,
"span_end": -1,
"span_text": "",
"input_text": "",
"turn_id": -1,
}
],
"2": [
{
"span_start": -1,
"span_end": -1,
"span_text": "",
"input_text": "",
"turn_id": -1,
}
],
}
class Coqa(datasets.GeneratorBasedBuilder):
"""CoQA is a large-scale dataset for building Conversational Question Answering systems."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="coqa", version=VERSION, description="The CoQA dataset."
),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"source": datasets.Value("string"),
"story": datasets.Value("string"),
"questions": datasets.features.Sequence(
{
"input_text": datasets.Value("string"),
"turn_id": datasets.Value("int32"),
}
),
"answers": datasets.features.Sequence(
{
"span_start": datasets.Value("int32"),
"span_end": datasets.Value("int32"),
"span_text": datasets.Value("string"),
"input_text": datasets.Value("string"),
"turn_id": datasets.Value("int32"),
}
),
"additional_answers": {
"0": datasets.features.Sequence(
{
"span_start": datasets.Value("int32"),
"span_end": datasets.Value("int32"),
"span_text": datasets.Value("string"),
"input_text": datasets.Value("string"),
"turn_id": datasets.Value("int32"),
}
),
"1": datasets.features.Sequence(
{
"span_start": datasets.Value("int32"),
"span_end": datasets.Value("int32"),
"span_text": datasets.Value("string"),
"input_text": datasets.Value("string"),
"turn_id": datasets.Value("int32"),
}
),
"2": datasets.features.Sequence(
{
"span_start": datasets.Value("int32"),
"span_end": datasets.Value("int32"),
"span_text": datasets.Value("string"),
"input_text": datasets.Value("string"),
"turn_id": datasets.Value("int32"),
}
),
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = {"train": _URLS["train"], "validation": _URLS["validation"]}
data_dirs = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dirs["train"],
"split": datasets.Split.TRAIN,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dirs["validation"],
"split": datasets.Split.VALIDATION,
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for row in data["data"]:
id = row["id"]
source = row["source"]
story = row["story"]
questions = [
{"input_text": q["input_text"], "turn_id": q["turn_id"]}
for q in row["questions"]
]
answers = [
{
"span_start": a["span_start"],
"span_end": a["span_end"],
"span_text": a["span_text"],
"input_text": a["input_text"],
"turn_id": a["turn_id"],
}
for a in row["answers"]
]
if split == datasets.Split.TRAIN:
additional_answers = _EMPTY_ADDITIONAL_ANSWER
else:
additional_answers = {
"0": [
{
"span_start": a0["span_start"],
"span_end": a0["span_end"],
"span_text": a0["span_text"],
"input_text": a0["input_text"],
"turn_id": a0["turn_id"],
}
for a0 in row["additional_answers"]["0"]
],
"1": [
{
"span_start": a1["span_start"],
"span_end": a1["span_end"],
"span_text": a1["span_text"],
"input_text": a1["input_text"],
"turn_id": a1["turn_id"],
}
for a1 in row["additional_answers"]["1"]
],
"2": [
{
"span_start": a2["span_start"],
"span_end": a2["span_end"],
"span_text": a2["span_text"],
"input_text": a2["input_text"],
"turn_id": a2["turn_id"],
}
for a2 in row["additional_answers"]["2"]
],
}
yield row["id"], {
"id": id,
"story": story,
"source": source,
"questions": questions,
"answers": answers,
"additional_answers": additional_answers,
} |