hupd / tests /tests.py
lukemelas's picture
Adding datasets
6fad1a6
"""
Dataset loading tests. Run with:
PYTHONPATH=. pytest tests/tests.py -vvrP
Additional notes about pytest:
- Skip a test with @pytest.mark.skip(reason='skipping')
- Use `-vvrP` to print stdout
"""
import pdb
import os
from pathlib import Path
from pprint import pprint
import pytest
import torch
import torch.nn.functional as F
import torch.utils.data
from datasets import load_dataset
def test_dataset_sample():
"""Load the sample dataset"""
root = os.getcwd()
dataset_dict = load_dataset(
'hupd.py',
name='sample',
data_files=os.path.join(root, "hupd_metadata_jan16_2022-02-22.feather"),
data_dir=os.path.join(root, "data/sample"),
uniform_split=True
)
for name, dataset in dataset_dict.items():
print(f'Dataset {name}: {len(dataset)}')
import pdb; pdb.set_trace()
if __name__ == '__main__':
test_dataset_sample()
# # # ----- Data loading example 1 ------
# # # To load a dataset from files directly, pass in the
# # # data_files and data_dir parameters. For example:
# # # ----- Data loading example 2 ------
# # # It is simple to specify an IPCR or CPC label and
# # # a date range for training/validation. For example:
# # dataset_dict = load_dataset(
# # 'patents.py',
# # data_files="/blob/uspto/data/codebooks/data_link_new.pkl",
# # data_dir="/blob/uspto/data/distilled",
# # ipcr_label='G01T', #'G06F',
# # cpc_label=None,
# # train_filing_start_date=None,
# # train_filing_end_date=None,
# # val_filing_start_date=None,
# # val_filing_end_date=None,
# # )
# # # ----- Data loading example 3 ------
# # If you do not specify the data_files and data_dir parameters, the
# # dataset will be downloaded automatically for you. For example:
# dataset_dict = load_dataset(
# 'patents.py',
# data_dir="/blob/uspto/data/distilled",
# cache_dir='/blob/data/patents/distilled/distilled/huggingface-dataset/cache',
# ipcr_label=None, # 'G01T', #'G06F', # cpc_label='G01T',
# train_filing_start_date='2016-01-01',
# train_filing_end_date='2016-01-05',
# val_filing_start_date='2017-01-01',
# val_filing_end_date='2017-01-05',
# )
# def combine_two_sections(tokenizer, dataset, s1, s2, new_tokens):
# # Add the seperation token
# if tokenizer.sep_token != '[SEP]':
# tokenizer.add_tokens(['[SEP]'], special_tokens=True)
# tokenizer.sep_token = '[SEP]'
# print(f'[OLD] len(tokenizer.vocab) = {len(tokenizer)}')
# tokenizer.add_tokens(new_tokens + [s1.upper(), 'TITLE', 'YEAR', s2.upper()])
# print(f'[NEW] len(tokenizer.vocab) = {len(tokenizer)}')
# dataset = dataset.map(
# # lambda e: {f'{s1}_{s2}': f'[SEP] {s1.upper()} ' + e[s1 + '_label'][:4] + ' [SEP] ' + e[s2]})
# lambda e: {f'{s1}_{s2}': f'[SEP] TITLE ' + e['title'] + '. YEAR ' + e['filing_date'][:4] + f'. {s1.upper()} ' + e[s1 + '_label'][:4] + f' [SEP] {s2.upper()} ' + e[s2]})
# return tokenizer, dataset
# def convert_ids_to_string(tokenizer, input):
# return ' '.join(tokenizer.convert_ids_to_tokens(input))
# conditional = 'ipc'
# section = 'abstract'
# # Print some metadata
# print('Dataset dictionary contents:')
# pprint(dataset_dict)
# print('Dataset dictionary cached to:')
# pprint(dataset_dict.cache_files)
# print(f'Train dataset size: {dataset_dict["train"].shape}')
# print(f'Validation dataset size: {dataset_dict["validation"].shape}')
# # Example: preprocess dataset "decision" feature for classification
# decision_to_str = {
# 'REJECTED': 0,
# 'ACCEPTED': 1,
# 'PENDING': 2,
# 'CONT-REJECTED': 3,
# 'CONT-ACCEPTED': 4,
# 'CONT-PENDING': 5
# }
# def map_decision_to_string(example):
# # NOTE: returned dict updates the example
# return {'decision': decision_to_str[example['decision']]}
# # Performing the remapping means iterating over the dataset
# # NOTE: This stores the updated table in a cache file indexed
# # by the current state and the mapping function
# train_dataset = dataset_dict['train'].map(map_decision_to_string)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)
# # Example: preprocess dataset "abstract" field using huggingface
# # tokenizers for classification. We truncate at the max token length.
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained('roberta-base')
# # def map_cpc_label(example):
# # # NOTE: returned dict updates the example
# # # print(tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])))
# # return {'cpc_label': tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])}
# # train_dataset = train_dataset.map(map_cpc_label)
# if conditional:
# f = open(f'{conditional}_labels.txt', 'r')
# new_tokens = f.read().split('\n')
# tokenizer, train_dataset = combine_two_sections(tokenizer, train_dataset, conditional, section, new_tokens)
# section = f'{conditional}_{section}'
# # We tokenize in batches, so it is actually quite fast
# print('Tokenizing')
# train_dataset = train_dataset.map(
# lambda e: tokenizer((e[section]), truncation=True, padding='max_length'),
# batched=True)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)
# print('Processed train dataset columns: ')
# pprint(train_dataset.column_names)
# # Convert to PyTorch Dataset
# # NOTE: If you also want to return string columns (as a list), just
# # pass `output_all_columns=True` to the dataset
# train_dataset.set_format(type='torch',
# columns=['input_ids', 'attention_mask', 'decision'])
# # Standard PyTorch DataLoader
# from torch.utils.data import DataLoader
# train_dataloader = DataLoader(train_dataset, batch_size=16)
# print('Shapes of items in batch from standard PyTorch DataLoader:')
# pprint({k: v.shape for k, v in next(iter(train_dataloader)).items()})
# print('Batch from standard PyTorch DataLoader:')
# batch = next(iter(train_dataloader))
# pprint(batch['input_ids'])
# pprint(batch['decision'])
# # Print examples
# print(convert_ids_to_string(tokenizer, batch['input_ids'][0]))
# pprint(batch['input_ids'][0][:20])
# # vocab = batch['input_ids'][0][:20]
# # for elt in vocab:
# # print(f'{elt}: {convert_ids_to_string(tokenizer, [elt])}')
# print(tokenizer.decode(batch['input_ids'][0]))
# print('All done')