Datasets:
File size: 1,401 Bytes
17ae981 13aa780 9cb2890 1068494 20ca969 8d987aa 1068494 17ae981 1068494 3d53fde 9cb2890 ee3097e 6bde80f 1068494 6bde80f 1068494 6bde80f 9cb2890 ee3097e 6bde80f 07f2767 ee3097e 07f2767 ee3097e 6bde80f 0e6baf8 9cb2890 ee3097e 58a1736 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: apache-2.0
language:
- ar
task_categories:
- text-classification
- zero-shot-classification
tags:
- nlp
- moderation
size_categories:
- 10K<n<100K
---
This is a large corpus of 42,619 preprocessed text messages and emails sent by humans in 43 languages. `is_spam=1` means spam and `is_spam=0` means ham.
1040 rows of balanced data, consisting of casual conversations and scam emails in ≈10 languages, were manually collected and annotated by me, with some help from ChatGPT.
<br>
### Some preprcoessing algorithms
- [spam_assassin.js](./spam_assassin.js), followed by [spam_assassin.py](./spam_assassin.py)
- [enron_spam.py](./enron_spam.py)
<br>
### Data composition
![Spam vs Non-spam (Ham)](https://i.imgur.com/p5ytV4q.png)
<br>
### Description
To make the text format between sms messages and emails consistent, email subjects and content are separated by two newlines:
```python
text = email.subject + "\n\n" + email.content
```
<br>
### Suggestions
- If you plan to train a model based on this dataset alone, I recommend adding **some** rows with `is_toxic=0` from `FredZhang7/toxi-text-3M`. Make sure the rows aren't spam.
<br>
### Other Sources
- https://huggingface.co/datasets/sms_spam
- https://github.com/MWiechmann/enron_spam_data
- https://github.com/stdlib-js/datasets-spam-assassin
- https://repository.ortolang.fr/api/content/comere/v3.3/cmr-simuligne.html |