Optimize the inspection of the dataset
#2
by
albertvillanova
HF staff
- opened
- gqa-lxmert.py +56 -34
gqa-lxmert.py
CHANGED
@@ -91,52 +91,49 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
91 |
def _split_generators(self, dl_manager):
|
92 |
"""Returns SplitGenerators."""
|
93 |
dl_dir = dl_manager.download_and_extract(_URLS)
|
94 |
-
|
95 |
-
|
96 |
-
self.test_id2features = self._load_features(os.path.join(dl_dir["test_feat"], TEST_FEAT_PATH))
|
97 |
-
|
98 |
return [
|
99 |
datasets.SplitGenerator(
|
100 |
name=datasets.Split.TRAIN,
|
101 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
|
|
102 |
),
|
103 |
datasets.SplitGenerator(
|
104 |
name=datasets.Split.VALIDATION,
|
105 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
|
|
106 |
),
|
107 |
datasets.SplitGenerator(
|
108 |
name=datasets.Split.TEST,
|
109 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
|
|
110 |
),
|
111 |
]
|
112 |
|
113 |
-
def
|
114 |
-
"""Returns a dictionary mapping an image id to the corresponding image's objects features."""
|
115 |
-
id2features = {}
|
116 |
-
with open(filepath) as f:
|
117 |
-
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
|
118 |
-
for i, item in enumerate(reader):
|
119 |
-
features = {}
|
120 |
-
img_h = int(item["img_h"])
|
121 |
-
img_w = int(item["img_w"])
|
122 |
-
num_boxes = int(item["num_boxes"])
|
123 |
-
features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(
|
124 |
-
(num_boxes, -1)
|
125 |
-
)
|
126 |
-
boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4))
|
127 |
-
features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w)
|
128 |
-
id2features[item["img_id"]] = features
|
129 |
-
return id2features
|
130 |
-
|
131 |
-
def _normalize_boxes(self, boxes, img_h, img_w):
|
132 |
-
""" Normalizes the input boxes given the original image size."""
|
133 |
-
normalized_boxes = boxes.copy()
|
134 |
-
normalized_boxes[:, (0, 2)] /= img_w
|
135 |
-
normalized_boxes[:, (1, 3)] /= img_h
|
136 |
-
return normalized_boxes
|
137 |
-
|
138 |
-
def _generate_examples(self, filepath, testset=False):
|
139 |
""" Yields examples as (key, example) tuples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
with open(filepath, encoding="utf-8") as f:
|
141 |
gqa = json.load(f)
|
142 |
for id_, d in enumerate(gqa):
|
@@ -161,4 +158,29 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
161 |
"features": img_features["features"],
|
162 |
"normalized_boxes": img_features["normalized_boxes"],
|
163 |
"label": label,
|
164 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def _split_generators(self, dl_manager):
|
92 |
"""Returns SplitGenerators."""
|
93 |
dl_dir = dl_manager.download_and_extract(_URLS)
|
94 |
+
trainval_features_path = os.path.join(dl_dir["trainval_feat"], TRAINVAL_FEAT_PATH)
|
95 |
+
test_features_path = os.path.join(dl_dir["test_feat"], TEST_FEAT_PATH)
|
|
|
|
|
96 |
return [
|
97 |
datasets.SplitGenerator(
|
98 |
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={
|
100 |
+
"filepath": dl_dir["train"],
|
101 |
+
"ans2label_path": dl_dir["ans2label"],
|
102 |
+
"features_path": trainval_features_path,
|
103 |
+
"testset": False,
|
104 |
+
},
|
105 |
),
|
106 |
datasets.SplitGenerator(
|
107 |
name=datasets.Split.VALIDATION,
|
108 |
+
gen_kwargs={
|
109 |
+
"filepath": dl_dir["valid"],
|
110 |
+
"ans2label_path": dl_dir["ans2label"],
|
111 |
+
"features_path": trainval_features_path,
|
112 |
+
"testset": False,
|
113 |
+
},
|
114 |
),
|
115 |
datasets.SplitGenerator(
|
116 |
name=datasets.Split.TEST,
|
117 |
+
gen_kwargs={
|
118 |
+
"filepath": dl_dir["testdev"],
|
119 |
+
"ans2label_path": dl_dir["ans2label"],
|
120 |
+
"features_path": test_features_path,
|
121 |
+
"testset": True,
|
122 |
+
},
|
123 |
),
|
124 |
]
|
125 |
|
126 |
+
def _generate_examples(self, filepath, ans2label_path, features_path, testset=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
""" Yields examples as (key, example) tuples."""
|
128 |
+
if not hasattr(self, "ans2label"):
|
129 |
+
with open(ans2label_path, encoding="utf-8") as f:
|
130 |
+
self.ans2label = json.load(f)
|
131 |
+
if testset:
|
132 |
+
self.test_id2features = self._load_features(features_path)
|
133 |
+
else:
|
134 |
+
if not hasattr(self, "trainval_id2features"):
|
135 |
+
self.trainval_id2features = self._load_features(features_path)
|
136 |
+
|
137 |
with open(filepath, encoding="utf-8") as f:
|
138 |
gqa = json.load(f)
|
139 |
for id_, d in enumerate(gqa):
|
|
|
158 |
"features": img_features["features"],
|
159 |
"normalized_boxes": img_features["normalized_boxes"],
|
160 |
"label": label,
|
161 |
+
}
|
162 |
+
|
163 |
+
def _load_features(self, filepath):
|
164 |
+
"""Returns a dictionary mapping an image id to the corresponding image's objects features."""
|
165 |
+
id2features = {}
|
166 |
+
with open(filepath) as f:
|
167 |
+
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
|
168 |
+
for i, item in enumerate(reader):
|
169 |
+
features = {}
|
170 |
+
img_h = int(item["img_h"])
|
171 |
+
img_w = int(item["img_w"])
|
172 |
+
num_boxes = int(item["num_boxes"])
|
173 |
+
features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(
|
174 |
+
(num_boxes, -1)
|
175 |
+
)
|
176 |
+
boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4))
|
177 |
+
features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w)
|
178 |
+
id2features[item["img_id"]] = features
|
179 |
+
return id2features
|
180 |
+
|
181 |
+
def _normalize_boxes(self, boxes, img_h, img_w):
|
182 |
+
""" Normalizes the input boxes given the original image size."""
|
183 |
+
normalized_boxes = boxes.copy()
|
184 |
+
normalized_boxes[:, (0, 2)] /= img_w
|
185 |
+
normalized_boxes[:, (1, 3)] /= img_h
|
186 |
+
return normalized_boxes
|