Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
See axolotl config
axolotl version: 0.4.0
base_model: EnumaInc/ko-TinyLlama-1.1B-intermediate-step-1431k-3Tb-vocab-extend-45000-untrained-v1
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /root/axolotl/datasets/mix_corpus_extended_validated.json
type: completion
field: text
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: language-transfer-eeve-v2
wandb_entity:
wandb_watch:
wandb_name: eeve-v2-stage1
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 32
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00015
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 500
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
save_strategy: steps
save_steps: 100
save_total_limit: 5
#saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
# for curriculum learning
shuffle_merged_datasets: false
unfrozen_parameters:
- ^model.embed_tokens.weight$[32000:]
# - model.layers.2[0-9]+.block_sparse_moe.gate
# - model.layers.2[0-9]+.block_sparse_moe.experts
# - model.layers.3[0-9]+.block_sparse_moe.gate
# - model.layers.3[0-9]+.block_sparse_moe.experts
out
This model is a fine-tuned version of EnumaInc/ko-TinyLlama-1.1B-intermediate-step-1431k-3Tb-vocab-extend-45000-untrained-v1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6306
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.651 | 1.0 | 1918 | 1.6306 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 96