dream-coder / dreamcoder /grammar.py
Fraser-Greenlee
add dataset code
3bdb76c
from collections import defaultdict
from dreamcoder.frontier import *
from dreamcoder.program import *
from dreamcoder.type import *
from dreamcoder.utilities import *
import time
class GrammarFailure(Exception):
pass
class SketchEnumerationFailure(Exception):
pass
class NoCandidates(Exception):
pass
class Grammar(object):
def __init__(self, logVariable, productions, continuationType=None):
self.logVariable = logVariable
self.productions = productions
self.continuationType = continuationType
self.expression2likelihood = dict((p, l) for l, _, p in productions)
self.expression2likelihood[Index(0)] = self.logVariable
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return Grammar(logVariable=r(self.logVariable),
productions=[(r(l),t,p)
for l,t,p in self.productions ],
continuationType=self.continuationType)
def strip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,strip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def unstrip_primitive_values(self):
return Grammar(logVariable=self.logVariable,
productions=[(l,t,unstrip_primitive_values(p))
for l,t,p in self.productions ],
continuationType=self.continuationType)
def __setstate__(self, state):
"""
Legacy support for loading grammar objects without the imperative type filled in
"""
assert 'logVariable' in state
assert 'productions' in state
if 'continuationType' in state:
continuationType = state['continuationType']
else:
if any( 'turtle' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("turtle")
elif any( 'tower' in str(t) for l,t,p in state['productions'] ):
continuationType = baseType("tower")
else:
continuationType = None
self.__init__(state['logVariable'], state['productions'], continuationType=continuationType)
@staticmethod
def fromProductions(productions, logVariable=0.0, continuationType=None):
"""Make a grammar from primitives and their relative logpriors."""
return Grammar(logVariable, [(l, p.infer(), p)
for l, p in productions],
continuationType=continuationType)
@staticmethod
def uniform(primitives, continuationType=None):
return Grammar(0.0, [(0.0, p.infer(), p) for p in primitives], continuationType=continuationType)
def __len__(self): return len(self.productions)
def __str__(self):
def productionKey(xxx_todo_changeme):
(l, t, p) = xxx_todo_changeme
return not isinstance(p, Primitive), l is not None and -l
if self.continuationType is not None:
lines = ["continuation : %s"%self.continuationType]
else:
lines = []
lines += ["%f\tt0\t$_" % self.logVariable]
for l, t, p in sorted(self.productions, key=productionKey):
if l is not None:
l = "%f\t%s\t%s" % (l, t, p)
else:
l = "-Inf\t%s\t%s" % (t, p)
if not t.isArrow() and isinstance(p, Invented):
try:
l += "\teval = %s" % (p.evaluate([]))
except BaseException:
pass
lines.append(l)
return "\n".join(lines)
def json(self):
j = {"logVariable": self.logVariable,
"productions": [{"expression": str(p), "logProbability": l}
for l, _, p in self.productions]}
if self.continuationType is not None:
j["continuationType"] = self.continuationType.json()
return j
def _immutable_code(self): return self.logVariable, tuple(self.productions)
def __eq__(self, o): return self._immutable_code() == o._immutable_code()
def __ne__(self, o): return not (self == o)
def __hash__(self): return hash(self._immutable_code())
@property
def primitives(self):
return [p for _, _, p in self.productions]
def removeProductions(self, ps):
return Grammar(
self.logVariable, [
(l, t, p) for (
l, t, p) in self.productions if p not in ps],
continuationType=self.continuationType)
def buildCandidates(self, request, context, environment,
# Should the log probabilities be normalized?
normalize=True,
# Should be returned a table mapping primitives to
# their candidate entry?
returnTable=False,
# Should we return probabilities vs log probabilities?
returnProbabilities=False,
# Must be a leaf (have no arguments)?
mustBeLeaf=False):
"""Primitives that are candidates for being used given a requested type
If returnTable is false (default): returns [((log)likelihood, tp, primitive, context)]
if returntable is true: returns {primitive: ((log)likelihood, tp, context)}"""
if returnProbabilities:
assert normalize
candidates = []
variableCandidates = []
for l, t, p in self.productions:
try:
newContext, t = t.instantiate(context)
newContext = newContext.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
candidates.append((l, t, p, newContext))
except UnificationFailure:
continue
for j, t in enumerate(environment):
try:
newContext = context.unify(t.returns(), request)
t = t.apply(newContext)
if mustBeLeaf and t.isArrow():
continue
variableCandidates.append((t, Index(j), newContext))
except UnificationFailure:
continue
if self.continuationType == request:
terminalIndices = [v.i for t,v,k in variableCandidates if not t.isArrow()]
if terminalIndices:
smallestIndex = Index(min(terminalIndices))
variableCandidates = [(t,v,k) for t,v,k in variableCandidates
if t.isArrow() or v == smallestIndex]
candidates += [(self.logVariable - log(len(variableCandidates)), t, p, k)
for t, p, k in variableCandidates]
if candidates == []:
raise NoCandidates()
#eprint("candidates inside buildCandidates before norm:")
#eprint(candidates)
if normalize:
z = lse([l for l, t, p, k in candidates])
if returnProbabilities:
candidates = [(exp(l - z), t, p, k)
for l, t, p, k in candidates]
else:
candidates = [(l - z, t, p, k) for l, t, p, k in candidates]
#eprint("candidates inside buildCandidates after norm:")
#eprint(candidates)
if returnTable:
return {p: (l, t, k) for l, t, p, k in candidates}
else:
return candidates
def sample(self, request, maximumDepth=6, maxAttempts=None):
attempts = 0
while True:
try:
_, e = self._sample(
request, Context.EMPTY, [], maximumDepth=maximumDepth)
return e
except NoCandidates:
if maxAttempts is not None:
attempts += 1
if attempts > maxAttempts:
return None
continue
def _sample(self, request, context, environment, maximumDepth):
if request.isArrow():
context, expression = self._sample(
request.arguments[1], context, [
request.arguments[0]] + environment, maximumDepth)
return context, Abstraction(expression)
candidates = self.buildCandidates(request, context, environment,
normalize=True,
returnProbabilities=True,
# Force it to terminate in a
# leaf; a primitive with no
# function arguments
mustBeLeaf=maximumDepth <= 1)
#eprint("candidates:")
#eprint(candidates)
newType, chosenPrimitive, context = sampleDistribution(candidates)
# Sample the arguments
xs = newType.functionArguments()
returnValue = chosenPrimitive
for x in xs:
x = x.apply(context)
context, x = self._sample(x, context, environment, maximumDepth - 1)
returnValue = Application(returnValue, x)
return context, returnValue
def likelihoodSummary(self, context, environment, request, expression, silent=False):
if request.isArrow():
if not isinstance(expression, Abstraction):
if not silent:
eprint("Request is an arrow but I got", expression)
return context, None
return self.likelihoodSummary(context,
[request.arguments[0]] + environment,
request.arguments[1],
expression.body,
silent=silent)
# Build the candidates
candidates = self.buildCandidates(request, context, environment,
normalize=False,
returnTable=True)
# A list of everything that would have been possible to use here
possibles = [p for p in candidates.keys() if not p.isIndex]
numberOfVariables = sum(p.isIndex for p in candidates.keys())
if numberOfVariables > 0:
possibles += [Index(0)]
f, xs = expression.applicationParse()
if f not in candidates:
if self.continuationType is not None and f.isIndex:
ls = LikelihoodSummary()
ls.constant = NEGATIVEINFINITY
return ls
if not silent:
eprint(f, "Not in candidates")
eprint("Candidates is", candidates)
#eprint("grammar:", grammar.productions)
eprint("request is", request)
eprint("xs", xs)
eprint("environment", environment)
assert False
return context, None
thisSummary = LikelihoodSummary()
thisSummary.record(f, possibles,
constant= -math.log(numberOfVariables) if f.isIndex else 0)
_, tp, context = candidates[f]
argumentTypes = tp.functionArguments()
if len(xs) != len(argumentTypes):
eprint("PANIC: not enough arguments for the type")
eprint("request", request)
eprint("tp", tp)
eprint("expression", expression)
eprint("xs", xs)
eprint("argumentTypes", argumentTypes)
# This should absolutely never occur
raise GrammarFailure((context, environment, request, expression))
for argumentType, argument in zip(argumentTypes, xs):
argumentType = argumentType.apply(context)
context, newSummary = self.likelihoodSummary(
context, environment, argumentType, argument, silent=silent)
if newSummary is None:
return context, None
thisSummary.join(newSummary)
return context, thisSummary
def bestFirstEnumeration(self, request):
from heapq import heappush, heappop
pq = []
def choices(parentCost, xs):
for c, x in xs:
heappush(pq, (parentCost + c, x))
def g(parentCost, request, _=None,
context=None, environment=[],
k=None):
"""
k is a continuation.
k: Expects to be called with MDL, context, expression.
"""
assert k is not None
if context is None:
context = Context.EMPTY
if request.isArrow():
g(parentCost,
request.arguments[1],
context=context,
environment=[request.arguments[0]] + environment,
k=lambda MDL,
newContext,
p: k(MDL,
newContext,
Abstraction(p)))
else:
candidates = self.buildCandidates(request,
context,
environment,
normalize=True,
returnProbabilities=False,
returnTable=True)
choices(parentCost,
[(-f_ll_tp_newContext[1][0],
lambda: ga(parentCost - f_ll_tp_newContext[1][0],
f_ll_tp_newContext[0],
f_ll_tp_newContext[1][1].functionArguments(),
context=f_ll_tp_newContext[1][2],
environment=environment,
k=k)) for f_ll_tp_newContext in iter(candidates.items())])
def ga(costSoFar, f, argumentTypes, _=None,
context=None, environment=None,
k=None):
if argumentTypes == []:
k(costSoFar, context, f)
else:
t1 = argumentTypes[0].apply(context)
g(costSoFar, t1, context=context, environment=environment,
k=lambda newCost, newContext, argument:
ga(newCost, Application(f, argument), argumentTypes[1:],
context=newContext, environment=environment,
k=k))
def receiveResult(MDL, _, expression):
heappush(pq, (MDL, expression))
g(0., request, context=Context.EMPTY, environment=[], k=receiveResult)
frontier = []
while len(frontier) < 10**3:
MDL, action = heappop(pq)
if isinstance(action, Program):
expression = action
frontier.append(expression)
#eprint("Enumerated program",expression,-MDL,self.closedLogLikelihood(request, expression))
else:
action()
def closedLikelihoodSummary(self, request, expression, silent=False):
try:
context, summary = self.likelihoodSummary(Context.EMPTY, [], request, expression, silent=silent)
except GrammarFailure as e:
failureExport = 'failures/grammarFailure%s.pickle' % (
time.time() + getPID())
eprint("PANIC: Grammar failure, exporting to ", failureExport)
with open(failureExport, 'wb') as handle:
pickle.dump((e, self, request, expression), handle)
assert False
return summary
def logLikelihood(self, request, expression):
summary = self.closedLikelihoodSummary(request, expression)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
expression, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self)
def rescoreFrontier(self, frontier):
return Frontier([FrontierEntry(e.program,
logPrior=self.logLikelihood(frontier.task.request, e.program),
logLikelihood=e.logLikelihood)
for e in frontier],
frontier.task)
def productionUses(self, frontiers):
"""Returns the expected number of times that each production was used. {production: expectedUses}"""
frontiers = [self.rescoreFrontier(f).normalize()
for f in frontiers if not f.empty]
uses = {p: 0. for p in self.primitives}
for f in frontiers:
for e in f:
summary = self.closedLikelihoodSummary(f.task.request,
e.program)
for p, u in summary.uses:
uses[p] += u * math.exp(e.logPosterior)
return uses
def insideOutside(self, frontiers, pseudoCounts, iterations=1):
# Replace programs with (likelihood summary, uses)
frontiers = [ Frontier([ FrontierEntry((summary, summary.toUses()),
logPrior=summary.logLikelihood(self),
logLikelihood=e.logLikelihood)
for e in f
for summary in [self.closedLikelihoodSummary(f.task.request, e.program)] ],
task=f.task)
for f in frontiers ]
g = self
for i in range(iterations):
u = Uses()
for f in frontiers:
f = f.normalize()
for e in f:
_, eu = e.program
u += math.exp(e.logPosterior) * eu
lv = math.log(u.actualVariables + pseudoCounts) - \
math.log(u.possibleVariables + pseudoCounts)
g = Grammar(lv,
[ (math.log(u.actualUses.get(p,0.) + pseudoCounts) - \
math.log(u.possibleUses.get(p,0.) + pseudoCounts),
t,p)
for _,t,p in g.productions ],
continuationType=self.continuationType)
if i < iterations - 1:
frontiers = [Frontier([ FrontierEntry((summary, uses),
logPrior=summary.logLikelihood(g),
logLikelihood=e.logLikelihood)
for e in f
for (summary, uses) in [e.program] ],
task=f.task)
for f in frontiers ]
return g
def frontierMDL(self, frontier):
return max( e.logLikelihood + self.logLikelihood(frontier.task.request, e.program)
for e in frontier )
def enumeration(self,context,environment,request,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all programs whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0 or maximumDepth == 1:
return
if request.isArrow():
v = request.arguments[0]
for l, newContext, b in self.enumeration(context, [v] + environment,
request.arguments[1],
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
candidates = self.buildCandidates(request, context, environment,
normalize=True)
for l, t, p, newContext in candidates:
mdl = -l
if not (mdl < upperBound):
continue
xs = t.functionArguments()
for aL, aK, application in\
self.enumerateApplication(newContext, environment, p, xs,
upperBound=upperBound + l,
lowerBound=lowerBound + l,
maximumDepth=maximumDepth - 1):
yield aL + l, aK, application
def enumerateApplication(self, context, environment,
function, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20,
originalFunction=None,
argumentIndex=0):
if upperBound < 0. or maximumDepth == 1:
return
if originalFunction is None:
originalFunction = function
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
for argL, newContext, arg in self.enumeration(context, environment, argRequest,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
if violatesSymmetry(originalFunction, arg, argumentIndex):
continue
newFunction = Application(function, arg)
for resultL, resultK, result in self.enumerateApplication(newContext, environment, newFunction,
laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth,
originalFunction=originalFunction,
argumentIndex=argumentIndex + 1):
yield resultL + argL, resultK, result
def sketchEnumeration(self,context,environment,request,sk,upperBound,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all sketch instantiations whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0. or maximumDepth == 1:
return
if sk.isHole:
yield from self.enumeration(context, environment, request, upperBound,
maximumDepth=maximumDepth,
lowerBound=lowerBound)
elif request.isArrow():
assert sk.isAbstraction
v = request.arguments[0]
for l, newContext, b in self.sketchEnumeration(context, [v] + environment,
request.arguments[1],
sk.body,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
f, xs = sk.applicationParse()
if f.isIndex:
ft = environment[f.i].apply(context)
elif f.isInvented or f.isPrimitive:
context, ft = f.tp.instantiate(context)
elif f.isAbstraction:
assert False, "sketch is not in beta longform"
elif f.isHole:
assert False, "hole as function not yet supported"
elif f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure:
print("Exception: sketch is ill-typed")
return #so that we can continue evaluating
# raise SketchEnumerationFailure() #"sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(xs)
yield from self.sketchApplication(context, environment,
f, xs, argumentRequests,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth - 1)
def sketchApplication(self, context, environment,
function, arguments, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20):
if upperBound < 0. or maximumDepth == 1:
return
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
firstSketch = arguments[0]
laterSketches = arguments[1:]
for argL, newContext, arg in self.sketchEnumeration(context, environment, argRequest,
firstSketch,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
newFunction = Application(function, arg)
for resultL, resultK, result in self.sketchApplication(newContext, environment, newFunction,
laterSketches, laterRequests,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth):
yield resultL + argL, resultK, result
def sketchLogLikelihood(self, request, full, sk, context=Context.EMPTY, environment=[]):
"""
calculates mdl of full program 'full' from sketch 'sk'
"""
if sk.isHole:
_, summary = self.likelihoodSummary(context, environment, request, full)
if summary is None:
eprint(
"FATAL: program [ %s ] does not have a likelihood summary." %
full, "r = ", request, "\n", self)
assert False
return summary.logLikelihood(self), context
elif request.isArrow():
assert sk.isAbstraction and full.isAbstraction
#assert sk.f == full.f #is this right? or do i need to recurse?
v = request.arguments[0]
return self.sketchLogLikelihood(request.arguments[1], full.body, sk.body, context=context, environment=[v] + environment)
else:
sk_f, sk_xs = sk.applicationParse()
full_f, full_xs = full.applicationParse()
if sk_f.isIndex:
assert sk_f == full_f, "sketch and full program don't match on an index"
ft = environment[sk_f.i].apply(context)
elif sk_f.isInvented or sk_f.isPrimitive:
assert sk_f == full_f, "sketch and full program don't match on a primitive"
context, ft = sk_f.tp.instantiate(context)
elif sk_f.isAbstraction:
assert False, "sketch is not in beta longform"
elif sk_f.isHole:
assert False, "hole as function not yet supported"
elif sk_f.isApplication:
assert False, "should never happen - bug in applicationParse"
else: assert False
try: context = context.unify(ft.returns(), request)
except UnificationFailure: assert False, "sketch is ill-typed"
ft = ft.apply(context)
argumentRequests = ft.functionArguments()
assert len(argumentRequests) == len(sk_xs) == len(full_xs) #this might not be true if holes??
return self.sketchllApplication(context, environment,
sk_f, sk_xs, full_f, full_xs, argumentRequests)
def sketchllApplication(self, context, environment,
sk_function, sk_arguments, full_function, full_arguments, argumentRequests):
if argumentRequests == []:
return torch.tensor([0.]).cuda(), context #does this make sense?
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
sk_firstSketch = sk_arguments[0]
full_firstSketch = full_arguments[0]
sk_laterSketches = sk_arguments[1:]
full_laterSketches = full_arguments[1:]
argL, newContext = self.sketchLogLikelihood(argRequest, full_firstSketch, sk_firstSketch, context=context, environment=environment)
#finish this...
sk_newFunction = Application(sk_function, sk_firstSketch) # is this redundant? maybe
full_newFunction = Application(full_function, full_firstSketch)
resultL, context = self.sketchllApplication(newContext, environment, sk_newFunction, sk_laterSketches,
full_newFunction, full_laterSketches, laterRequests)
return resultL + argL, context
def enumerateNearby(self, request, expr, distance=3.0):
"""Enumerate programs with local mutations in subtrees with small description length"""
if distance <= 0:
yield expr
else:
def mutations(tp, loss):
for l, _, expr in self.enumeration(
Context.EMPTY, [], tp, distance - loss):
yield expr, l
yield from Mutator(self, mutations).execute(expr, request)
def enumerateHoles(self, request, expr, k=3, return_obj=Hole):
"""Enumerate programs with a single hole within mdl distance"""
#TODO: make it possible to enumerate sketches with multiple holes
def mutations(tp, loss, is_left_application=False):
"""
to allow applications lhs to become a hole,
remove the condition below and ignore all the is_left_application kwds
"""
if not is_left_application:
yield return_obj(), 0
top_k = []
for expr, l in Mutator(self, mutations).execute(expr, request):
if len(top_k) > 0:
i, v = min(enumerate(top_k), key=lambda x:x[1][1])
if l > v[1]:
if len(top_k) >= k:
top_k[i] = (expr, l)
else:
top_k.append((expr, l))
elif len(top_k) < k:
top_k.append((expr, l))
else:
top_k.append((expr, l))
return sorted(top_k, key=lambda x:-x[1])
def untorch(self):
return Grammar(self.logVariable.data.tolist()[0],
[ (l.data.tolist()[0], t, p)
for l, t, p in self.productions],
continuationType=self.continuationType)
class LikelihoodSummary(object):
'''Summarizes the terms that will be used in a likelihood calculation'''
def __init__(self):
self.uses = {}
self.normalizers = {}
self.constant = 0.
def __str__(self):
return """LikelihoodSummary(constant = %f,
uses = {%s},
normalizers = {%s})""" % (self.constant,
", ".join(
"%s: %d" % (k,
v) for k,
v in self.uses.items()),
", ".join(
"%s: %d" % (k,
v) for k,
v in self.normalizers.items()))
def record(self, actual, possibles, constant=0.):
# Variables are all normalized to be $0
if isinstance(actual, Index):
actual = Index(0)
# Make it something that we can hash
possibles = frozenset(sorted(possibles, key=hash))
self.constant += constant
self.uses[actual] = self.uses.get(actual, 0) + 1
self.normalizers[possibles] = self.normalizers.get(possibles, 0) + 1
def join(self, other):
self.constant += other.constant
for k, v in other.uses.items():
self.uses[k] = self.uses.get(k, 0) + v
for k, v in other.normalizers.items():
self.normalizers[k] = self.normalizers.get(k, 0) + v
def logLikelihood(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def logLikelihood_overlyGeneral(self, grammar):
"""Calculates log likelihood of this summary, given that the summary might refer to productions that don't occur in the grammar"""
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items()) - \
sum(count * lse([grammar.expression2likelihood.get(p,NEGATIVEINFINITY) for p in ps])
for ps, count in self.normalizers.items())
def numerator(self, grammar):
return self.constant + \
sum(count * grammar.expression2likelihood[p] for p, count in self.uses.items())
def denominator(self, grammar):
return \
sum(count * lse([grammar.expression2likelihood[p] for p in ps])
for ps, count in self.normalizers.items())
def toUses(self):
from collections import Counter
possibleVariables = sum( count if Index(0) in ps else 0
for ps, count in self.normalizers.items() )
actualVariables = self.uses.get(Index(0), 0.)
actualUses = {k: v
for k, v in self.uses.items()
if not k.isIndex }
possibleUses = dict(Counter(p
for ps, count in self.normalizers.items()
for p_ in ps
if not p_.isIndex
for p in [p_]*count ))
return Uses(possibleVariables, actualVariables,
possibleUses, actualUses)
class Uses(object):
'''Tracks uses of different grammar productions'''
def __init__(self, possibleVariables=0., actualVariables=0.,
possibleUses={}, actualUses={}):
self.actualVariables = actualVariables
self.possibleVariables = possibleVariables
self.possibleUses = possibleUses
self.actualUses = actualUses
def __str__(self):
return "Uses(actualVariables = %f, possibleVariables = %f, actualUses = %s, possibleUses = %s)" %\
(self.actualVariables, self.possibleVariables, self.actualUses, self.possibleUses)
def __repr__(self): return str(self)
def __mul__(self, a):
return Uses(a * self.possibleVariables,
a * self.actualVariables,
{p: a * u for p, u in self.possibleUses.items()},
{p: a * u for p, u in self.actualUses.items()})
def __imul__(self, a):
self.possibleVariables *= a
self.actualVariables *= a
for p in self.possibleUses:
self.possibleUses[p] *= a
for p in self.actualUses:
self.actualUses[p] *= a
return self
def __rmul__(self, a):
return self * a
def __radd__(self, o):
if o == 0:
return self
return self + o
def __add__(self, o):
if o == 0:
return self
def merge(x, y):
z = x.copy()
for k, v in y.items():
z[k] = v + x.get(k, 0.)
return z
return Uses(self.possibleVariables + o.possibleVariables,
self.actualVariables + o.actualVariables,
merge(self.possibleUses, o.possibleUses),
merge(self.actualUses, o.actualUses))
def __iadd__(self, o):
self.possibleVariables += o.possibleVariables
self.actualVariables += o.actualVariables
for k, v in o.possibleUses.items():
self.possibleUses[k] = self.possibleUses.get(k, 0.) + v
for k, v in o.actualUses.items():
self.actualUses[k] = self.actualUses.get(k, 0.) + v
return self
@staticmethod
def join(z, *weightedUses):
"""Consumes weightedUses"""
if not weightedUses:
Uses.empty
if len(weightedUses) == 1:
return weightedUses[0][1]
for w, u in weightedUses:
u *= exp(w - z)
total = Uses()
total.possibleVariables = sum(
u.possibleVariables for _, u in weightedUses)
total.actualVariables = sum(u.actualVariables for _, u in weightedUses)
total.possibleUses = defaultdict(float)
total.actualUses = defaultdict(float)
for _, u in weightedUses:
for k, v in u.possibleUses.items():
total.possibleUses[k] += v
for k, v in u.actualUses.items():
total.actualUses[k] += v
return total
Uses.empty = Uses()
class ContextualGrammar:
def __init__(self, noParent, variableParent, library):
self.noParent, self.variableParent, self.library = noParent, variableParent, library
self.productions = [(None,t,p) for _,t,p in self.noParent.productions ]
self.primitives = [p for _,_2,p in self.productions ]
self.continuationType = noParent.continuationType
assert variableParent.continuationType == self.continuationType
assert set(noParent.primitives) == set(variableParent.primitives)
assert set(variableParent.primitives) == set(library.keys())
for e,gs in library.items():
assert len(gs) == len(e.infer().functionArguments())
for g in gs:
assert set(g.primitives) == set(library.keys())
assert g.continuationType == self.continuationType
def untorch(self):
return ContextualGrammar(self.noParent.untorch(), self.variableParent.untorch(),
{e: [g.untorch() for g in gs ]
for e,gs in self.library.items() })
def randomWeights(self, r):
"""returns a new grammar with random weights drawn from r. calls `r` w/ old weight"""
return ContextualGrammar(self.noParent.randomWeights(r),
self.variableParent.randomWeights(r),
{e: [g.randomWeights(r) for g in gs]
for e,gs in self.library.items() })
def __str__(self):
lines = ["No parent:",str(self.noParent),"",
"Variable parent:",str(self.variableParent),"",
""]
for e,gs in self.library.items():
for j,g in enumerate(gs):
lines.extend(["Parent %s, argument index %s"%(e,j),
str(g),
""])
return "\n".join(lines)
def json(self):
return {"noParent": self.noParent.json(),
"variableParent": self.variableParent.json(),
"productions": [{"program": str(e),
"arguments": [gp.json() for gp in gs ]}
for e,gs in self.library.items() ]}
@staticmethod
def fromGrammar(g):
return ContextualGrammar(g, g,
{e: [g]*len(e.infer().functionArguments())
for e in g.primitives })
class LS: # likelihood summary
def __init__(self, owner):
self.noParent = LikelihoodSummary()
self.variableParent = LikelihoodSummary()
self.library = {e: [LikelihoodSummary() for _ in gs] for e,gs in owner.library.items() }
def record(self, parent, parentIndex, actual, possibles, constant):
if parent is None: ls = self.noParent
elif parent.isIndex: ls = self.variableParent
else: ls = self.library[parent][parentIndex]
ls.record(actual, possibles, constant=constant)
def join(self, other):
self.noParent.join(other.noParent)
self.variableParent.join(other.variableParent)
for e,gs in self.library.items():
for g1,g2 in zip(gs, other.library[e]):
g1.join(g2)
def logLikelihood(self, owner):
return self.noParent.logLikelihood(owner.noParent) + \
self.variableParent.logLikelihood(owner.variableParent) + \
sum(r.logLikelihood(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def numerator(self, owner):
return self.noParent.numerator(owner.noParent) + \
self.variableParent.numerator(owner.variableParent) + \
sum(r.numerator(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def denominator(self, owner):
return self.noParent.denominator(owner.noParent) + \
self.variableParent.denominator(owner.variableParent) + \
sum(r.denominator(g)
for e, rs in self.library.items()
for r,g in zip(rs, owner.library[e]) )
def likelihoodSummary(self, parent, parentIndex, context, environment, request, expression):
if request.isArrow():
assert expression.isAbstraction
return self.likelihoodSummary(parent, parentIndex,
context,
[request.arguments[0]] + environment,
request.arguments[1],
expression.body)
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=False, returnTable=True)
# A list of everything that would have been possible to use here
possibles = [p for p in candidates.keys() if not p.isIndex]
numberOfVariables = sum(p.isIndex for p in candidates.keys())
if numberOfVariables > 0:
possibles += [Index(0)]
f, xs = expression.applicationParse()
assert f in candidates
thisSummary = self.LS(self)
thisSummary.record(parent, parentIndex,
f, possibles,
constant= -math.log(numberOfVariables) if f.isIndex else 0)
_, tp, context = candidates[f]
argumentTypes = tp.functionArguments()
assert len(xs) == len(argumentTypes)
for i, (argumentType, argument) in enumerate(zip(argumentTypes, xs)):
argumentType = argumentType.apply(context)
context, newSummary = self.likelihoodSummary(f, i,
context, environment, argumentType, argument)
thisSummary.join(newSummary)
return context, thisSummary
def closedLikelihoodSummary(self, request, expression):
return self.likelihoodSummary(None,None,
Context.EMPTY,[],
request, expression)[1]
def logLikelihood(self, request, expression):
return self.closedLikelihoodSummary(request, expression).logLikelihood(self)
def sample(self, request, maximumDepth=8, maxAttempts=None):
attempts = 0
while True:
try:
_, e = self._sample(None, None, Context.EMPTY, [], request, maximumDepth)
return e
except NoCandidates:
if maxAttempts is not None:
attempts += 1
if attempts > maxAttempts: return None
continue
def _sample(self, parent, parentIndex, context, environment, request, maximumDepth):
if request.isArrow():
context, body = self._sample(parent, parentIndex, context,
[request.arguments[0]] + environment,
request.arguments[1],
maximumDepth)
return context, Abstraction(body)
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=True, returnProbabilities=True,
mustBeLeaf=(maximumDepth <= 1))
newType, chosenPrimitive, context = sampleDistribution(candidates)
xs = newType.functionArguments()
returnValue = chosenPrimitive
for j,x in enumerate(xs):
x = x.apply(context)
context, x = self._sample(chosenPrimitive, j, context, environment, x, maximumDepth - 1)
returnValue = Application(returnValue, x)
return context, returnValue
def expectedUsesMonteCarlo(self, request, debug=None):
import numpy as np
n = 0
u = [0.]*len(self.primitives)
primitives = list(sorted(self.primitives, key=str))
noInventions = all( not p.isInvented for p in primitives )
primitive2index = {primitive: i
for i, primitive in enumerate(primitives)
if primitive.isInvented or noInventions }
eprint(primitive2index)
ns = 10000
with timing(f"calculated expected uses using Monte Carlo simulation w/ {ns} samples"):
for _ in range(ns):
p = self.sample(request, maxAttempts=0)
if p is None: continue
n += 1
if debug and n < 10:
eprint(debug, p)
for _, child in p.walk():
if child not in primitive2index: continue
u[primitive2index[child]] += 1.0
u = np.array(u)/n
if debug:
eprint(f"Got {n} samples. Feature vector:\n{u}")
eprint(f"Likely used primitives: {[p for p,i in primitive2index.items() if u[i] > 0.5]}")
eprint(f"Likely used primitive indices: {[i for p,i in primitive2index.items() if u[i] > 0.5]}")
return u
def featureVector(self, _=None, requests=None, onlyInventions=True, normalize=True):
"""
Returns the probabilities licensed by the type system.
This is like the grammar productions, but with irrelevant junk removed.
Its intended use case is for clustering; it should be strictly better than the raw transition matrix.
"""
if requests is None:
if self.continuationType: requests = {self.continuationType}
elif any( 'REAL' == str(p) for p in self.primitives ): requests = set()
elif any( 'STRING' == str(p) for p in self.primitives ): requests = {tlist(tcharacter)}
else: requests = set()
requests = {r.returns() for r in requests}
features = []
logWeights = []
for l,t,p in sorted(self.noParent.productions,
key=lambda z: str(z[2])):
if onlyInventions and not p.isInvented: continue
if any( canUnify(r, t.returns()) for r in requests ) or len(requests) == 0:
logWeights.append(l)
features.append(logWeights)
for parent in sorted(self.primitives, key=str):
if onlyInventions and not parent.isInvented: continue
if parent not in self.library: continue
argumentTypes = parent.infer().functionArguments()
for j,g in enumerate(self.library[parent]):
argumentType = argumentTypes[j]
logWeights = []
for l,t,p in sorted(g.productions,
key=lambda z: str(z[2])):
if onlyInventions and not p.isInvented: continue
if canUnify(argumentType.returns(), t.returns()):
logWeights.append(l)
features.append(logWeights)
if normalize:
features = [ [math.exp(w - z) for w in lw ]
for lw in features
if lw
for z in [lse(lw)] ]
import numpy as np
return np.array([f
for lw in features
for f in lw])
def enumeration(self,context,environment,request,upperBound,
parent=None, parentIndex=None,
maximumDepth=20,
lowerBound=0.):
'''Enumerates all programs whose MDL satisfies: lowerBound <= MDL < upperBound'''
if upperBound < 0 or maximumDepth == 1:
return
if request.isArrow():
v = request.arguments[0]
for l, newContext, b in self.enumeration(context, [v] + environment,
request.arguments[1],
parent=parent, parentIndex=parentIndex,
upperBound=upperBound,
lowerBound=lowerBound,
maximumDepth=maximumDepth):
yield l, newContext, Abstraction(b)
else:
if parent is None: g = self.noParent
elif parent.isIndex: g = self.variableParent
else: g = self.library[parent][parentIndex]
candidates = g.buildCandidates(request, context, environment,
normalize=True)
for l, t, p, newContext in candidates:
mdl = -l
if not (mdl < upperBound):
continue
xs = t.functionArguments()
for aL, aK, application in\
self.enumerateApplication(newContext, environment, p, xs,
parent=p,
upperBound=upperBound + l,
lowerBound=lowerBound + l,
maximumDepth=maximumDepth - 1):
yield aL + l, aK, application
def enumerateApplication(self, context, environment,
function, argumentRequests,
# Upper bound on the description length of all of
# the arguments
upperBound,
# Lower bound on the description length of all of
# the arguments
lowerBound=0.,
maximumDepth=20,
parent=None,
originalFunction=None,
argumentIndex=0):
assert parent is not None
if upperBound < 0. or maximumDepth == 1:
return
if originalFunction is None:
originalFunction = function
if argumentRequests == []:
if lowerBound <= 0. and 0. < upperBound:
yield 0., context, function
else:
return
else:
argRequest = argumentRequests[0].apply(context)
laterRequests = argumentRequests[1:]
for argL, newContext, arg in self.enumeration(context, environment, argRequest,
parent=parent, parentIndex=argumentIndex,
upperBound=upperBound,
lowerBound=0.,
maximumDepth=maximumDepth):
if violatesSymmetry(originalFunction, arg, argumentIndex):
continue
newFunction = Application(function, arg)
for resultL, resultK, result in self.enumerateApplication(newContext, environment, newFunction,
laterRequests,
parent=parent,
upperBound=upperBound + argL,
lowerBound=lowerBound + argL,
maximumDepth=maximumDepth,
originalFunction=originalFunction,
argumentIndex=argumentIndex + 1):
yield resultL + argL, resultK, result
def violatesSymmetry(f, x, argumentIndex):
if not f.isPrimitive:
return False
while x.isApplication:
x = x.f
if not x.isPrimitive:
return False
f = f.name
x = x.name
if f == "car":
return x == "cons" or x == "empty"
if f == "cdr":
return x == "cons" or x == "empty"
if f == "+":
return x == "0" or (argumentIndex == 1 and x == "+")
if f == "-":
return argumentIndex == 1 and x == "0"
if f == "empty?":
return x == "cons" or x == "empty"
if f == "zero?":
return x == "0" or x == "1"
if f == "index" or f == "map" or f == "zip":
return x == "empty"
if f == "range":
return x == "0"
if f == "fold":
return argumentIndex == 1 and x == "empty"
return False
def batchLikelihood(jobs):
"""Takes as input a set of (program, request, grammar) and returns a dictionary mapping each of these to its likelihood under the grammar"""
superGrammar = Grammar.uniform(list({p for _1,_2,g in jobs for p in g.primitives}),
continuationType=list(jobs)[0][-1].continuationType)
programsAndRequests = {(program, request)
for program, request, grammar in jobs}
with timing(f"Calculated {len(programsAndRequests)} likelihood summaries"):
summary = {(program, request): superGrammar.closedLikelihoodSummary(request, program)
for program, request in programsAndRequests}
with timing(f"Calculated log likelihoods from summaries"):
response = {}
for program, request, grammar in jobs:
fast = summary[(program, request)].logLikelihood_overlyGeneral(grammar)
if False: # debugging
slow = grammar.logLikelihood(request, program)
print(program)
eprint(grammar.closedLikelihoodSummary(request, program))
eprint(superGrammar.closedLikelihoodSummary(request, program))
print()
assert abs(fast - slow) < 0.0001
response[(program, request, grammar)] = fast
return response
if __name__ == "__main__":
from dreamcoder.domains.arithmetic.arithmeticPrimitives import *
g = ContextualGrammar.fromGrammar(Grammar.uniform([k0,k1,addition, subtraction]))
g = g.randomWeights(lambda *a: random.random())
#p = Program.parse("(lambda (+ 1 $0))")
request = arrow(tint,tint)
for ll,_,p in g.enumeration(Context.EMPTY,[],request,
12.):
ll_ = g.logLikelihood(request,p)
print(ll,p,ll_)
d = abs(ll - ll_)
assert d < 0.0001