Instruction
stringlengths
33
156
Supporting Information
stringlengths
451
33.9k
Output
stringlengths
73
1.88k
Text
stringlengths
739
34.4k
Does Adalimumab and Varicella zoster vaccine (liveattenuated) interact?
•Drug A: Adalimumab •Drug B: Varicella zoster vaccine (liveattenuated) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Varicella zoster vaccine (live/attenuated). •Extended Description: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found
In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. The severity of the interaction is minor.
Question: Does Adalimumab and Varicella zoster vaccine (liveattenuated) interact? Information: •Drug A: Adalimumab •Drug B: Varicella zoster vaccine (liveattenuated) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Varicella zoster vaccine (live/attenuated). •Extended Description: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found Output: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. The severity of the interaction is minor.
Does Adalimumab and Varicella zoster vaccine (recombinant) interact?
•Drug A: Adalimumab •Drug B: Varicella zoster vaccine (recombinant) •Severity: MODERATE •Description: The therapeutic efficacy of Varicella zoster vaccine (recombinant) can be decreased when used in combination with Adalimumab. •Extended Description: Vaccine efficacy may be reduced when immunosuppressant medications are coadministered. Vaccines are designed to elicit an immune response, and this response may be inhibited by immunosuppressants. The administration of live vaccines can also provide a risk as the infection process can be developed due to the immunosuppressive agent. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found
Vaccine efficacy may be reduced when immunosuppressant medications are coadministered. Vaccines are designed to elicit an immune response, and this response may be inhibited by immunosuppressants. The administration of live vaccines can also provide a risk as the infection process can be developed due to the immunosuppressive agent. The severity of the interaction is moderate.
Question: Does Adalimumab and Varicella zoster vaccine (recombinant) interact? Information: •Drug A: Adalimumab •Drug B: Varicella zoster vaccine (recombinant) •Severity: MODERATE •Description: The therapeutic efficacy of Varicella zoster vaccine (recombinant) can be decreased when used in combination with Adalimumab. •Extended Description: Vaccine efficacy may be reduced when immunosuppressant medications are coadministered. Vaccines are designed to elicit an immune response, and this response may be inhibited by immunosuppressants. The administration of live vaccines can also provide a risk as the infection process can be developed due to the immunosuppressive agent. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found Output: Vaccine efficacy may be reduced when immunosuppressant medications are coadministered. Vaccines are designed to elicit an immune response, and this response may be inhibited by immunosuppressants. The administration of live vaccines can also provide a risk as the infection process can be developed due to the immunosuppressive agent. The severity of the interaction is moderate.
Does Adalimumab and Vedolizumab interact?
•Drug A: Adalimumab •Drug B: Vedolizumab •Severity: MAJOR •Description: The risk or severity of infection can be increased when Adalimumab is combined with Vedolizumab. •Extended Description: Various clinical studies have shown that the use of tumor necrosis factor-alpha (TNF-α) inhibitors in patients is associated with the possibility of developing infections, lymphoma, and/or other malignancies, some incidences of which can be fatal . At the same time, infections likely due to immunosuppression are also one of the most common adverse effects associated with the use of the integrin receptor antagonist, vedolizumab . As a result, if vedolizumab is used concomitantly with TNF-α inhibitors, there is a concern that the combined, additive immunosuppressive effects of both types of medications could subsequently cause an increased risk, incidence, or severity of infections. In particular, the concomitant use of vedolizumab and TNF antagonists is not formally recommended because of the proposed possibility of increased and severe immunosuppression and risk of infection. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vedolizumab is indicated for adult patients with moderately to severely active Ulcerative Colitis or Crohn’s disease. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Non-clinical studies have shown that the pharmacodynamic effects of vedolizumab are reversible upon removal of the antibody: pharmacologic activity of cells inhibited by vedolizumab could be partially restored within 24 hours after removal, with near complete restoration within 4 days. There are no known drug interactions as vedolizumab is a humanized antibody and does not modulate the production of cytokines, which is known to affect drug metabolism. The α4β7 integrin is expressed on the surface of a discrete subset of memory T-lymphocytes that preferentially migrate into the gastrointestinal tract. Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is mainly expressed on gut endothelial cells and plays a critical role in homing T-lymphocytes to gut lymph tissue. The interaction of the α4β7 integrin with MAdCAM-1 has been implicated as an important contributor to chronic inflammation, a hallmark of ulcerative colitis and Crohn’s disease. Inhibition of α4β7 integrin by vedolizumab prevents the adhesion of lymphocytes to its natural ligand, thus decreasing the migration of memory T-lymphocytes across the endothelium into inflamed gastrointestinal parenchymal tissue. In clinical trials with vedolizumab at doses ranging from 0.2 to 10 mg/kg (which includes doses outside of the recommended dose), saturation of α4β7 receptors on subsets of circulating lymphocytes involved in gut-immune surveillance was observed. In clinical trials with vedolizumab at doses ranging from 0.2 to 10 mg/kg and 180 to 750 mg (which include doses outside of the recommended dose) in healthy subjects and in patients with ulcerative colitis or Crohn’s disease, vedolizumab did not elevate neutrophils, basophils, eosinophils, B-helper and cytotoxic T-lymphocytes, total memory helper T-lymphocytes, monocytes or natural killer cells. A reduction in gastrointestinal inflammation was observed in rectal biopsy specimens from Phase 2 ulcerative colitis patients exposed to vedolizumab for four or six weeks compared to placebo control as assessed by histopathology. In a study of 14 healthy subjects, vedolizumab did not affect the CD4+ lymphocyte cell counts, CD8+ lymphocyte cell counts, or the CD4+:CD8+ ratios in the CSF. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vedolizumab is a humanized monoclonal antibody that specifically binds to the α4β7 integrin and blocks the interaction of α4β7 integrin with MAdCAM-1. Vedolizumab does not bind to or inhibit the function of the α4β1 and αEβ7 integrins and does not antagonize the interaction of α4 integrins with vascular cell adhesion molecule-1 (VCAM-1). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The intended route of administration is intravenous, therefore there is no absorption data and bioavailability is expected to be 100%. Following the administration of 300 mg of vedolizumab as a 30-minute intravenous infusion from week 0 to 2 and 300 mg every eight weeks starting from Week 6, the trough serum concentration of vedolizumab is 26.3 ± 12.9 and 27.4 ± 19.2 mcg/mL for Ulcerative Colitis and Crohn’s Disease patients respectively at week 6. At week 46, the trough serum concentration of vedolizumab is 11.2 ± 7.2 and 13.0 ± 9.1 mcg/mL for Ulcerative Colitis and Crohn’s Disease patients respectively. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Serum apparent volume of distribution at steady-state has been found to be moderately greater than the serum volume (approximately 5L). It is therefore expected to be confined to the systemic circulation, as expected for a high molecular weight protein. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vedolizumab is a therapeutic monoclonal antibody and is not expected to bind to plasma proteins. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The expected consequence of metabolism is proteolytic degradation to small peptides and individual amino acids, and receptor-mediated clearance. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Renal clearance is negligible as vedolizumab is a high molecular weight protein. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vedolizumab has a long terminal elimination half-life of 25 days. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Vedolizumab clearance depends on both linear and nonlinear pathways; the nonlinear clearance decreases with increasing concentrations. Population pharmacokinetic analyses indicated that the linear clearance was approximately 0.157 L/day or 0.180 to 0.266 ml/hr/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Elevated transaminase levels with or without elevated bilirubin have occurred in patients who have received this drug. Progressive multifocal leukoencephalopathy (PML) has not been reported with the use of this drug, however, it has occurred in patients who have received different integrin receptor antagonists and is therefore considered a risk for this product. The use of vedolizumab may increase the risk of developing infections, and one study found that nasopharyngitis occurs more frequently with vedolizumab than with THE placebo for Crohn’s disease patients. Available pharmacovigilance data, data from the ongoing pregnancy registry, and data from published case reports and cohort studies in pregnant women have not identified a vedolizumab-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. There are risks to the mother and the fetus associated with inflammatory bowel disease in pregnancy. No fetal harm was observed in animal reproduction studies with intravenous administration of vedolizumab to rabbits and monkeys at dose levels 20 times the recommended human dosage. Published data suggest that the risk of adverse pregnancy outcomes in women with inflammatory bowel disease (IBD) is associated with increased disease activity. Adverse pregnancy outcomes include preterm delivery (before 37 weeks of gestation), low birth weight (less than 2,500 g) infants, and small for gestational age at birth. Vedolizumab administered during pregnancy could affect immune responses in the in-utero-exposed newborn and infant. The clinical significance of low levels of vedolizumab in utero-exposed infants is unknown. The safety of administering live or live-attenuated vaccines in exposed infants is unknown. Long-term studies in animals have not been performed to evaluate the carcinogenic potential of vedolizumab. Studies to evaluate the possible impairment of fertility or mutagenic potential of vedolizumab have not been performed. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Entyvio •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vedolizumab is an integrin blocker and anti-inflammatory agent used to manage ulcerative colitis and Crohn's disease in adults.
Various clinical studies have shown that the use of tumor necrosis factor-alpha (TNF-α) inhibitors in patients is associated with the possibility of developing infections, lymphoma, and/or other malignancies, some incidences of which can be fatal . At the same time, infections likely due to immunosuppression are also one of the most common adverse effects associated with the use of the integrin receptor antagonist, vedolizumab . As a result, if vedolizumab is used concomitantly with TNF-α inhibitors, there is a concern that the combined, additive immunosuppressive effects of both types of medications could subsequently cause an increased risk, incidence, or severity of infections. In particular, the concomitant use of vedolizumab and TNF antagonists is not formally recommended because of the proposed possibility of increased and severe immunosuppression and risk of infection. The severity of the interaction is major.
Question: Does Adalimumab and Vedolizumab interact? Information: •Drug A: Adalimumab •Drug B: Vedolizumab •Severity: MAJOR •Description: The risk or severity of infection can be increased when Adalimumab is combined with Vedolizumab. •Extended Description: Various clinical studies have shown that the use of tumor necrosis factor-alpha (TNF-α) inhibitors in patients is associated with the possibility of developing infections, lymphoma, and/or other malignancies, some incidences of which can be fatal . At the same time, infections likely due to immunosuppression are also one of the most common adverse effects associated with the use of the integrin receptor antagonist, vedolizumab . As a result, if vedolizumab is used concomitantly with TNF-α inhibitors, there is a concern that the combined, additive immunosuppressive effects of both types of medications could subsequently cause an increased risk, incidence, or severity of infections. In particular, the concomitant use of vedolizumab and TNF antagonists is not formally recommended because of the proposed possibility of increased and severe immunosuppression and risk of infection. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vedolizumab is indicated for adult patients with moderately to severely active Ulcerative Colitis or Crohn’s disease. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Non-clinical studies have shown that the pharmacodynamic effects of vedolizumab are reversible upon removal of the antibody: pharmacologic activity of cells inhibited by vedolizumab could be partially restored within 24 hours after removal, with near complete restoration within 4 days. There are no known drug interactions as vedolizumab is a humanized antibody and does not modulate the production of cytokines, which is known to affect drug metabolism. The α4β7 integrin is expressed on the surface of a discrete subset of memory T-lymphocytes that preferentially migrate into the gastrointestinal tract. Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is mainly expressed on gut endothelial cells and plays a critical role in homing T-lymphocytes to gut lymph tissue. The interaction of the α4β7 integrin with MAdCAM-1 has been implicated as an important contributor to chronic inflammation, a hallmark of ulcerative colitis and Crohn’s disease. Inhibition of α4β7 integrin by vedolizumab prevents the adhesion of lymphocytes to its natural ligand, thus decreasing the migration of memory T-lymphocytes across the endothelium into inflamed gastrointestinal parenchymal tissue. In clinical trials with vedolizumab at doses ranging from 0.2 to 10 mg/kg (which includes doses outside of the recommended dose), saturation of α4β7 receptors on subsets of circulating lymphocytes involved in gut-immune surveillance was observed. In clinical trials with vedolizumab at doses ranging from 0.2 to 10 mg/kg and 180 to 750 mg (which include doses outside of the recommended dose) in healthy subjects and in patients with ulcerative colitis or Crohn’s disease, vedolizumab did not elevate neutrophils, basophils, eosinophils, B-helper and cytotoxic T-lymphocytes, total memory helper T-lymphocytes, monocytes or natural killer cells. A reduction in gastrointestinal inflammation was observed in rectal biopsy specimens from Phase 2 ulcerative colitis patients exposed to vedolizumab for four or six weeks compared to placebo control as assessed by histopathology. In a study of 14 healthy subjects, vedolizumab did not affect the CD4+ lymphocyte cell counts, CD8+ lymphocyte cell counts, or the CD4+:CD8+ ratios in the CSF. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vedolizumab is a humanized monoclonal antibody that specifically binds to the α4β7 integrin and blocks the interaction of α4β7 integrin with MAdCAM-1. Vedolizumab does not bind to or inhibit the function of the α4β1 and αEβ7 integrins and does not antagonize the interaction of α4 integrins with vascular cell adhesion molecule-1 (VCAM-1). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The intended route of administration is intravenous, therefore there is no absorption data and bioavailability is expected to be 100%. Following the administration of 300 mg of vedolizumab as a 30-minute intravenous infusion from week 0 to 2 and 300 mg every eight weeks starting from Week 6, the trough serum concentration of vedolizumab is 26.3 ± 12.9 and 27.4 ± 19.2 mcg/mL for Ulcerative Colitis and Crohn’s Disease patients respectively at week 6. At week 46, the trough serum concentration of vedolizumab is 11.2 ± 7.2 and 13.0 ± 9.1 mcg/mL for Ulcerative Colitis and Crohn’s Disease patients respectively. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Serum apparent volume of distribution at steady-state has been found to be moderately greater than the serum volume (approximately 5L). It is therefore expected to be confined to the systemic circulation, as expected for a high molecular weight protein. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vedolizumab is a therapeutic monoclonal antibody and is not expected to bind to plasma proteins. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The expected consequence of metabolism is proteolytic degradation to small peptides and individual amino acids, and receptor-mediated clearance. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Renal clearance is negligible as vedolizumab is a high molecular weight protein. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vedolizumab has a long terminal elimination half-life of 25 days. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Vedolizumab clearance depends on both linear and nonlinear pathways; the nonlinear clearance decreases with increasing concentrations. Population pharmacokinetic analyses indicated that the linear clearance was approximately 0.157 L/day or 0.180 to 0.266 ml/hr/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Elevated transaminase levels with or without elevated bilirubin have occurred in patients who have received this drug. Progressive multifocal leukoencephalopathy (PML) has not been reported with the use of this drug, however, it has occurred in patients who have received different integrin receptor antagonists and is therefore considered a risk for this product. The use of vedolizumab may increase the risk of developing infections, and one study found that nasopharyngitis occurs more frequently with vedolizumab than with THE placebo for Crohn’s disease patients. Available pharmacovigilance data, data from the ongoing pregnancy registry, and data from published case reports and cohort studies in pregnant women have not identified a vedolizumab-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. There are risks to the mother and the fetus associated with inflammatory bowel disease in pregnancy. No fetal harm was observed in animal reproduction studies with intravenous administration of vedolizumab to rabbits and monkeys at dose levels 20 times the recommended human dosage. Published data suggest that the risk of adverse pregnancy outcomes in women with inflammatory bowel disease (IBD) is associated with increased disease activity. Adverse pregnancy outcomes include preterm delivery (before 37 weeks of gestation), low birth weight (less than 2,500 g) infants, and small for gestational age at birth. Vedolizumab administered during pregnancy could affect immune responses in the in-utero-exposed newborn and infant. The clinical significance of low levels of vedolizumab in utero-exposed infants is unknown. The safety of administering live or live-attenuated vaccines in exposed infants is unknown. Long-term studies in animals have not been performed to evaluate the carcinogenic potential of vedolizumab. Studies to evaluate the possible impairment of fertility or mutagenic potential of vedolizumab have not been performed. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Entyvio •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vedolizumab is an integrin blocker and anti-inflammatory agent used to manage ulcerative colitis and Crohn's disease in adults. Output: Various clinical studies have shown that the use of tumor necrosis factor-alpha (TNF-α) inhibitors in patients is associated with the possibility of developing infections, lymphoma, and/or other malignancies, some incidences of which can be fatal . At the same time, infections likely due to immunosuppression are also one of the most common adverse effects associated with the use of the integrin receptor antagonist, vedolizumab . As a result, if vedolizumab is used concomitantly with TNF-α inhibitors, there is a concern that the combined, additive immunosuppressive effects of both types of medications could subsequently cause an increased risk, incidence, or severity of infections. In particular, the concomitant use of vedolizumab and TNF antagonists is not formally recommended because of the proposed possibility of increased and severe immunosuppression and risk of infection. The severity of the interaction is major.
Does Adalimumab and Vemurafenib interact?
•Drug A: Adalimumab •Drug B: Vemurafenib •Severity: MAJOR •Description: The metabolism of Vemurafenib can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vemurafenib is approved since 2011 for the treatment of metastatic melanoma with a mutation on BRAF in the valine located in the exon 15 at codon 600, this mutation is denominated as V600E. The V600E mutation, a substitution of glutamic acid for valine, accounts for 54% of the cases of cutaneous melanoma. Vemurafenib approval was extended in 2017, for its use as a treatment of adult patients with Erdheim-Chester Disease whose cancer cells present BRAF V600 mutation. Erdheim-Chester disease is an extremely rare histiocyte cell disorder that affects large bones, large vessels, central nervous system, as well as, skin and lungs. It is reported an association of Erdheim-Chester disease and V600E mutation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): BRAF activation results in cell growth, proliferation, and metastasis. BRAF is an intermediary molecule in MAPK whose activation depends on ERK activation, elevation of cyclin D1 and cellular proliferation. The mutation V600E produces a constitutively form of BRAF. Vemurafenib has been shown to reduce all activation markers related to BRAF; in clinical trials, vemurafenib treatment showed a reduction of cytoplasmic phosphorylated ERK and a cell proliferation driven by Ki-67. Studies also reported decrease in MAPK-related metabolic activity. All the different reports indicate thet Vemurafenib generates an almost complete inhibition of the MAPK pathway. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vemurafenib is an orally available inhibitor of mutated BRAF-serine-threonine kinase. Vemurafenif is a small molecule that interacts as a competitive inhibitor of the mutated species of BRAF. It is especially potent against the BRAF V600E mutation. Vemurafenib blocks downstream processes to inhibit tumour growth and eventually trigger apoptosis. Vemurafenib does not have antitumour effects against melanoma cell lines with the wild-type BRAF mutation. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vemurafenib is well absorbed after oral administration. Peak concentrations are reached in 3 hours when an oral dose of 960 mg twice daily for 15 days has been given to patients. In the same conditions, Vemurafenib presents a Cmax of 62 mcg/ml and AUC of 601 mcg h/ml. It is unknown how food affects the absorption of vemurafenib. It presents an accumulation ratio of 7.36 after repeating doses of 960 mg •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The estimation of the volume of distribution for Vemurafenib is 106 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vemurafenib highly binds to plasma proteins where >99% of the administered dose will be found protein bound to serum albumin and alpha-1 acid glycoprotein. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vemurafenib is metabolized by CYP3A4 and the metabolites make up 5% of the components in plasma. The parent compound makes up for the remaining 95%. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Analysis showed that 94% of administered Vemurafenib is excreted via feces and 1% is excreted by urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The elimination half-life of Vemurafenib is estimated to be 57 hours (range of 30-120 hours). •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The total body clearance is 31 L/day. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): In the few toxicity reports, it has been shown an increased in the development of cutaneous squamous cell carcinomas or acceleration in pre-existant tumor growth. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zelboraf •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vemurafenib is a kinase inhibitor used to treat patients with Erdheim-Chester Disease who have the BRAF V600 mutation, and melanoma in patients who have the BRAF V600E mutation.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vemurafenib interact? Information: •Drug A: Adalimumab •Drug B: Vemurafenib •Severity: MAJOR •Description: The metabolism of Vemurafenib can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vemurafenib is approved since 2011 for the treatment of metastatic melanoma with a mutation on BRAF in the valine located in the exon 15 at codon 600, this mutation is denominated as V600E. The V600E mutation, a substitution of glutamic acid for valine, accounts for 54% of the cases of cutaneous melanoma. Vemurafenib approval was extended in 2017, for its use as a treatment of adult patients with Erdheim-Chester Disease whose cancer cells present BRAF V600 mutation. Erdheim-Chester disease is an extremely rare histiocyte cell disorder that affects large bones, large vessels, central nervous system, as well as, skin and lungs. It is reported an association of Erdheim-Chester disease and V600E mutation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): BRAF activation results in cell growth, proliferation, and metastasis. BRAF is an intermediary molecule in MAPK whose activation depends on ERK activation, elevation of cyclin D1 and cellular proliferation. The mutation V600E produces a constitutively form of BRAF. Vemurafenib has been shown to reduce all activation markers related to BRAF; in clinical trials, vemurafenib treatment showed a reduction of cytoplasmic phosphorylated ERK and a cell proliferation driven by Ki-67. Studies also reported decrease in MAPK-related metabolic activity. All the different reports indicate thet Vemurafenib generates an almost complete inhibition of the MAPK pathway. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vemurafenib is an orally available inhibitor of mutated BRAF-serine-threonine kinase. Vemurafenif is a small molecule that interacts as a competitive inhibitor of the mutated species of BRAF. It is especially potent against the BRAF V600E mutation. Vemurafenib blocks downstream processes to inhibit tumour growth and eventually trigger apoptosis. Vemurafenib does not have antitumour effects against melanoma cell lines with the wild-type BRAF mutation. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vemurafenib is well absorbed after oral administration. Peak concentrations are reached in 3 hours when an oral dose of 960 mg twice daily for 15 days has been given to patients. In the same conditions, Vemurafenib presents a Cmax of 62 mcg/ml and AUC of 601 mcg h/ml. It is unknown how food affects the absorption of vemurafenib. It presents an accumulation ratio of 7.36 after repeating doses of 960 mg •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The estimation of the volume of distribution for Vemurafenib is 106 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vemurafenib highly binds to plasma proteins where >99% of the administered dose will be found protein bound to serum albumin and alpha-1 acid glycoprotein. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vemurafenib is metabolized by CYP3A4 and the metabolites make up 5% of the components in plasma. The parent compound makes up for the remaining 95%. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Analysis showed that 94% of administered Vemurafenib is excreted via feces and 1% is excreted by urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The elimination half-life of Vemurafenib is estimated to be 57 hours (range of 30-120 hours). •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The total body clearance is 31 L/day. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): In the few toxicity reports, it has been shown an increased in the development of cutaneous squamous cell carcinomas or acceleration in pre-existant tumor growth. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zelboraf •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vemurafenib is a kinase inhibitor used to treat patients with Erdheim-Chester Disease who have the BRAF V600 mutation, and melanoma in patients who have the BRAF V600E mutation. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Venetoclax interact?
•Drug A: Adalimumab •Drug B: Venetoclax •Severity: MAJOR •Description: The metabolism of Venetoclax can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Venetoclax is indicated for the treatment of adult patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). It is also used in combination with azacitidine, or decitabine, or low-dose cytarabine for the treatment of newly diagnosed acute myeloid leukemia (AML) in adults 75 years or older, or who have comorbidities that preclude use of intensive induction chemotherapy. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Venetoclax induces rapid and potent onset apoptosis of CLL cells, powerful enough to act within 24h and to lead to tumor lysis syndrome,,. Selective targeting of BCL2 with venetoclax has demonstrated a manageable safety profile and has been shown to induce significant response in patients with relapsed CLL (chronic lymphocytic leukemia) or SLL (small lymphocytic leukemia), including patients with poor prognostic features. This drug is not expected to have a significant impact on the cardiac QT interval. Venetoclax has demonstrated efficacy in various types of lymphoid malignancies, including relapsed/ refractory CLL harboring deletion 17p, with an overall response rate of approximately 80%. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are necessary regulators of the apoptotic (anti-cell programmed death) process. This family comprises proapoptotic and prosurvival proteins for various cells. Cancer cells evade apoptosis by inhibiting programmed cell death (apoptosis). The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has demonstrated clinical efficacy in some BCL-2-dependent hematological cancers. Selective inhibition of BCL-2 by venetoclax, sparing BCL-xL enables therapeutic induction of apoptosis without the negative effect of thrombocytopenia,. Venetoclax helps restore the process of apoptosis by binding directly to the BCL-2 protein, displacing pro-apoptotic proteins, leading to mitochondrial outer membrane permeabilization and the activation of caspase enzymes. In nonclinical studies, venetoclax has shown cytotoxic activity in tumor cells that overexpress BCL-2. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Following several oral administrations after a meal, the maximum plasma concentration of venetoclax was reached 5-8 hours after the dose. Venetoclax steady state AUC (area under the curve) increased proportionally over the dose range of 150-800 mg. After a low-fat meal, venetoclax mean (± standard deviation) steady-state Cmax was 2.1 ± 1.1 μg/mL and AUC0-24 was 32.8 ± 16.9 μg•h/mL at the 400 mg once daily dose. When compared with the fasted state, venetoclax exposure increased by 3.4 times when ingested with a low-fat meal and 5.2 times with a high-fat meal. When comparing low versus high fat, the Cmax and AUC were both increased by 50% when ingested with a high-fat meal. The FDA label indicataes that venetoclax should be taken with food,. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The population estimate for apparent volume of distribution (Vdss/F) of venetoclax ranged from 256-321 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Venetoclax is highly bound to human plasma protein with unbound fraction in plasma <0.01 across a concentration range of 1-30 µM (0.87-26 µg/mL). The mean blood-to-plasma ratio was 0.57. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): In vitro studies demonstrated that venetoclax is predominantly metabolized as a substrate of CYP3A4/5,,. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): After single oral administration of 200 mg radiolabeled [14C]-venetoclax dose to healthy subjects, >99.9% of the dose was found in feces and <0.1% of the dose was excreted in urine within 9 days, suggesting that hepatic elimination is responsible for the clearance of venetoclax from systemic circulation. Unchanged venetoclax accounted for 20.8% of the radioactive dose excreted in feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The half-life of venetoclax is reported to be 19-26 hours, after administration of a single 50-mg dose,. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Mainly hepatic. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Acute toxicity: oral toxicity (LD50) >2001 mg/kg (mouse). Venetoclax may cause embryo-fetal harm when administered to a pregnant woman. Patients should avoid pregnancy during treatment. A risk to human male fertility exists based on the results of testicular toxicity (germ cell loss) seen in dogs at exposures as low as 0.5 times the human AUC exposure at the recommended dose. Carcinogenicity studies have not yet been performed with venetoclax. Venetoclax was not shown to be mutagenic in an in vitro bacterial mutagenicity (Ames) assay, did not induce aberrations in an in vitro chromosome aberration assay with human peripheral blood lymphocytes. It was not clastogenic in an in vivo mouse bone marrow micronucleus assay at doses up to 835 mg/kg. The M27 metabolite was negative for genotoxic activity during both in vitro Ames and chromosome aberration assays. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Venclexta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 4-(4-((2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl)methyl)piperazin-1-yl)-N-((3-nitro-4-((tetrahydro-2H-pyran-4-ylmethyl)amino)phenyl)sulfonyl)-2-(1H-pyrrolo(2,3-b)pyridin-5-yloxy)benzamide 4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Venetoclax is a BCL-2 inhibitor used to treat chronic lymphocytic leukemia, small lymphocytic lymphoma, or acute myeloid leukemia.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Venetoclax interact? Information: •Drug A: Adalimumab •Drug B: Venetoclax •Severity: MAJOR •Description: The metabolism of Venetoclax can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Venetoclax is indicated for the treatment of adult patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). It is also used in combination with azacitidine, or decitabine, or low-dose cytarabine for the treatment of newly diagnosed acute myeloid leukemia (AML) in adults 75 years or older, or who have comorbidities that preclude use of intensive induction chemotherapy. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Venetoclax induces rapid and potent onset apoptosis of CLL cells, powerful enough to act within 24h and to lead to tumor lysis syndrome,,. Selective targeting of BCL2 with venetoclax has demonstrated a manageable safety profile and has been shown to induce significant response in patients with relapsed CLL (chronic lymphocytic leukemia) or SLL (small lymphocytic leukemia), including patients with poor prognostic features. This drug is not expected to have a significant impact on the cardiac QT interval. Venetoclax has demonstrated efficacy in various types of lymphoid malignancies, including relapsed/ refractory CLL harboring deletion 17p, with an overall response rate of approximately 80%. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are necessary regulators of the apoptotic (anti-cell programmed death) process. This family comprises proapoptotic and prosurvival proteins for various cells. Cancer cells evade apoptosis by inhibiting programmed cell death (apoptosis). The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has demonstrated clinical efficacy in some BCL-2-dependent hematological cancers. Selective inhibition of BCL-2 by venetoclax, sparing BCL-xL enables therapeutic induction of apoptosis without the negative effect of thrombocytopenia,. Venetoclax helps restore the process of apoptosis by binding directly to the BCL-2 protein, displacing pro-apoptotic proteins, leading to mitochondrial outer membrane permeabilization and the activation of caspase enzymes. In nonclinical studies, venetoclax has shown cytotoxic activity in tumor cells that overexpress BCL-2. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Following several oral administrations after a meal, the maximum plasma concentration of venetoclax was reached 5-8 hours after the dose. Venetoclax steady state AUC (area under the curve) increased proportionally over the dose range of 150-800 mg. After a low-fat meal, venetoclax mean (± standard deviation) steady-state Cmax was 2.1 ± 1.1 μg/mL and AUC0-24 was 32.8 ± 16.9 μg•h/mL at the 400 mg once daily dose. When compared with the fasted state, venetoclax exposure increased by 3.4 times when ingested with a low-fat meal and 5.2 times with a high-fat meal. When comparing low versus high fat, the Cmax and AUC were both increased by 50% when ingested with a high-fat meal. The FDA label indicataes that venetoclax should be taken with food,. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The population estimate for apparent volume of distribution (Vdss/F) of venetoclax ranged from 256-321 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Venetoclax is highly bound to human plasma protein with unbound fraction in plasma <0.01 across a concentration range of 1-30 µM (0.87-26 µg/mL). The mean blood-to-plasma ratio was 0.57. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): In vitro studies demonstrated that venetoclax is predominantly metabolized as a substrate of CYP3A4/5,,. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): After single oral administration of 200 mg radiolabeled [14C]-venetoclax dose to healthy subjects, >99.9% of the dose was found in feces and <0.1% of the dose was excreted in urine within 9 days, suggesting that hepatic elimination is responsible for the clearance of venetoclax from systemic circulation. Unchanged venetoclax accounted for 20.8% of the radioactive dose excreted in feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The half-life of venetoclax is reported to be 19-26 hours, after administration of a single 50-mg dose,. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Mainly hepatic. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Acute toxicity: oral toxicity (LD50) >2001 mg/kg (mouse). Venetoclax may cause embryo-fetal harm when administered to a pregnant woman. Patients should avoid pregnancy during treatment. A risk to human male fertility exists based on the results of testicular toxicity (germ cell loss) seen in dogs at exposures as low as 0.5 times the human AUC exposure at the recommended dose. Carcinogenicity studies have not yet been performed with venetoclax. Venetoclax was not shown to be mutagenic in an in vitro bacterial mutagenicity (Ames) assay, did not induce aberrations in an in vitro chromosome aberration assay with human peripheral blood lymphocytes. It was not clastogenic in an in vivo mouse bone marrow micronucleus assay at doses up to 835 mg/kg. The M27 metabolite was negative for genotoxic activity during both in vitro Ames and chromosome aberration assays. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Venclexta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 4-(4-((2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl)methyl)piperazin-1-yl)-N-((3-nitro-4-((tetrahydro-2H-pyran-4-ylmethyl)amino)phenyl)sulfonyl)-2-(1H-pyrrolo(2,3-b)pyridin-5-yloxy)benzamide 4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Venetoclax is a BCL-2 inhibitor used to treat chronic lymphocytic leukemia, small lymphocytic lymphoma, or acute myeloid leukemia. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Venlafaxine interact?
•Drug A: Adalimumab •Drug B: Venlafaxine •Severity: MODERATE •Description: The metabolism of Venlafaxine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Venlafaxine is indicated for the management of major depressive disorder (MDD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic disorder. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Venlafaxine is an antidepressant agent that works to ameliorate the symptoms of various psychiatric disorders by increasing the level of neurotransmitters in the synapse. Venlafaxine does not mediate muscarinic, histaminergic, or adrenergic effects. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The exact mechanism of action of venlafaxine in the treatment of various psychiatric conditions has not been fully elucidated; however, it is understood that venlafaxine and its active metabolite O-desmethylvenlafaxine (ODV) potently and selectively inhibits the reuptake of both serotonin and norepinephrine at the presynaptic terminal. This results in increased levels of neurotransmitters available at the synapse that can stimulate postsynaptic receptors. It is suggested that venlafaxine has a 30-fold selectivity for serotonin compared to norepinephrine: venlafaxine initially inhibits serotonin reuptake at low doses, and with higher doses, it inhibits norepinephrine reuptake in addition to serotonin. Venlafaxine and ODV are also weak inhibitors of dopamine reuptake. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Venlafaxine is well absorbed after oral administration with an absolute bioavailability of approximately 45%. In mass balance studies, at least 92% of a single oral dose of venlafaxine was absorbed. After twice-daily oral administration of immediate-release formulation of 150 mg venlafaxine, C max was 150 ng/mL and T max was 5.5 hours. C max and T max of ODV were 260 ng/mL and nine hours, respectively. The extended-release formulation of venlafaxine has a slower rate of absorption, but the same extent of absorption as the immediate-release formulation. After once-daily administration of extended-release formulation of 75 mg venlafaxine, C max was 225 ng/mL and T max was two hours. C max and T max of ODV were 290 ng/mL and three hours, respectively. Food does not affect the bioavailability of venlafaxine or its active metabolite, O-desmethylvenlafaxine (ODV). •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution at steady-state is 7.5 ± 3.7 L/kg for venlafaxine and 5.7 ± 1.8 L/kg for ODV. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Venlafaxine and ODV is 27% and 30% bound to plasma proteins, respectively. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Following absorption, venlafaxine undergoes extensive presystemic metabolism in the liver. It primarily undergoes CYP2D6-mediated demethylation to form its active metabolite O-desmethylvenlafaxine (ODV). Venlafaxine can also undergo N-demethylation mediated by CYP2C9, and CYP2C19, and CYP3A4 to form N-desmethylvenlafaxine (NDV) but this is a minor metabolic pathway. ODV and NDV further metabolized by CYP2C19, CYP2D6 and/or CYP3A4 to form N,O-didesmethylvenlafaxine (NODV) and NODV can be further metabolized to form N, N, O-tridesmethylvenlafaxine, followed by a possible glucuronidation. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Approximately 87% of a venlafaxine dose is recovered in the urine within 48 hours as unchanged venlafaxine (5%), unconjugated ODV (29%), conjugated ODV (26%), or other minor inactive metabolites (27%). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The apparent elimination half-life is 5 ± 2 hours for venlafaxine and 11 ± 2 hours for ODV. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Mean ± SD plasma apparent clearance at steady-state is 1.3 ± 0.6 L/h/kg for venlafaxine and 0.4 ± 0.2 L/h/kg for ODV. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral LD 50 was 350 mg/kg in female rats and 700 mg/kg in male rats. There are reports of acute overdosage with venlafaxine either alone or in combination with other drugs including alcohol. Doses up to several-fold higher than the usual therapeutic dose have been ingested in these cases of acute overdosage. Somnolence is the most commonly reported symptom, along with other symptoms such as paresthesia of the extremities, moderate dizziness, altered consciousness, nausea, vomiting, numb hands and feet, hot-cold spells (which occur a few days after the overdose event), hypotension, convulsions, sinus and ventricular tachycardia, rhabdomyolysis, vertigo, liver necrosis, electrocardiogram changes (e.g., prolongation of QT interval, bundle branch block, QRS prolongation), serotonin syndrome, and death. There is no known antidote for venlafaxine overdose. Cases of overdose have been managed with or without symptomatic treatment, hospitalization, and activated charcoal. Retrospective studies suggest that the risk of fatal outcomes from venlafaxine overdosage is higher than that of SSRI antidepressants, but lower than that of tricyclic antidepressants. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Effexor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Venlafaxine is a selective serotonin and norepinephrine reuptake inhibitor (SNRI) used for the treatment of major depression, generalized or social anxiety disorder, and panic disorder.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Venlafaxine interact? Information: •Drug A: Adalimumab •Drug B: Venlafaxine •Severity: MODERATE •Description: The metabolism of Venlafaxine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Venlafaxine is indicated for the management of major depressive disorder (MDD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic disorder. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Venlafaxine is an antidepressant agent that works to ameliorate the symptoms of various psychiatric disorders by increasing the level of neurotransmitters in the synapse. Venlafaxine does not mediate muscarinic, histaminergic, or adrenergic effects. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The exact mechanism of action of venlafaxine in the treatment of various psychiatric conditions has not been fully elucidated; however, it is understood that venlafaxine and its active metabolite O-desmethylvenlafaxine (ODV) potently and selectively inhibits the reuptake of both serotonin and norepinephrine at the presynaptic terminal. This results in increased levels of neurotransmitters available at the synapse that can stimulate postsynaptic receptors. It is suggested that venlafaxine has a 30-fold selectivity for serotonin compared to norepinephrine: venlafaxine initially inhibits serotonin reuptake at low doses, and with higher doses, it inhibits norepinephrine reuptake in addition to serotonin. Venlafaxine and ODV are also weak inhibitors of dopamine reuptake. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Venlafaxine is well absorbed after oral administration with an absolute bioavailability of approximately 45%. In mass balance studies, at least 92% of a single oral dose of venlafaxine was absorbed. After twice-daily oral administration of immediate-release formulation of 150 mg venlafaxine, C max was 150 ng/mL and T max was 5.5 hours. C max and T max of ODV were 260 ng/mL and nine hours, respectively. The extended-release formulation of venlafaxine has a slower rate of absorption, but the same extent of absorption as the immediate-release formulation. After once-daily administration of extended-release formulation of 75 mg venlafaxine, C max was 225 ng/mL and T max was two hours. C max and T max of ODV were 290 ng/mL and three hours, respectively. Food does not affect the bioavailability of venlafaxine or its active metabolite, O-desmethylvenlafaxine (ODV). •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution at steady-state is 7.5 ± 3.7 L/kg for venlafaxine and 5.7 ± 1.8 L/kg for ODV. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Venlafaxine and ODV is 27% and 30% bound to plasma proteins, respectively. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Following absorption, venlafaxine undergoes extensive presystemic metabolism in the liver. It primarily undergoes CYP2D6-mediated demethylation to form its active metabolite O-desmethylvenlafaxine (ODV). Venlafaxine can also undergo N-demethylation mediated by CYP2C9, and CYP2C19, and CYP3A4 to form N-desmethylvenlafaxine (NDV) but this is a minor metabolic pathway. ODV and NDV further metabolized by CYP2C19, CYP2D6 and/or CYP3A4 to form N,O-didesmethylvenlafaxine (NODV) and NODV can be further metabolized to form N, N, O-tridesmethylvenlafaxine, followed by a possible glucuronidation. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Approximately 87% of a venlafaxine dose is recovered in the urine within 48 hours as unchanged venlafaxine (5%), unconjugated ODV (29%), conjugated ODV (26%), or other minor inactive metabolites (27%). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The apparent elimination half-life is 5 ± 2 hours for venlafaxine and 11 ± 2 hours for ODV. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Mean ± SD plasma apparent clearance at steady-state is 1.3 ± 0.6 L/h/kg for venlafaxine and 0.4 ± 0.2 L/h/kg for ODV. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral LD 50 was 350 mg/kg in female rats and 700 mg/kg in male rats. There are reports of acute overdosage with venlafaxine either alone or in combination with other drugs including alcohol. Doses up to several-fold higher than the usual therapeutic dose have been ingested in these cases of acute overdosage. Somnolence is the most commonly reported symptom, along with other symptoms such as paresthesia of the extremities, moderate dizziness, altered consciousness, nausea, vomiting, numb hands and feet, hot-cold spells (which occur a few days after the overdose event), hypotension, convulsions, sinus and ventricular tachycardia, rhabdomyolysis, vertigo, liver necrosis, electrocardiogram changes (e.g., prolongation of QT interval, bundle branch block, QRS prolongation), serotonin syndrome, and death. There is no known antidote for venlafaxine overdose. Cases of overdose have been managed with or without symptomatic treatment, hospitalization, and activated charcoal. Retrospective studies suggest that the risk of fatal outcomes from venlafaxine overdosage is higher than that of SSRI antidepressants, but lower than that of tricyclic antidepressants. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Effexor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Venlafaxine is a selective serotonin and norepinephrine reuptake inhibitor (SNRI) used for the treatment of major depression, generalized or social anxiety disorder, and panic disorder. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Verapamil interact?
•Drug A: Adalimumab •Drug B: Verapamil •Severity: MODERATE •Description: The metabolism of Verapamil can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Verapamil is indicated in the treatment of vasopastic (i.e. Prinzmetal's) angina, unstable angina, and chronic stable angina. It is also indicated to treat hypertension, for the prophylaxis of repetitive paroxysmal supraventricular tachycardia, and in combination with digoxin to control ventricular rate in patients with atrial fibrillation or atrial flutter. Given intravenously, it is indicated for the treatment of various supraventricular tachyarrhythmias, including rapid conversion to sinus rhythm in patients with supraventricular tachycardia and for temporary control of ventricular rate in patients with atrial fibrillation or atrial flutter. Verapamil is commonly used off-label for prophylaxis of cluster headaches. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Verapamil is an L-type calcium channel blocker with antiarrhythmic, antianginal, and antihypertensive activity. Immediate-release verapamil has a relatively short duration of action, requiring dosing 3 to 4 times daily, but extended-release formulations are available that allow for once-daily dosing. As verapamil is a negative inotropic medication (i.e. it decreases the strength of myocardial contraction), it should not be used in patients with severe left ventricular dysfunction or hypertrophic cardiomyopathy as the decrease in contractility caused by verapamil may increase the risk of exacerbating these pre-existing conditions. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Verapamil inhibits L-type calcium channels by binding to a specific area of their alpha-1 subunit, Cav1.2, which is highly expressed on L-type calcium channels in vascular smooth muscle and myocardial tissue where these channels are responsible for the control of peripheral vascular resistance and heart contractility. Calcium influx through these channels allows for the propagation of action potentials necessary for the contraction of muscle tissue and the heart's electrical pacemaker activity. Verapamil binds to these channels in a voltage- and frequency-dependent manner, meaning affinity is increased 1) as vascular smooth muscle membrane potential is reduced, and 2) with excessive depolarizing stimulus. Verapamil's mechanism of action in the treatment of angina and hypertension is likely due to the mechanism described above. Inhibition of calcium influx prevents the contraction of vascular smooth muscle, causing relaxation/dilation of blood vessels throughout the peripheral circulation - this lowers systemic vascular resistance (i.e. afterload) and thus blood pressure. This reduction in vascular resistance also reduces the force against which the heart must push, decreasing myocardial energy consumption and oxygen requirements and thus alleviating angina. Electrical activity through the AV node is responsible for determining heart rate, and this activity is dependent upon calcium influx through L-type calcium channels. By inhibiting these channels and decreasing the influx of calcium, verapamil prolongs the refractory period of the AV node and slows conduction, thereby slowing and controlling the heart rate in patients with arrhythmia. Verapamil's mechanism of action in the treatment of cluster headaches is unclear, but is thought to result from an effect on other calcium channels (e.g. N-, P-, Q-, or T-type). Verapamil is known to interact with other targets, including other calcium channels, potassium channels, and adrenergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): More than 90% of orally administered verapamil is absorbed - despite this, bioavailability ranges only from 20% to 30% due to rapid biotransformation following first-pass metabolism in the portal circulation. Absorption kinetic parameters are largely dependent on the specific formulation of verapamil involved. Immediate-release verapamil reaches peak plasma concentrations (i.e. T max ) between 1-2 hours following administration, whereas sustained-release formulations tend to have a T max between 6 - 11 hours. AUC and C max values are similarly dependent upon formulation. Chronic administration of immediate-release verapamil every 6 hours resulted in plasma concentrations between 125 and 400 ng/mL. Steady-state AUC 0-24h and C max values for a sustained-release formulation were 1037 ng∙h/ml and 77.8 ng/mL for the R-isomer and 195 ng∙h/ml and 16.8 ng/mL for the S-isomer, respectively. Interestingly, the absorption kinetics of verapamil are highly stereospecific - following oral administration of immediate-release verapamil every 8 hours, the relative systemic availability of the S-enantiomer compared to the R-enantiomer was 13% after a single dose and 18% at steady-state. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Verapamil has a steady-state volume of distribution of approximately 300L for its R-enantiomer and 500L for its S-enantiomer. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Verapamil is extensively protein-bound in plasma. R-verapamil is 94% bound to serum albumin while S-verapamil is 88% bound. Additionally, R-verapamil is 92% bound to alpha-1 acid glycoprotein and S-verapamil is 86% bound. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Verapamil is extensively metabolized by the liver, with up to 80% of an administered dose subject to elimination via pre-systemic metabolism - interestingly, this first-pass metabolism appears to clear the S-enantiomer of verapamil much faster than the R-enantiomer. The remaining parent drug undergoes O-demethylation, N-dealkylation, and N-demethylation to a number of different metabolites via the cytochrome P450 enzyme system. Norverapamil, one of the major circulating metabolites, is the result of verapamil's N-demethylation via CYP2C8, CYP3A4, and CYP3A5, and carries approximately 20% of the cardiovascular activity of its parent drug. The other major pathway involved in verapamil metabolism is N-dealkylation via CYP2C8, CYP3A4, and CYP1A2 to the D-617 metabolite. Both norverapamil and D-617 are further metabolized by other CYP isoenzymes to various secondary metabolites. CYP2D6 and CYP2E1 have also been implicated in the metabolic pathway of verapamil, albeit to a minor extent. Minor pathways of verapamil metabolism involve its O-demethylation to D-703 via CYP2C8, CYP2C9, and CYP2C18, and to D-702 via CYP2C9 and CYP2C18. Several steps in verapamil's metabolic pathway show stereoselective preference for the S-enantiomer of the given substrate, including the generation of the D-620 metabolite by CYP3A4/5 and the D-617 metabolite by CYP2C8. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Approximately 70% of an administered dose is excreted as metabolites in the urine and ≥16% in the feces within 5 days. Approximately 3% - 4% is excreted in the urine as unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Single-dose studies of immediate-release verapamil have demonstrated an elimination half-life of 2.8 to 7.4 hours, which increases to 4.5 to 12.0 hours following repetitive dosing. The elimination half-life is also prolonged in patients with hepatic insufficiency (14 to 16 hours) and in the elderly (approximately 20 hours). Intravenously administered verapamil has rapid distribution phase half-life of approximately 4 minutes, followed by a terminal elimination phase half-life of 2 to 5 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Systemic clearance following 3 weeks of continuous treatment was approximately 340 mL/min for R-verapamil and 664 mL/min for S-verapamil. Of note, apparent oral clearance appears to vary significantly between single dose and multiple-dose conditions. The apparent oral clearance following single doses of verapamil was approximately 1007 mL/min for R-verapamil and 5481 mL/min for S-verapamil, whereas 3 weeks of continuous treatment resulted in apparent oral clearance values of approximately 651 mL/min for R-verapamil and 2855 mL/min for S-verapamil. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Verapamil's reported oral TDLo is 14.4 mg/kg in women and 3.429 mg/kg in men. The oral LD 50 is 150 mg/kg in rats and 163 mg/kg in mice. As there is no antidote for verapamil overdosage, treatment is largely supportive. Symptoms of overdose are generally consistent with verapamil's adverse effect profile (i.e. hypotension, bradycardia, arrhythmia) but instances of non-cardiogenic pulmonary edema have been observed following ingestion of large overdoses (up to 9 grams). In acute overdosage, consider the use of gastrointestinal decontamination with cathartics and/or bowel irrigation. Patients presenting with significant myocardial depression may require intravenous calcium, atropine, vasopressors, or other inotropes. Consider the formulation responsible for the overdose prior to treatment - sustained-release formulations may result in delayed pharmacodynamic effects, and these patients should be monitored closely for at least 48 hours following ingestion. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Calan, Isoptin, Tarka, Verelan •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Verapamil is a non-dihydropyridine calcium channel blocker used in the treatment of angina, arrhythmia, and hypertension.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Verapamil interact? Information: •Drug A: Adalimumab •Drug B: Verapamil •Severity: MODERATE •Description: The metabolism of Verapamil can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Verapamil is indicated in the treatment of vasopastic (i.e. Prinzmetal's) angina, unstable angina, and chronic stable angina. It is also indicated to treat hypertension, for the prophylaxis of repetitive paroxysmal supraventricular tachycardia, and in combination with digoxin to control ventricular rate in patients with atrial fibrillation or atrial flutter. Given intravenously, it is indicated for the treatment of various supraventricular tachyarrhythmias, including rapid conversion to sinus rhythm in patients with supraventricular tachycardia and for temporary control of ventricular rate in patients with atrial fibrillation or atrial flutter. Verapamil is commonly used off-label for prophylaxis of cluster headaches. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Verapamil is an L-type calcium channel blocker with antiarrhythmic, antianginal, and antihypertensive activity. Immediate-release verapamil has a relatively short duration of action, requiring dosing 3 to 4 times daily, but extended-release formulations are available that allow for once-daily dosing. As verapamil is a negative inotropic medication (i.e. it decreases the strength of myocardial contraction), it should not be used in patients with severe left ventricular dysfunction or hypertrophic cardiomyopathy as the decrease in contractility caused by verapamil may increase the risk of exacerbating these pre-existing conditions. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Verapamil inhibits L-type calcium channels by binding to a specific area of their alpha-1 subunit, Cav1.2, which is highly expressed on L-type calcium channels in vascular smooth muscle and myocardial tissue where these channels are responsible for the control of peripheral vascular resistance and heart contractility. Calcium influx through these channels allows for the propagation of action potentials necessary for the contraction of muscle tissue and the heart's electrical pacemaker activity. Verapamil binds to these channels in a voltage- and frequency-dependent manner, meaning affinity is increased 1) as vascular smooth muscle membrane potential is reduced, and 2) with excessive depolarizing stimulus. Verapamil's mechanism of action in the treatment of angina and hypertension is likely due to the mechanism described above. Inhibition of calcium influx prevents the contraction of vascular smooth muscle, causing relaxation/dilation of blood vessels throughout the peripheral circulation - this lowers systemic vascular resistance (i.e. afterload) and thus blood pressure. This reduction in vascular resistance also reduces the force against which the heart must push, decreasing myocardial energy consumption and oxygen requirements and thus alleviating angina. Electrical activity through the AV node is responsible for determining heart rate, and this activity is dependent upon calcium influx through L-type calcium channels. By inhibiting these channels and decreasing the influx of calcium, verapamil prolongs the refractory period of the AV node and slows conduction, thereby slowing and controlling the heart rate in patients with arrhythmia. Verapamil's mechanism of action in the treatment of cluster headaches is unclear, but is thought to result from an effect on other calcium channels (e.g. N-, P-, Q-, or T-type). Verapamil is known to interact with other targets, including other calcium channels, potassium channels, and adrenergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): More than 90% of orally administered verapamil is absorbed - despite this, bioavailability ranges only from 20% to 30% due to rapid biotransformation following first-pass metabolism in the portal circulation. Absorption kinetic parameters are largely dependent on the specific formulation of verapamil involved. Immediate-release verapamil reaches peak plasma concentrations (i.e. T max ) between 1-2 hours following administration, whereas sustained-release formulations tend to have a T max between 6 - 11 hours. AUC and C max values are similarly dependent upon formulation. Chronic administration of immediate-release verapamil every 6 hours resulted in plasma concentrations between 125 and 400 ng/mL. Steady-state AUC 0-24h and C max values for a sustained-release formulation were 1037 ng∙h/ml and 77.8 ng/mL for the R-isomer and 195 ng∙h/ml and 16.8 ng/mL for the S-isomer, respectively. Interestingly, the absorption kinetics of verapamil are highly stereospecific - following oral administration of immediate-release verapamil every 8 hours, the relative systemic availability of the S-enantiomer compared to the R-enantiomer was 13% after a single dose and 18% at steady-state. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Verapamil has a steady-state volume of distribution of approximately 300L for its R-enantiomer and 500L for its S-enantiomer. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Verapamil is extensively protein-bound in plasma. R-verapamil is 94% bound to serum albumin while S-verapamil is 88% bound. Additionally, R-verapamil is 92% bound to alpha-1 acid glycoprotein and S-verapamil is 86% bound. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Verapamil is extensively metabolized by the liver, with up to 80% of an administered dose subject to elimination via pre-systemic metabolism - interestingly, this first-pass metabolism appears to clear the S-enantiomer of verapamil much faster than the R-enantiomer. The remaining parent drug undergoes O-demethylation, N-dealkylation, and N-demethylation to a number of different metabolites via the cytochrome P450 enzyme system. Norverapamil, one of the major circulating metabolites, is the result of verapamil's N-demethylation via CYP2C8, CYP3A4, and CYP3A5, and carries approximately 20% of the cardiovascular activity of its parent drug. The other major pathway involved in verapamil metabolism is N-dealkylation via CYP2C8, CYP3A4, and CYP1A2 to the D-617 metabolite. Both norverapamil and D-617 are further metabolized by other CYP isoenzymes to various secondary metabolites. CYP2D6 and CYP2E1 have also been implicated in the metabolic pathway of verapamil, albeit to a minor extent. Minor pathways of verapamil metabolism involve its O-demethylation to D-703 via CYP2C8, CYP2C9, and CYP2C18, and to D-702 via CYP2C9 and CYP2C18. Several steps in verapamil's metabolic pathway show stereoselective preference for the S-enantiomer of the given substrate, including the generation of the D-620 metabolite by CYP3A4/5 and the D-617 metabolite by CYP2C8. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Approximately 70% of an administered dose is excreted as metabolites in the urine and ≥16% in the feces within 5 days. Approximately 3% - 4% is excreted in the urine as unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Single-dose studies of immediate-release verapamil have demonstrated an elimination half-life of 2.8 to 7.4 hours, which increases to 4.5 to 12.0 hours following repetitive dosing. The elimination half-life is also prolonged in patients with hepatic insufficiency (14 to 16 hours) and in the elderly (approximately 20 hours). Intravenously administered verapamil has rapid distribution phase half-life of approximately 4 minutes, followed by a terminal elimination phase half-life of 2 to 5 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Systemic clearance following 3 weeks of continuous treatment was approximately 340 mL/min for R-verapamil and 664 mL/min for S-verapamil. Of note, apparent oral clearance appears to vary significantly between single dose and multiple-dose conditions. The apparent oral clearance following single doses of verapamil was approximately 1007 mL/min for R-verapamil and 5481 mL/min for S-verapamil, whereas 3 weeks of continuous treatment resulted in apparent oral clearance values of approximately 651 mL/min for R-verapamil and 2855 mL/min for S-verapamil. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Verapamil's reported oral TDLo is 14.4 mg/kg in women and 3.429 mg/kg in men. The oral LD 50 is 150 mg/kg in rats and 163 mg/kg in mice. As there is no antidote for verapamil overdosage, treatment is largely supportive. Symptoms of overdose are generally consistent with verapamil's adverse effect profile (i.e. hypotension, bradycardia, arrhythmia) but instances of non-cardiogenic pulmonary edema have been observed following ingestion of large overdoses (up to 9 grams). In acute overdosage, consider the use of gastrointestinal decontamination with cathartics and/or bowel irrigation. Patients presenting with significant myocardial depression may require intravenous calcium, atropine, vasopressors, or other inotropes. Consider the formulation responsible for the overdose prior to treatment - sustained-release formulations may result in delayed pharmacodynamic effects, and these patients should be monitored closely for at least 48 hours following ingestion. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Calan, Isoptin, Tarka, Verelan •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Verapamil is a non-dihydropyridine calcium channel blocker used in the treatment of angina, arrhythmia, and hypertension. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Does Adalimumab and Vernakalant interact?
•Drug A: Adalimumab •Drug B: Vernakalant •Severity: MODERATE •Description: The metabolism of Vernakalant can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated for the rapid conversion of recent onset of atrial fibrillation to sinus rhythm in adults for non-surgery patients that lasts for less than 7 days of duration and post-cardiac surgery patients with atrial fibrillation lasting less than 3 days of duration. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vernakalant blocks currents in all phases of atrial action potential including atria-specific potassium currents (the ultra-rapid delayed rectifier and the acetylcholine dependent potassium currents) and prolongs the refractory period. It dose-dependently prolongs atrial refractoriness, prolongs AV nodal conduction and refractoriness, and slightly prolongs QRS duration without significantly affecting ventricular refractory period. Vernakalant has a high affinity to ion channels specifically involved in repolarization of atrial tissue and is thought to have a low proarrhythmic potential. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vernakalant blocks atrial voltage-gated sodium channels in a dose and frequency-dependent manner and inhibits late sodium current (INa)which confers its effect on intra-atrial conduction. This current blockade enhance and onset of drug action accelerates in higher heart rate as the affinity of vernakalant for INa also increases. Its binding offset is quick once the heart rate slows. It also blocks Kv 1.5 channel and its early activating potassium channels (IKur) and inhibits acetylcholine-activated potassium channels (IKAch), which are specific to the atrium and cause prolongation of atrial refractoriness. Vernakalant also blocks Kv4.3 channel and its cardiac transient outward potassium current (Ito), which is involved more with atrial than ventricular refractoriness. Vernakalant minimally blocks hERG channels and its rapidly activating/delayed rectifying potassium current (IKr) which accounts for mild QT prolongation. QRS widening due to INa blockade also contributes to QT prolongation. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): In patients, average peak plasma concentrations of vernakalant were 3.9 μg/ml following a single 10 minute infusion of 3 mg/kg vernakalant hydrochloride, and 4.3 μg/ml following a second infusion of 2 mg/kg with a 15 minute interval between doses. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Approximately 2L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Displays low protein binding and the free fraction of vernakalant in human serum is 53-63% at concentration range of 1-5 μg/ml. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vernakalant is mainly eliminated by CYP2D6 mediated O-demethylation in CYP2D6 extensive metabolisers. Glucuronidation is the main metabolism pathway in CYP2D6 poor metabolisers. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Mainly eliminated via renal excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life in CYP2D6 extensive metabolizers is 3 hours and 5.5 hours in poor metabolizers. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The typical total body clearance of vernakalant was estimated to be 0.41 l/hr/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Some common unwanted effects include hypotension, ventricular arrhythmias, bradycardia, atrial flutter, dysgeusia, paraesthesia, dizziness and nausea. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brinavess •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vernakalant •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vernakalant is an antiarrhythmic medication used to treat patients with atrial fibrillation.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Vernakalant interact? Information: •Drug A: Adalimumab •Drug B: Vernakalant •Severity: MODERATE •Description: The metabolism of Vernakalant can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated for the rapid conversion of recent onset of atrial fibrillation to sinus rhythm in adults for non-surgery patients that lasts for less than 7 days of duration and post-cardiac surgery patients with atrial fibrillation lasting less than 3 days of duration. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vernakalant blocks currents in all phases of atrial action potential including atria-specific potassium currents (the ultra-rapid delayed rectifier and the acetylcholine dependent potassium currents) and prolongs the refractory period. It dose-dependently prolongs atrial refractoriness, prolongs AV nodal conduction and refractoriness, and slightly prolongs QRS duration without significantly affecting ventricular refractory period. Vernakalant has a high affinity to ion channels specifically involved in repolarization of atrial tissue and is thought to have a low proarrhythmic potential. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vernakalant blocks atrial voltage-gated sodium channels in a dose and frequency-dependent manner and inhibits late sodium current (INa)which confers its effect on intra-atrial conduction. This current blockade enhance and onset of drug action accelerates in higher heart rate as the affinity of vernakalant for INa also increases. Its binding offset is quick once the heart rate slows. It also blocks Kv 1.5 channel and its early activating potassium channels (IKur) and inhibits acetylcholine-activated potassium channels (IKAch), which are specific to the atrium and cause prolongation of atrial refractoriness. Vernakalant also blocks Kv4.3 channel and its cardiac transient outward potassium current (Ito), which is involved more with atrial than ventricular refractoriness. Vernakalant minimally blocks hERG channels and its rapidly activating/delayed rectifying potassium current (IKr) which accounts for mild QT prolongation. QRS widening due to INa blockade also contributes to QT prolongation. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): In patients, average peak plasma concentrations of vernakalant were 3.9 μg/ml following a single 10 minute infusion of 3 mg/kg vernakalant hydrochloride, and 4.3 μg/ml following a second infusion of 2 mg/kg with a 15 minute interval between doses. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Approximately 2L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Displays low protein binding and the free fraction of vernakalant in human serum is 53-63% at concentration range of 1-5 μg/ml. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vernakalant is mainly eliminated by CYP2D6 mediated O-demethylation in CYP2D6 extensive metabolisers. Glucuronidation is the main metabolism pathway in CYP2D6 poor metabolisers. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Mainly eliminated via renal excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life in CYP2D6 extensive metabolizers is 3 hours and 5.5 hours in poor metabolizers. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The typical total body clearance of vernakalant was estimated to be 0.41 l/hr/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Some common unwanted effects include hypotension, ventricular arrhythmias, bradycardia, atrial flutter, dysgeusia, paraesthesia, dizziness and nausea. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brinavess •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vernakalant •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vernakalant is an antiarrhythmic medication used to treat patients with atrial fibrillation. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Vibrio cholerae CVD 103-HgR strain live antigen interact?
•Drug A: Adalimumab •Drug B: Vibrio cholerae CVD 103-HgR strain live antigen •Severity: MINOR •Description: The therapeutic efficacy of Vibrio cholerae CVD 103-HgR strain live antigen can be decreased when used in combination with Adalimumab. •Extended Description: High doses of immunosuppressive agents, such as antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids in combination with the cholera vaccine may reduce the immune response to the vaccine. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found
High doses of immunosuppressive agents, such as antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids in combination with the cholera vaccine may reduce the immune response to the vaccine. The severity of the interaction is minor.
Question: Does Adalimumab and Vibrio cholerae CVD 103-HgR strain live antigen interact? Information: •Drug A: Adalimumab •Drug B: Vibrio cholerae CVD 103-HgR strain live antigen •Severity: MINOR •Description: The therapeutic efficacy of Vibrio cholerae CVD 103-HgR strain live antigen can be decreased when used in combination with Adalimumab. •Extended Description: High doses of immunosuppressive agents, such as antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids in combination with the cholera vaccine may reduce the immune response to the vaccine. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found Output: High doses of immunosuppressive agents, such as antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids in combination with the cholera vaccine may reduce the immune response to the vaccine. The severity of the interaction is minor.
Does Adalimumab and Vilanterol interact?
•Drug A: Adalimumab •Drug B: Vilanterol •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Vilanterol. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vilanterol is approved for use in several combination products such as with fluticasone furoate under the tradename Breo Ellipta, in combination with umeclidinium bromide as Anoro Ellipta, and in combination with both fluticasone furoate and umeclidinium under the tradename Trelegy Ellipta. Approved by the FDA in 2013, the use of Breo Ellipta is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema, as well as the once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease. Anoro Ellipta is indicated for the maintenance treatment of patients with COPD, and Trelegy Ellipta is indicated for the maintenance treatment of patients with COPD as well as the maintenance treatment of asthma in patients aged 18 years and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vilanterol is a selective long-acting beta2-adrenergic agonist. Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3',5'-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vilanterol plasma levels may not predict therapeutic effects. Following inhaled administration of vilanterol in healthy subjects, C max occurred at 5 to 15 minutes. Vilanterol is mostly absorbed from the lung after inhaled doses with negligible contribution from oral absorption. Following repeat dosing of inhaled vilanterol, the steady state was achieved within 14 days with up to 1.7-fold accumulation. The absolute bioavailability of vilanterol when administered by inhalation was 27.3%, primarily due to absorption of the inhaled portion of the dose delivered to the lung. Oral bioavailability from the swallowed portion of the dose of vilanterol is low (<2%) due to extensive first-pass metabolism. Systemic exposure (AUC) in patients with COPD was 24% higher than observed in healthy subjects. Systemic exposure (AUC) in patients with asthma was 21% lower than observed in healthy subjects. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Following intravenous administration to healthy subjects, the mean volume of distribution at steady-state was 165 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In vitro plasma protein binding in human plasma was on average 94%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vilanterol is principally metabolized by cytochrome p450 3A4 (CYP3A4) to a range of metabolites with significantly reduced beta1- and beta2-agonist activity. The major route of metabolism was via O-dealkylation, with up to 78% of the recovered dose eliminated as O-dealkylated metabolites while N-Dealkylation and C-dealkylation were minor pathways, representing 5% of the recovered dose. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following oral administration of radiolabeled vilanterol, mass balance showed 70% of the radiolabel in the urine and 30% in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The effective half-life for vilanterol, as determined from inhalation administration of multiple doses, is 11 hours. The plasma elimination half-life, as determined from inhalation administration of multiple doses of vilanterol 25 mcg, is 21.3 hours in patients with COPD and 16.0 hours in patients with asthma. For a single dose inhaled administration, the plasma elimination phase half-life averaged 2.5 hour. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Following intravenous administration, the pharmacokinetics of vilanterol showed a high plasma clearance of 108 L/hour. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): In separate embryofetal developmental studies, pregnant rats and rabbits received vilanterol during the period of organogenesis at doses up to approximately 13,000 and 450 times, respectively, the maximum recommended human daily inhaled dose (MRHDID) (on an mcg/m2 basis at maternal inhalation doses up to 33,700 mcg/kg/day in rats and on an AUC basis at maternal inhaled doses up to 5,740 mcg/kg/day in rabbits). No evidence of structural abnormalities was observed at any dose in rats or in rabbits up to approximately 70 times the MRHDID (on an AUC basis at maternal doses up to 591 mcg/kg/day in rabbits). However, fetal skeletal variations were observed in rabbits at approximately 450 times the MRHDID (on an AUC basis at maternal inhaled or subcutaneous doses of 5,740 or 300 mcg/kg/day, respectively). The skeletal variations included decreased or absent ossification in the cervical vertebral centrum and metacarpals. In a perinatal and postnatal developmental study in rats, dams received vilanterol during late gestation and the lactation periods at doses up to approximately 3,900 times the MRHDID (on an mcg/m2 basis at maternal oral doses up to 10,000 mcg/kg/day). No evidence of effects on offspring development was observed. The expected signs and symptoms with overdosage of vilanterol are those of excessive beta-adrenergic stimulation and/or occurrence or exaggeration of any of the signs and symptoms of beta-adrenergic stimulation (e.g., seizures, angina, hypertension or hypotension, tachycardia with rates up to 200 beats/min, arrhythmias, nervousness, headache, tremor, muscle cramps, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, insomnia, hyperglycemia, hypokalemia, metabolic acidosis). As with all inhaled sympathomimetic medicines, cardiac arrest, and even death may be associated with an overdose of vilanterol. In a 2-year carcinogenicity study in mice, vilanterol caused a statistically significant increase in ovarian tubulostromal adenomas in females at an inhaled dose of 29,500 mcg/kg/day (approximately 7,800 times the MRHDID for adults on an AUC basis). No increase in tumors was seen at an inhaled dose of 615 mcg/kg/day (approximately 210 times the MRHDID for adults on an AUC basis). In a 2-year carcinogenicity study in rats, vilanterol caused statistically significant increases in mesovarian leiomyomas in females and a shortening of the latency of pituitary tumors at inhaled doses greater than or equal to 84.4 mcg/kg/day (greater than or equal to approximately 20 times the MRHDID for adults on an AUC basis). No tumors were seen at an inhaled dose of 10.5 mcg/kg/day (approximately equal to the MRHDID for adults on an AUC basis). These tumor findings in rodents are similar to those reported previously for other beta-adrenergic agonist drugs. The relevance of these findings to human use is unknown. Vilanterol tested negative in the following genotoxicity assays: the in vitro Ames assay, in vivo rat bone marrow micronucleus assay, in vivo rat unscheduled DNA synthesis (UDS) assay, and in vitro Syrian hamster embryo (SHE) cell assay. Vilanterol tested equivocal in the in vitro mouse lymphoma assay. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Anoro, Anoro Ellipta, Breo Ellipta, Trelegy Ellipta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vilanterol is a long-acting beta2-adrenergic agonist used in combination with other bronchodilators for the management of chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema.
Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Question: Does Adalimumab and Vilanterol interact? Information: •Drug A: Adalimumab •Drug B: Vilanterol •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Vilanterol. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vilanterol is approved for use in several combination products such as with fluticasone furoate under the tradename Breo Ellipta, in combination with umeclidinium bromide as Anoro Ellipta, and in combination with both fluticasone furoate and umeclidinium under the tradename Trelegy Ellipta. Approved by the FDA in 2013, the use of Breo Ellipta is indicated for the long-term, once-daily maintenance treatment of airflow obstruction in patients with COPD, including chronic bronchitis and emphysema, as well as the once-daily maintenance treatment of asthma in patients aged 18 or older with reversible obstructive airways disease. Anoro Ellipta is indicated for the maintenance treatment of patients with COPD, and Trelegy Ellipta is indicated for the maintenance treatment of patients with COPD as well as the maintenance treatment of asthma in patients aged 18 years and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vilanterol is a selective long-acting beta2-adrenergic agonist. Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3',5'-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vilanterol plasma levels may not predict therapeutic effects. Following inhaled administration of vilanterol in healthy subjects, C max occurred at 5 to 15 minutes. Vilanterol is mostly absorbed from the lung after inhaled doses with negligible contribution from oral absorption. Following repeat dosing of inhaled vilanterol, the steady state was achieved within 14 days with up to 1.7-fold accumulation. The absolute bioavailability of vilanterol when administered by inhalation was 27.3%, primarily due to absorption of the inhaled portion of the dose delivered to the lung. Oral bioavailability from the swallowed portion of the dose of vilanterol is low (<2%) due to extensive first-pass metabolism. Systemic exposure (AUC) in patients with COPD was 24% higher than observed in healthy subjects. Systemic exposure (AUC) in patients with asthma was 21% lower than observed in healthy subjects. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Following intravenous administration to healthy subjects, the mean volume of distribution at steady-state was 165 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In vitro plasma protein binding in human plasma was on average 94%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vilanterol is principally metabolized by cytochrome p450 3A4 (CYP3A4) to a range of metabolites with significantly reduced beta1- and beta2-agonist activity. The major route of metabolism was via O-dealkylation, with up to 78% of the recovered dose eliminated as O-dealkylated metabolites while N-Dealkylation and C-dealkylation were minor pathways, representing 5% of the recovered dose. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following oral administration of radiolabeled vilanterol, mass balance showed 70% of the radiolabel in the urine and 30% in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The effective half-life for vilanterol, as determined from inhalation administration of multiple doses, is 11 hours. The plasma elimination half-life, as determined from inhalation administration of multiple doses of vilanterol 25 mcg, is 21.3 hours in patients with COPD and 16.0 hours in patients with asthma. For a single dose inhaled administration, the plasma elimination phase half-life averaged 2.5 hour. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Following intravenous administration, the pharmacokinetics of vilanterol showed a high plasma clearance of 108 L/hour. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): In separate embryofetal developmental studies, pregnant rats and rabbits received vilanterol during the period of organogenesis at doses up to approximately 13,000 and 450 times, respectively, the maximum recommended human daily inhaled dose (MRHDID) (on an mcg/m2 basis at maternal inhalation doses up to 33,700 mcg/kg/day in rats and on an AUC basis at maternal inhaled doses up to 5,740 mcg/kg/day in rabbits). No evidence of structural abnormalities was observed at any dose in rats or in rabbits up to approximately 70 times the MRHDID (on an AUC basis at maternal doses up to 591 mcg/kg/day in rabbits). However, fetal skeletal variations were observed in rabbits at approximately 450 times the MRHDID (on an AUC basis at maternal inhaled or subcutaneous doses of 5,740 or 300 mcg/kg/day, respectively). The skeletal variations included decreased or absent ossification in the cervical vertebral centrum and metacarpals. In a perinatal and postnatal developmental study in rats, dams received vilanterol during late gestation and the lactation periods at doses up to approximately 3,900 times the MRHDID (on an mcg/m2 basis at maternal oral doses up to 10,000 mcg/kg/day). No evidence of effects on offspring development was observed. The expected signs and symptoms with overdosage of vilanterol are those of excessive beta-adrenergic stimulation and/or occurrence or exaggeration of any of the signs and symptoms of beta-adrenergic stimulation (e.g., seizures, angina, hypertension or hypotension, tachycardia with rates up to 200 beats/min, arrhythmias, nervousness, headache, tremor, muscle cramps, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, insomnia, hyperglycemia, hypokalemia, metabolic acidosis). As with all inhaled sympathomimetic medicines, cardiac arrest, and even death may be associated with an overdose of vilanterol. In a 2-year carcinogenicity study in mice, vilanterol caused a statistically significant increase in ovarian tubulostromal adenomas in females at an inhaled dose of 29,500 mcg/kg/day (approximately 7,800 times the MRHDID for adults on an AUC basis). No increase in tumors was seen at an inhaled dose of 615 mcg/kg/day (approximately 210 times the MRHDID for adults on an AUC basis). In a 2-year carcinogenicity study in rats, vilanterol caused statistically significant increases in mesovarian leiomyomas in females and a shortening of the latency of pituitary tumors at inhaled doses greater than or equal to 84.4 mcg/kg/day (greater than or equal to approximately 20 times the MRHDID for adults on an AUC basis). No tumors were seen at an inhaled dose of 10.5 mcg/kg/day (approximately equal to the MRHDID for adults on an AUC basis). These tumor findings in rodents are similar to those reported previously for other beta-adrenergic agonist drugs. The relevance of these findings to human use is unknown. Vilanterol tested negative in the following genotoxicity assays: the in vitro Ames assay, in vivo rat bone marrow micronucleus assay, in vivo rat unscheduled DNA synthesis (UDS) assay, and in vitro Syrian hamster embryo (SHE) cell assay. Vilanterol tested equivocal in the in vitro mouse lymphoma assay. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Anoro, Anoro Ellipta, Breo Ellipta, Trelegy Ellipta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vilanterol is a long-acting beta2-adrenergic agonist used in combination with other bronchodilators for the management of chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema. Output: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Does Adalimumab and Vilazodone interact?
•Drug A: Adalimumab •Drug B: Vilazodone •Severity: MODERATE •Description: The metabolism of Vilazodone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vilazodone is approved for treatment of major depressive disorder. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vilazodone increases serotonin levels in the brain by inhibiting the reuptake of serotonin while acting as a partial agonist on serotonin-1A receptors. Due to this activity vilazodone has sometimes been referred to as a selective partial agonist and reuptake inhibitor (SPARI). •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vilazodone selectively inhibits serotonin reuptake in the central nervous system as well as acting as a partial agonist of 5HT-1A receptors. The exact mechanism for how these effects translate to its antidepressant effects are not known, though there is an association between these effects and antidepressive activity. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vilazodone's bioavailability is 72% when taken with food. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vilazodone's volume of distribution is unknown but large •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 96-99%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vilazodone is mainly metabolized by cytochrome P450(CYP)3A4 and also to a minor extent by CYP2C19 and CYP 2D6. Although the metabolic pathway for vilazodone has not been fully studied, a proposed mechanism for metabolism in rats was published in 2017. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): 1% of the dose is recovered unchanged in the urine and 2% of the dose is recovered unchanged in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 25 hours. Other studies show a half life of 24±5.2h with a single 40mg dose and 28.9±3.2h with repeated doses. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Clearance of vilazodone is 19.9-25.1L/h in patients with mild to moderate renal impairment compared to 26.4-26.9L/h in healthy controls. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is a lack of clinical studies of vilazodone in pregnancy. Animal studies have shown the effects on offspring to be reduced fetal weight, increased mortality, delayed maturation, and decreased fertility in adulthood at doses well above the maximum recommended human dose. Clinical cases of fetal and neonatal exposure to SSRIs and SNRIs have lead to a number of complications including respiratory distress, seizures, and temperature instability. It is not know whether vilazodone is excreted in the breast milk of nursing mothers but animal studies show this is the case for rats. The risk and benefit of breast feeding while taking vilazodone for mother and child must be considered before a decision is made. Safety and effectiveness in pediatric patients has not been established in clinical trials though antidepressants are associated with an increased risk of suicidal thought and behaviour in patients under 24 years. Clinical studies in geriatric patients showed to significant difference in response to vilazodone compared to younger patients. Geriatric patients should be started at a lower dose and titrated to an effective dose as they are more likely to have other comorbidities. Dosage adjustments are not necessary for patients of different genders or with reduced hepatic and renal function. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Viibryd •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vilazodone is an antidepressant agent used for the treatment of major depressive disorder that targets the 5-HT transporter and 5-HT1A receptors.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Vilazodone interact? Information: •Drug A: Adalimumab •Drug B: Vilazodone •Severity: MODERATE •Description: The metabolism of Vilazodone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vilazodone is approved for treatment of major depressive disorder. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vilazodone increases serotonin levels in the brain by inhibiting the reuptake of serotonin while acting as a partial agonist on serotonin-1A receptors. Due to this activity vilazodone has sometimes been referred to as a selective partial agonist and reuptake inhibitor (SPARI). •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vilazodone selectively inhibits serotonin reuptake in the central nervous system as well as acting as a partial agonist of 5HT-1A receptors. The exact mechanism for how these effects translate to its antidepressant effects are not known, though there is an association between these effects and antidepressive activity. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vilazodone's bioavailability is 72% when taken with food. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vilazodone's volume of distribution is unknown but large •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 96-99%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vilazodone is mainly metabolized by cytochrome P450(CYP)3A4 and also to a minor extent by CYP2C19 and CYP 2D6. Although the metabolic pathway for vilazodone has not been fully studied, a proposed mechanism for metabolism in rats was published in 2017. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): 1% of the dose is recovered unchanged in the urine and 2% of the dose is recovered unchanged in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 25 hours. Other studies show a half life of 24±5.2h with a single 40mg dose and 28.9±3.2h with repeated doses. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Clearance of vilazodone is 19.9-25.1L/h in patients with mild to moderate renal impairment compared to 26.4-26.9L/h in healthy controls. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is a lack of clinical studies of vilazodone in pregnancy. Animal studies have shown the effects on offspring to be reduced fetal weight, increased mortality, delayed maturation, and decreased fertility in adulthood at doses well above the maximum recommended human dose. Clinical cases of fetal and neonatal exposure to SSRIs and SNRIs have lead to a number of complications including respiratory distress, seizures, and temperature instability. It is not know whether vilazodone is excreted in the breast milk of nursing mothers but animal studies show this is the case for rats. The risk and benefit of breast feeding while taking vilazodone for mother and child must be considered before a decision is made. Safety and effectiveness in pediatric patients has not been established in clinical trials though antidepressants are associated with an increased risk of suicidal thought and behaviour in patients under 24 years. Clinical studies in geriatric patients showed to significant difference in response to vilazodone compared to younger patients. Geriatric patients should be started at a lower dose and titrated to an effective dose as they are more likely to have other comorbidities. Dosage adjustments are not necessary for patients of different genders or with reduced hepatic and renal function. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Viibryd •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vilazodone is an antidepressant agent used for the treatment of major depressive disorder that targets the 5-HT transporter and 5-HT1A receptors. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Does Adalimumab and Vinblastine interact?
•Drug A: Adalimumab •Drug B: Vinblastine •Severity: MAJOR •Description: The metabolism of Vinblastine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For treatment of breast cancer, testicular cancer, lymphomas, neuroblastoma, Hodgkin's and non-Hodgkin's lymphomas, mycosis fungoides, histiocytosis, and Kaposi's sarcoma. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vinblastine is a vinca alkaloid antineoplastic agent. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units: vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant ( Catharanthus roseus ) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vinblastine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 98-99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Metabolism of vinblastine has been shown to be mediated by hepatic cytochrome P450 3A isoenzymes. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The major route of excretion may be through the biliary system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Triphasic: 35 min, 53 min, and 19 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral, mouse: LD 50 = 423 mg/kg; Oral, rat: LD 50 = 305 mg/kg. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinblastine is a vinca alkaloid used to treat breast cancer, testicular cancer, neuroblastoma, Hodgkin's and non-Hodgkins lymphoma, mycosis fungoides, histiocytosis, and Kaposi's sarcoma.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vinblastine interact? Information: •Drug A: Adalimumab •Drug B: Vinblastine •Severity: MAJOR •Description: The metabolism of Vinblastine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For treatment of breast cancer, testicular cancer, lymphomas, neuroblastoma, Hodgkin's and non-Hodgkin's lymphomas, mycosis fungoides, histiocytosis, and Kaposi's sarcoma. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vinblastine is a vinca alkaloid antineoplastic agent. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units: vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant ( Catharanthus roseus ) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vinblastine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 98-99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Metabolism of vinblastine has been shown to be mediated by hepatic cytochrome P450 3A isoenzymes. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The major route of excretion may be through the biliary system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Triphasic: 35 min, 53 min, and 19 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral, mouse: LD 50 = 423 mg/kg; Oral, rat: LD 50 = 305 mg/kg. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinblastine is a vinca alkaloid used to treat breast cancer, testicular cancer, neuroblastoma, Hodgkin's and non-Hodgkins lymphoma, mycosis fungoides, histiocytosis, and Kaposi's sarcoma. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Vincristine interact?
•Drug A: Adalimumab •Drug B: Vincristine •Severity: MAJOR •Description: The metabolism of Vincristine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Treatment of acute lymphocytic leukemia (ALL), Hodgkin lymphoma, non-Hodgkin lymphomas, Wilms' tumor, neuroblastoma, rhabdomyosarcoma. Liposomal vincristine is indicated for the treatment of relapsed Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia (ALL). •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca -transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Within 15 to 30 minutes after injection, over 90% of the drug is distributed from the blood into tissue, where it remains tightly, but not irreversibly, bound. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): ~75% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Cytochrome P450 isoenzymes of the CYP3A subfamily facilitate the metabolism of vincristine. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The liver is the major excretory organ in humans and animals. 80% of an injected dose of vincristine sulfate is excreted via feces. 10 - 20% is excreted via urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): When intravenously injected into cancer patients, a triphasic serum decay patten was observed. The initial, middle, and terminal half-lives are 5 minutes, 2.3 hours, 85 hours respectively. The range of the terminal half-life is humans is 19 - 155 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): IVN-RAT LD 50 1300 mg/kg; IPR-MUS LD 50 5.2 mg/kg. Marqibo® must only be administered IV because it is fatal if administered by other routes. Marqibo® also has different dosing than vincristine sulphate injection, so attention is needed to prevent overdoses. The most clinically significant adverse effect of vincristine is neurotoxicity. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Marqibo, Vincasar •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vincristine is a vinca alkaloid used to treat acute leukemia, malignant lymphoma, Hodgkin's disease, acute erythraemia, and acute panmyelosis.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vincristine interact? Information: •Drug A: Adalimumab •Drug B: Vincristine •Severity: MAJOR •Description: The metabolism of Vincristine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Treatment of acute lymphocytic leukemia (ALL), Hodgkin lymphoma, non-Hodgkin lymphomas, Wilms' tumor, neuroblastoma, rhabdomyosarcoma. Liposomal vincristine is indicated for the treatment of relapsed Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia (ALL). •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca -transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Within 15 to 30 minutes after injection, over 90% of the drug is distributed from the blood into tissue, where it remains tightly, but not irreversibly, bound. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): ~75% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Cytochrome P450 isoenzymes of the CYP3A subfamily facilitate the metabolism of vincristine. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The liver is the major excretory organ in humans and animals. 80% of an injected dose of vincristine sulfate is excreted via feces. 10 - 20% is excreted via urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): When intravenously injected into cancer patients, a triphasic serum decay patten was observed. The initial, middle, and terminal half-lives are 5 minutes, 2.3 hours, 85 hours respectively. The range of the terminal half-life is humans is 19 - 155 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): IVN-RAT LD 50 1300 mg/kg; IPR-MUS LD 50 5.2 mg/kg. Marqibo® must only be administered IV because it is fatal if administered by other routes. Marqibo® also has different dosing than vincristine sulphate injection, so attention is needed to prevent overdoses. The most clinically significant adverse effect of vincristine is neurotoxicity. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Marqibo, Vincasar •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vincristine is a vinca alkaloid used to treat acute leukemia, malignant lymphoma, Hodgkin's disease, acute erythraemia, and acute panmyelosis. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Vindesine interact?
•Drug A: Adalimumab •Drug B: Vindesine •Severity: MAJOR •Description: The metabolism of Vindesine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of acute leukaemia, malignant lymphoma, Hodgkin's disease, acute erythraemia and acute panmyelosis •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vindesine is indicated for the treatment of acute lymphocytic leukemia of childhood that is resistant to vincristine and non-oat cell lung cancer. Vindesine causes the arrest of cells in metaphase mitosis. It is three times more potent than vincristine and nearly 10 times more potent than vinblastine in causing mitotic arrest in in vitro studies at doses designed to arrest from 10 to 15% of the cells in mitosis. Vindesine and vincristine are approximately equipotent at dose levels that arrest 40 to 50% of the cells in mitosis. Unlike vinblastine, vindesine produces very few postmetaphase cells. Vindesine has demonstrated activity in patients who have relapsed while receiving multiple-agent treatment that included vincristine. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vindesine acts by causing the arrest of cells in metaphase mitosis through its inhibition tubulin mitotic funcitoning. The drug is cell-cycle specific for the S phase. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 65-75% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 24 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Desacetylvinblastine amide Vindesina Vindesine Vindesinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vindesine is a vinca alkaloid derived from vinblastine used for various types of malignancies, but mainly acute lymphocytic leukemia (ALL).
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vindesine interact? Information: •Drug A: Adalimumab •Drug B: Vindesine •Severity: MAJOR •Description: The metabolism of Vindesine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of acute leukaemia, malignant lymphoma, Hodgkin's disease, acute erythraemia and acute panmyelosis •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vindesine is indicated for the treatment of acute lymphocytic leukemia of childhood that is resistant to vincristine and non-oat cell lung cancer. Vindesine causes the arrest of cells in metaphase mitosis. It is three times more potent than vincristine and nearly 10 times more potent than vinblastine in causing mitotic arrest in in vitro studies at doses designed to arrest from 10 to 15% of the cells in mitosis. Vindesine and vincristine are approximately equipotent at dose levels that arrest 40 to 50% of the cells in mitosis. Unlike vinblastine, vindesine produces very few postmetaphase cells. Vindesine has demonstrated activity in patients who have relapsed while receiving multiple-agent treatment that included vincristine. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vindesine acts by causing the arrest of cells in metaphase mitosis through its inhibition tubulin mitotic funcitoning. The drug is cell-cycle specific for the S phase. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 65-75% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 24 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Desacetylvinblastine amide Vindesina Vindesine Vindesinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vindesine is a vinca alkaloid derived from vinblastine used for various types of malignancies, but mainly acute lymphocytic leukemia (ALL). Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Vinflunine interact?
•Drug A: Adalimumab •Drug B: Vinflunine •Severity: MAJOR •Description: The metabolism of Vinflunine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For use as a monotherapy in adults with advanced or transitional cell carcinoma of the urothelial tract after failure of a prior platinum-containing therapy. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): The antitumour effects of vinflunine are dependent on concentration and exposure duration of the drug. Vinflunine mediates an anti-mitotic action by inhibiting the microtubule assembly at micromolar concentrations and reducing the rate and extent of microtubule growing events. In vivo, vinflunine displays a significant antitumor activity against a broad spectrum of human xenografts in mice both in terms of survival prolongation and tumour growth inhibition. Compared with other vinca alkaloids, vinflunine is a less-potent inductor of drug resistance in vitro. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Microtubules are a major component of the cytoskeleton that have a critical role in maintenance of cell shape, mobility, adhesion and intracellular integrity. They also play a role in the formation of the mitotic spindle and chromosomal segregation to the daughter cells at mitosis. Via GTP hydrolysis at the β-tubulin subunit and polymerization of tubulin into linear polymers, microtubules, or macromolecular filaments composed of tubulin heterodimers, are formed via a mechanism of nucleation-elongation. At the onset of mitosis, the interphase microtubule network disassembles into the tubulin. The tubulin reassembles into a new population of mitotic spindle microtubules that further undergo rapid successions of lengthening and shortening until they are attached to the newly duplicated sister chromatids at their centromeres. The dynamic behaviour of microtubules are characterized by two mechanical process: dynamic instability indicating repeated switches of growth and shortening at the ends, and microtubule treadmilling that involves the fast-growing (+) end of the microtubule accompanied by a net loss of the opposite slow-growing (-) end. Microtubule treadmilling plays a critical role in mitosis by generating the forces for separation of the chromosomes in the mitotic spindle from centrosome and kinetochores. In both cancer and normal cells, vinflunine binds to tubulin at or near to the vinca binding sites at β-tubulin. It is proposed that in similarity to other vinca alkaloids, vinflunine is most likely to bind to β-tubulin subunit at the interdimer interface. Via direct binding to tubulin, vinflunine inhibits microtubule polymerization and induces a G2+M arrest, or a mitotic arrest. Vinflunine disrupts the dynamic function of microtubules by suppressing treadmilling and slowing the microtubule growth rate while increasing growth duration. Ultimately, mitotic accumulation at the metaphase/anaphase transition results in cell apoptosis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vinflunine displays a linear pharmacokinetic profile in the range of administered doses (from 30 mg/m^2 to 400 mg/m^2) in cancer patients. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The terminal volume of distribution is large, 2422 ± 676 L (about 35 l/kg), suggesting extensive distribution into tissues. The ratio between plasma and whole blood concentrations of 0.80 ± 0.12. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vinflunine is 67.2 ± 1.1% bound to human plasma proteins. It mainly binds to high density lipoproteins and serum albumin, and is non-saturable on the range of vinflunine concentrations observed in patients.. Binding to alpha-1 acid glycoprotein and to platelets is negligible (< 5%). •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The metabolites of influnine are mostly cytochrome P450 3A4, but 4-O-deacetylvinflunine (DVFL) may be slowly formed by multiple esterases. DVFL is the main metabolite and is the only metabolite that retains pharmacological activity. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Fecal excretion accounts for 2/3 of the total elimination of vinflunine and its metabolites and the remaining 1/3 of their elimination indicates urinary excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The mean terminal half-life is approximately 40 h. The half life of the main metabolite, DVFL, is approximately 120 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The total blood clearance was 40 L/h according to a population pharmacokinetic analysis in 372 patients. The inter- and intra-individual variability was low, with the coefficient of variation approximately 25% and 8%, respectively. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Overdose of vinflunine is associated with bone marrow suppression with a risk of severe infection. There is no known antidote for vinflunine overdose. In case of overdose, the vital functions of the patient should be closely monitored and other appropriate measures, such as blood transfusions and administration of antibiotics or growth factors, should be taken if necessary. The severity of correlates with the AUC of, or overall exposure to, vinflunine. In the in vivo micronucleus test in rat, vinflunine was clastogenic that induced chromosome breakage. In a mouse lymphoma assay, vinflunine displayed mutagenic and clastogenic potential without any metabolic activation. In the reproduction studies, vinflunine caused embryolethal and teratogenic effects in rabbits and teratogenic effects in rats. 2 cases of malformations of the uterus and vagina following vinflunine treatment were reported during the pre- and post-natal development study in rat. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Javlor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vinflunina Vinflunine Vinfluninum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinflunine is a vinca alkaloid used to treat advanced or metastatic transitional cell carcinoma of the urothelial tract after a platinum containing treatment has failed.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vinflunine interact? Information: •Drug A: Adalimumab •Drug B: Vinflunine •Severity: MAJOR •Description: The metabolism of Vinflunine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For use as a monotherapy in adults with advanced or transitional cell carcinoma of the urothelial tract after failure of a prior platinum-containing therapy. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): The antitumour effects of vinflunine are dependent on concentration and exposure duration of the drug. Vinflunine mediates an anti-mitotic action by inhibiting the microtubule assembly at micromolar concentrations and reducing the rate and extent of microtubule growing events. In vivo, vinflunine displays a significant antitumor activity against a broad spectrum of human xenografts in mice both in terms of survival prolongation and tumour growth inhibition. Compared with other vinca alkaloids, vinflunine is a less-potent inductor of drug resistance in vitro. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Microtubules are a major component of the cytoskeleton that have a critical role in maintenance of cell shape, mobility, adhesion and intracellular integrity. They also play a role in the formation of the mitotic spindle and chromosomal segregation to the daughter cells at mitosis. Via GTP hydrolysis at the β-tubulin subunit and polymerization of tubulin into linear polymers, microtubules, or macromolecular filaments composed of tubulin heterodimers, are formed via a mechanism of nucleation-elongation. At the onset of mitosis, the interphase microtubule network disassembles into the tubulin. The tubulin reassembles into a new population of mitotic spindle microtubules that further undergo rapid successions of lengthening and shortening until they are attached to the newly duplicated sister chromatids at their centromeres. The dynamic behaviour of microtubules are characterized by two mechanical process: dynamic instability indicating repeated switches of growth and shortening at the ends, and microtubule treadmilling that involves the fast-growing (+) end of the microtubule accompanied by a net loss of the opposite slow-growing (-) end. Microtubule treadmilling plays a critical role in mitosis by generating the forces for separation of the chromosomes in the mitotic spindle from centrosome and kinetochores. In both cancer and normal cells, vinflunine binds to tubulin at or near to the vinca binding sites at β-tubulin. It is proposed that in similarity to other vinca alkaloids, vinflunine is most likely to bind to β-tubulin subunit at the interdimer interface. Via direct binding to tubulin, vinflunine inhibits microtubule polymerization and induces a G2+M arrest, or a mitotic arrest. Vinflunine disrupts the dynamic function of microtubules by suppressing treadmilling and slowing the microtubule growth rate while increasing growth duration. Ultimately, mitotic accumulation at the metaphase/anaphase transition results in cell apoptosis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vinflunine displays a linear pharmacokinetic profile in the range of administered doses (from 30 mg/m^2 to 400 mg/m^2) in cancer patients. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The terminal volume of distribution is large, 2422 ± 676 L (about 35 l/kg), suggesting extensive distribution into tissues. The ratio between plasma and whole blood concentrations of 0.80 ± 0.12. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vinflunine is 67.2 ± 1.1% bound to human plasma proteins. It mainly binds to high density lipoproteins and serum albumin, and is non-saturable on the range of vinflunine concentrations observed in patients.. Binding to alpha-1 acid glycoprotein and to platelets is negligible (< 5%). •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The metabolites of influnine are mostly cytochrome P450 3A4, but 4-O-deacetylvinflunine (DVFL) may be slowly formed by multiple esterases. DVFL is the main metabolite and is the only metabolite that retains pharmacological activity. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Fecal excretion accounts for 2/3 of the total elimination of vinflunine and its metabolites and the remaining 1/3 of their elimination indicates urinary excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The mean terminal half-life is approximately 40 h. The half life of the main metabolite, DVFL, is approximately 120 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The total blood clearance was 40 L/h according to a population pharmacokinetic analysis in 372 patients. The inter- and intra-individual variability was low, with the coefficient of variation approximately 25% and 8%, respectively. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Overdose of vinflunine is associated with bone marrow suppression with a risk of severe infection. There is no known antidote for vinflunine overdose. In case of overdose, the vital functions of the patient should be closely monitored and other appropriate measures, such as blood transfusions and administration of antibiotics or growth factors, should be taken if necessary. The severity of correlates with the AUC of, or overall exposure to, vinflunine. In the in vivo micronucleus test in rat, vinflunine was clastogenic that induced chromosome breakage. In a mouse lymphoma assay, vinflunine displayed mutagenic and clastogenic potential without any metabolic activation. In the reproduction studies, vinflunine caused embryolethal and teratogenic effects in rabbits and teratogenic effects in rats. 2 cases of malformations of the uterus and vagina following vinflunine treatment were reported during the pre- and post-natal development study in rat. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Javlor •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vinflunina Vinflunine Vinfluninum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinflunine is a vinca alkaloid used to treat advanced or metastatic transitional cell carcinoma of the urothelial tract after a platinum containing treatment has failed. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Vinorelbine interact?
•Drug A: Adalimumab •Drug B: Vinorelbine •Severity: MAJOR •Description: The metabolism of Vinorelbine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vinorelbine tartrate is indicated for adults in the treatment of advanced non-small cell lung cancer (NSCLC), as a single therapy or in combination with other chemotherapeutic drugs. Used in relapsed or refractory Hodgkin lymphoma, in combination with other chemotherapy agents. For the treatment of desmoid tumor or aggressive fibromatosis, in combination with methotrexate. For the treatment of recurrent or metastatic squamous cell head and neck cancer. For the treatment of recurrent ovarian cancer. For the treatment of metastatic breast cancer, in patients previously treated with anthracyline and/or taxane therapy. For the treatment of HER2-positive, trastuzumab-resistant, advanced breast cancer in patients previously treated with a taxane, in combination with trastuzumab and everolimus. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vinorelbine is a semi-synthetic vinca-alkaloid with a wide spectrum of anti-tumor activity. The vinca-alkaloids are considered spindle poisons. They work by interfering with the polymerization of tubulin, a protein responsible for building the microtubule system which appears during cell division in proliferating cancer cells. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vinca alkaloids are structurally similar compounds composed of two multi-ringed units, vindoline, and catharanthine. Vinorelbine tartrate is a vinca alkaloid in which the catharanthine component is the target of structural modification,. This structural modification contributes to unique pharmacologic properties.The antitumor activity of vinorelbine tartrate is believed to be owed to the inhibition of mitosis at metaphase via its interaction with tubulin. Vinorelbine is a mitotic spindle poison that interferes with chromosomal segregation during mitosis, also known as cell division. It pauses cells at the G2/M phases, when present at concentrations close to the half maximal inhibitory concentration (IC50). Microtubules, which are derived from polymers of tubulin, are the main target of vinorelbine. The chemical modification used to produce vinorelbine allows for the opening of the eight-member catharanthine ring with the formation of both a covalent and reversible bond with tubulin. The relative contribution of different microtubule-associated proteins in the production of tubulin vary between neural tissue and proliferating cells and this has important functional implications. The ability of vinorelbine to bind specifically to mitotic rather than other microtubules has been shown and may suggest that neurotoxicity is less likely to be a problem than with the molecular mechanism of action. As with other anti-microtubule agents, vinorelbine is known to contribute apoptosis in malignant cells. The exact mechanisms by which this process occurs are complex and many details are yet to be elucidated. The disarray of the microtubule structure has a number of effects, including the induction of tumor suppressor gene p53 and activation/inactivation of a number of protein kinases involved in essential signaling pathways, including p21 WAF1/CIP1 and Ras/Raf, PKC/PKA. These molecular changes lead to phosphorylation and consequently inactivation of the apoptosis inhibitor Bcl2. This, in turn, results in a decrease in the formation of heterodimers between Bcl2 and the pro-apoptotic gene BAX, stimulating the sequence of cell apoptosis. Vinorelbine tartrate also possibly interferes with amino acid, cyclic AMP and glutathione metabolism, calmodulin-dependent Ca++-transport ATPase activity, cellular respiration, and nucleic acid and lipid biosynthesis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vinorelbine is rapidly absorbed with peak serum concentration reached within 2 hours. Vinorelbine is highly bound to platelets and lymphocytes and is also bound to alpha 1-acid glycoprotein, albumin, and lipoproteins. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The volume of distribution is large, indicating extensive extravascular distribution. The steady-state volume of distribution values range from 25.4 to 40.1 L/kg, according to one study. Widely distributed, with highest amounts found in elimination organs such as liver and kidneys, minimal in heart and brain. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 80-90% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vinorelbine undergoes substantial hepatic elimination in humans. Two metabolites of vinorelbine have been identified in human blood, plasma, and urine; vinorelbine N-oxide and deacetylvinorelbine. Deacetylvinorelbine has been demonstrated to be the primary metabolite of vinorelbine in humans, and has been shown to possess antitumor activity similar to vinorelbine,. Vinorelbine is metabolized into two other minor metabolites, 20'-hydroxyvinorelbine and vinorelbine 6'-oxide. Therapeutic doses of vinorelbine (30 mg/m2) yield very small, if any, quantifiable levels of either metabolite in blood or urine. The metabolism of vinorelbine is mediated by hepatic cytochrome P450 isoenzymes in the CYP3A subfamily,. As the liver provides the main route for metabolism of the drug, patients with hepatic impairment may demonstrate increased toxicity with standard dosing, however, there are no available data on this. Likewise, the contribution of cytochrome P450 enzyme action to vinorelbine metabolism has potential implications in patients receiving other drugs metabolized by this route. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vinorelbine undergoes substantial hepatic elimination in humans, with large amounts recovered in feces after intravenous administration to humans. Urinary excretion of unchanged drug accounts for less than 20% of an intravenous dose, with fecal elimination accounting for an additional 30% to 60%. After intravenous administration of radioactive vinorelbine, approximately 18% and 46% of administered radioactivity was recovered in urine and feces, respectively. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The terminal phase half-life averaged 27.7 to 43.6 hours; the mean plasma clearances ranged from 0.97 to 1.26 L/hr/kg. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The plasma clearance of vinorelbine is high, approaching the same as hepatic blood flow in humans, and its volume of distribution is large, indicating extensive extravascular distribution. In comparison to vinblastine or vincristine. The clearance was found to be in the range of 0.29-1./26 L/ per kg in 4 clinical trials of patients receiving 30 mg/m2 of vinorelbine. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Due to the wide array of adverse effects of this drug, the toxicity of is categorized into organ systems. Hematologic: Granulocytopenia was the primary dose-limiting toxicity with vinorelbine tartrate therapy; it is generally reversible and not cumulative. In one study, granulocytopenia resulted in hospitalizations for fever and/or sepsis in 8% of NSCLC and 9% of breast cancer patients. Infectious (septic) deaths occurred in about 1% of patients. Grade 3 or 4 anemia occurred in about 1% of lung cancer and approximately 14% of breast cancer patients. Blood transfusions were administered to 18% of patients who received vinorelbine tartrate therapy. The incidence of Grade 3 and 4 thrombocytopenia was found to be less than 1%. Neurologic: Mild to moderate peripheral neuropathy may occur. Symptoms of paresthesia and hypesthesia are reported as the most commonly reported neurologic toxicities of this drug. The loss of deep tendon reflexes (DTR) occurs in less than 5% of patients, according to one study. The development of severe peripheral neuropathy is rare. Dermatologic: Alopecia has been reported in only about 12% of patients and is usually reported as mild. Vinorelbine tartrate is a moderate vesicant, leading to injection site reactions. Symptoms include erythema, pain at the injection site and vein discoloration occurred in about 1/3 of all patients. Chemical phlebitis along the vein, near the site of injection, has been reported. Respiratory: Shortness of breath was reported in 3% of NSCLC and 9% of breast cancer patients, and was severe in 2% of each patient population. Interstitial pulmonary changes have been documented in a few patients. Gastrointestinal: Mild or moderate nausea symptoms occurred in 32% of NSCLC and 47% of breast cancer patients treated with vinorelbine tartrate. Severe nausea was occurred infrequently (1% and 3% in NSCLC and breast cancer patients, respectively). Prophylactic administration of anti-emetics was not routine in patients treated with single-agent vinorelbine tartrate. Constipation occurred in about 28% of NSCLC and 38% of breast cancer patients. The paralytic ileus incidence of less than 2% of patients. Vomiting, diarrhea, anorexia and stomatitis were found to be mild or moderate and occurred in less than 20% of study patients. Hepatic: Transient elevations of liver enzymes were reported without clinical symptoms. Cardiovascular: Chest pain was reported in 5% of NSCLC and 8% of breast cancer patients. Most reports of chest pain were in patients who had either a history of cardiovascular disease or tumor within the chest. There have been rare reports of myocardial infarction; however, these have not been shown definitely attributable to vinorelbine tartrate. Other: Muscle weakness (asthenia) occurred in about 25% of patients with NSCLC and 41% of patients with breast cancer. It was usually mild or moderate but showed a linear increase with cumulative doses. Several other toxicities reported in approximately 5% of patients include jaw pain, myalgia, arthralgia, headache, dysphagia, and skin rash. Hemorrhagic cystitis (bladder inflammation with blood in urine) and the syndrome of inappropriate ADH secretion were both reported in less than 1% of patients. The treatment of these entities are mainly symptomatic. The carcinogenic potential of Vinorelbine has not been adequately studied. Vinorelbine has been demonstrated to affect chromosome number and likely the chromosome structure in vivo (polyploidy in bone marrow cells from Chinese hamsters and a positive micronucleus test in mice were observed). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinorelbine is a vinca alkaloid used in the treatment of metastatic non-small cell lung carcinoma (NSLC) and in conjunction with other drugs in locally advanced NSCLC.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Vinorelbine interact? Information: •Drug A: Adalimumab •Drug B: Vinorelbine •Severity: MAJOR •Description: The metabolism of Vinorelbine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vinorelbine tartrate is indicated for adults in the treatment of advanced non-small cell lung cancer (NSCLC), as a single therapy or in combination with other chemotherapeutic drugs. Used in relapsed or refractory Hodgkin lymphoma, in combination with other chemotherapy agents. For the treatment of desmoid tumor or aggressive fibromatosis, in combination with methotrexate. For the treatment of recurrent or metastatic squamous cell head and neck cancer. For the treatment of recurrent ovarian cancer. For the treatment of metastatic breast cancer, in patients previously treated with anthracyline and/or taxane therapy. For the treatment of HER2-positive, trastuzumab-resistant, advanced breast cancer in patients previously treated with a taxane, in combination with trastuzumab and everolimus. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vinorelbine is a semi-synthetic vinca-alkaloid with a wide spectrum of anti-tumor activity. The vinca-alkaloids are considered spindle poisons. They work by interfering with the polymerization of tubulin, a protein responsible for building the microtubule system which appears during cell division in proliferating cancer cells. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vinca alkaloids are structurally similar compounds composed of two multi-ringed units, vindoline, and catharanthine. Vinorelbine tartrate is a vinca alkaloid in which the catharanthine component is the target of structural modification,. This structural modification contributes to unique pharmacologic properties.The antitumor activity of vinorelbine tartrate is believed to be owed to the inhibition of mitosis at metaphase via its interaction with tubulin. Vinorelbine is a mitotic spindle poison that interferes with chromosomal segregation during mitosis, also known as cell division. It pauses cells at the G2/M phases, when present at concentrations close to the half maximal inhibitory concentration (IC50). Microtubules, which are derived from polymers of tubulin, are the main target of vinorelbine. The chemical modification used to produce vinorelbine allows for the opening of the eight-member catharanthine ring with the formation of both a covalent and reversible bond with tubulin. The relative contribution of different microtubule-associated proteins in the production of tubulin vary between neural tissue and proliferating cells and this has important functional implications. The ability of vinorelbine to bind specifically to mitotic rather than other microtubules has been shown and may suggest that neurotoxicity is less likely to be a problem than with the molecular mechanism of action. As with other anti-microtubule agents, vinorelbine is known to contribute apoptosis in malignant cells. The exact mechanisms by which this process occurs are complex and many details are yet to be elucidated. The disarray of the microtubule structure has a number of effects, including the induction of tumor suppressor gene p53 and activation/inactivation of a number of protein kinases involved in essential signaling pathways, including p21 WAF1/CIP1 and Ras/Raf, PKC/PKA. These molecular changes lead to phosphorylation and consequently inactivation of the apoptosis inhibitor Bcl2. This, in turn, results in a decrease in the formation of heterodimers between Bcl2 and the pro-apoptotic gene BAX, stimulating the sequence of cell apoptosis. Vinorelbine tartrate also possibly interferes with amino acid, cyclic AMP and glutathione metabolism, calmodulin-dependent Ca++-transport ATPase activity, cellular respiration, and nucleic acid and lipid biosynthesis. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vinorelbine is rapidly absorbed with peak serum concentration reached within 2 hours. Vinorelbine is highly bound to platelets and lymphocytes and is also bound to alpha 1-acid glycoprotein, albumin, and lipoproteins. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The volume of distribution is large, indicating extensive extravascular distribution. The steady-state volume of distribution values range from 25.4 to 40.1 L/kg, according to one study. Widely distributed, with highest amounts found in elimination organs such as liver and kidneys, minimal in heart and brain. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 80-90% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vinorelbine undergoes substantial hepatic elimination in humans. Two metabolites of vinorelbine have been identified in human blood, plasma, and urine; vinorelbine N-oxide and deacetylvinorelbine. Deacetylvinorelbine has been demonstrated to be the primary metabolite of vinorelbine in humans, and has been shown to possess antitumor activity similar to vinorelbine,. Vinorelbine is metabolized into two other minor metabolites, 20'-hydroxyvinorelbine and vinorelbine 6'-oxide. Therapeutic doses of vinorelbine (30 mg/m2) yield very small, if any, quantifiable levels of either metabolite in blood or urine. The metabolism of vinorelbine is mediated by hepatic cytochrome P450 isoenzymes in the CYP3A subfamily,. As the liver provides the main route for metabolism of the drug, patients with hepatic impairment may demonstrate increased toxicity with standard dosing, however, there are no available data on this. Likewise, the contribution of cytochrome P450 enzyme action to vinorelbine metabolism has potential implications in patients receiving other drugs metabolized by this route. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vinorelbine undergoes substantial hepatic elimination in humans, with large amounts recovered in feces after intravenous administration to humans. Urinary excretion of unchanged drug accounts for less than 20% of an intravenous dose, with fecal elimination accounting for an additional 30% to 60%. After intravenous administration of radioactive vinorelbine, approximately 18% and 46% of administered radioactivity was recovered in urine and feces, respectively. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The terminal phase half-life averaged 27.7 to 43.6 hours; the mean plasma clearances ranged from 0.97 to 1.26 L/hr/kg. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The plasma clearance of vinorelbine is high, approaching the same as hepatic blood flow in humans, and its volume of distribution is large, indicating extensive extravascular distribution. In comparison to vinblastine or vincristine. The clearance was found to be in the range of 0.29-1./26 L/ per kg in 4 clinical trials of patients receiving 30 mg/m2 of vinorelbine. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Due to the wide array of adverse effects of this drug, the toxicity of is categorized into organ systems. Hematologic: Granulocytopenia was the primary dose-limiting toxicity with vinorelbine tartrate therapy; it is generally reversible and not cumulative. In one study, granulocytopenia resulted in hospitalizations for fever and/or sepsis in 8% of NSCLC and 9% of breast cancer patients. Infectious (septic) deaths occurred in about 1% of patients. Grade 3 or 4 anemia occurred in about 1% of lung cancer and approximately 14% of breast cancer patients. Blood transfusions were administered to 18% of patients who received vinorelbine tartrate therapy. The incidence of Grade 3 and 4 thrombocytopenia was found to be less than 1%. Neurologic: Mild to moderate peripheral neuropathy may occur. Symptoms of paresthesia and hypesthesia are reported as the most commonly reported neurologic toxicities of this drug. The loss of deep tendon reflexes (DTR) occurs in less than 5% of patients, according to one study. The development of severe peripheral neuropathy is rare. Dermatologic: Alopecia has been reported in only about 12% of patients and is usually reported as mild. Vinorelbine tartrate is a moderate vesicant, leading to injection site reactions. Symptoms include erythema, pain at the injection site and vein discoloration occurred in about 1/3 of all patients. Chemical phlebitis along the vein, near the site of injection, has been reported. Respiratory: Shortness of breath was reported in 3% of NSCLC and 9% of breast cancer patients, and was severe in 2% of each patient population. Interstitial pulmonary changes have been documented in a few patients. Gastrointestinal: Mild or moderate nausea symptoms occurred in 32% of NSCLC and 47% of breast cancer patients treated with vinorelbine tartrate. Severe nausea was occurred infrequently (1% and 3% in NSCLC and breast cancer patients, respectively). Prophylactic administration of anti-emetics was not routine in patients treated with single-agent vinorelbine tartrate. Constipation occurred in about 28% of NSCLC and 38% of breast cancer patients. The paralytic ileus incidence of less than 2% of patients. Vomiting, diarrhea, anorexia and stomatitis were found to be mild or moderate and occurred in less than 20% of study patients. Hepatic: Transient elevations of liver enzymes were reported without clinical symptoms. Cardiovascular: Chest pain was reported in 5% of NSCLC and 8% of breast cancer patients. Most reports of chest pain were in patients who had either a history of cardiovascular disease or tumor within the chest. There have been rare reports of myocardial infarction; however, these have not been shown definitely attributable to vinorelbine tartrate. Other: Muscle weakness (asthenia) occurred in about 25% of patients with NSCLC and 41% of patients with breast cancer. It was usually mild or moderate but showed a linear increase with cumulative doses. Several other toxicities reported in approximately 5% of patients include jaw pain, myalgia, arthralgia, headache, dysphagia, and skin rash. Hemorrhagic cystitis (bladder inflammation with blood in urine) and the syndrome of inappropriate ADH secretion were both reported in less than 1% of patients. The treatment of these entities are mainly symptomatic. The carcinogenic potential of Vinorelbine has not been adequately studied. Vinorelbine has been demonstrated to affect chromosome number and likely the chromosome structure in vivo (polyploidy in bone marrow cells from Chinese hamsters and a positive micronucleus test in mice were observed). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vinorelbine is a vinca alkaloid used in the treatment of metastatic non-small cell lung carcinoma (NSLC) and in conjunction with other drugs in locally advanced NSCLC. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Voclosporin interact?
•Drug A: Adalimumab •Drug B: Voclosporin •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Voclosporin. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Voclosporin is used in combination with a background immunosuppressive regimen for the treatment of lupus nephritis. Safety has not been established in combination with cyclophosphamide. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voclosporin inhibits calcineurin, leading to the inhibition of T cell activation by blocking the transcription of early inflammatory cytokines. This reduces inflammation in the kidney, treating lupus nephritis and preventing permanent renal damage. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Through the inhibition of calcineurin, voclosporin blocks IL-2 expression and T-cell mediated immune responses, stabilizing podocytes in the kidneys. Voclospoprin is a cyclosporine A analog. It is structurally similar to cyclosporine A (CsA) with the exception of an amino acid modification in one region. This modification changes the binding of voclosporin to calcineurin. Cyclosporine inhibitors reversibly inhibit T-lymphocytes. They also inhibit lymphokine production and release. Cyclosporine A exerts its inhibitory effects on T-lymphocytes by binding to cyclophilin. A cyclophilin-cyclosporine complex is formed, leading to the inhibition of calcium- and calmodulin-dependent serine-threonine phosphatase activity of calcineurin. Along with calcineurin inhibition, the inhibition of many transcription factors necessary for the induction of various cytokine genes such as IL-2, IFN-γ, IL-4 and GM-CSF occurs. This, in turn, reduces inflammation, treating renal glomerulonephritis associated with systemic lupus erythematosus. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): When administered on an empty stomach, the median Tmax of voclosporin is 1.5 hours, but can range from 1-4 hours. The AUC is estimated at 7693.6 ng/mL*h and the Cmax is estimated at 955.5 ng/mL. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of voclosporin is 2,154 L. Voclosporin distributes extensively into red blood cells; distribution between whole blood and plasma is dependent on concentration and temperature. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The protein binding of voclosporin is approximately 97%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voclosporin is mainly metabolized by the CYP3A4 hepatic cytochrome enzyme. Pharmacologic activity is mainly attributed to the parent molecule. A major metabolite has been detected in human whole blood, representing 16.7% of total exposure; this metabolite is about 8-fold less potent than the parent drug, voclosporin. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Voclosporin is eliminated in the urine and feces, with about 88% detected in the feces and about 2% detected in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The average terminal half-life of voclosporin is about 30 hours (24.9 to 36.5 hours). •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean apparent steady-state clearance of voclosporin is 63.6 L/h. Hepatic and renal impairment significantly reduce the clearance of voclosporin. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): LD50 information for voclosporin is not readily available. Accidental overdose with voclosporin has been reported with; symptoms of an overdose may include headache, nausea and vomiting, infections, tachycardia, urticaria, lethargy, and tremor. An increase in blood urea nitrogen, serum creatinine, and alanine aminotransferase levels is also possible. There is no known antidote to an overdose with voclosporin. If an overdose occurs, supportive and symptomatic treatment should be initiated, in addition to discontinuation of voclosporin. Assessment of blood urea nitrogen, serum creatinine, eGFR and alanine aminotransferase levels is recommended. Prescribing information suggests contacting a poison center or medical toxicologist for the management of an overdose with voclosporin. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Lupkynis •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voclosporin is a calcineurin inhibitor for the treatment of lupus nephritis (LN) in patients diagnosed with systemic lupus erythematosus (SLE).
Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Question: Does Adalimumab and Voclosporin interact? Information: •Drug A: Adalimumab •Drug B: Voclosporin •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Voclosporin. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Voclosporin is used in combination with a background immunosuppressive regimen for the treatment of lupus nephritis. Safety has not been established in combination with cyclophosphamide. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voclosporin inhibits calcineurin, leading to the inhibition of T cell activation by blocking the transcription of early inflammatory cytokines. This reduces inflammation in the kidney, treating lupus nephritis and preventing permanent renal damage. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Through the inhibition of calcineurin, voclosporin blocks IL-2 expression and T-cell mediated immune responses, stabilizing podocytes in the kidneys. Voclospoprin is a cyclosporine A analog. It is structurally similar to cyclosporine A (CsA) with the exception of an amino acid modification in one region. This modification changes the binding of voclosporin to calcineurin. Cyclosporine inhibitors reversibly inhibit T-lymphocytes. They also inhibit lymphokine production and release. Cyclosporine A exerts its inhibitory effects on T-lymphocytes by binding to cyclophilin. A cyclophilin-cyclosporine complex is formed, leading to the inhibition of calcium- and calmodulin-dependent serine-threonine phosphatase activity of calcineurin. Along with calcineurin inhibition, the inhibition of many transcription factors necessary for the induction of various cytokine genes such as IL-2, IFN-γ, IL-4 and GM-CSF occurs. This, in turn, reduces inflammation, treating renal glomerulonephritis associated with systemic lupus erythematosus. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): When administered on an empty stomach, the median Tmax of voclosporin is 1.5 hours, but can range from 1-4 hours. The AUC is estimated at 7693.6 ng/mL*h and the Cmax is estimated at 955.5 ng/mL. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of voclosporin is 2,154 L. Voclosporin distributes extensively into red blood cells; distribution between whole blood and plasma is dependent on concentration and temperature. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The protein binding of voclosporin is approximately 97%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voclosporin is mainly metabolized by the CYP3A4 hepatic cytochrome enzyme. Pharmacologic activity is mainly attributed to the parent molecule. A major metabolite has been detected in human whole blood, representing 16.7% of total exposure; this metabolite is about 8-fold less potent than the parent drug, voclosporin. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Voclosporin is eliminated in the urine and feces, with about 88% detected in the feces and about 2% detected in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The average terminal half-life of voclosporin is about 30 hours (24.9 to 36.5 hours). •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean apparent steady-state clearance of voclosporin is 63.6 L/h. Hepatic and renal impairment significantly reduce the clearance of voclosporin. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): LD50 information for voclosporin is not readily available. Accidental overdose with voclosporin has been reported with; symptoms of an overdose may include headache, nausea and vomiting, infections, tachycardia, urticaria, lethargy, and tremor. An increase in blood urea nitrogen, serum creatinine, and alanine aminotransferase levels is also possible. There is no known antidote to an overdose with voclosporin. If an overdose occurs, supportive and symptomatic treatment should be initiated, in addition to discontinuation of voclosporin. Assessment of blood urea nitrogen, serum creatinine, eGFR and alanine aminotransferase levels is recommended. Prescribing information suggests contacting a poison center or medical toxicologist for the management of an overdose with voclosporin. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Lupkynis •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voclosporin is a calcineurin inhibitor for the treatment of lupus nephritis (LN) in patients diagnosed with systemic lupus erythematosus (SLE). Output: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Does Adalimumab and Vonoprazan interact?
•Drug A: Adalimumab •Drug B: Vonoprazan •Severity: MODERATE •Description: The metabolism of Vonoprazan can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vonoprazan, in combination with amoxicillin and clarithromycin in a co-packaged product, is indicated for the treatment of Helicobacter pylori ( H. pylori ) infection in adults. Another co-packaged product with only vonoprazan and amoxicillin is also indicated for the treatment of H. pylori infection in adults. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): The use of vonoprazan leads to an increase in intragastric pH. The inhibitory effect of vonoprazan on acid secretion increases with repeated daily dosing. Although the antisecretory effect of vonoprazan decreases after drug discontinuation, intragastric pH remains elevated for 24 to 48 hours. Vonoprazan does not have a clinically significant effect on QT prolongation. Compared to other potassium-competitive acid blockers (PCABs), vonoprazan has a higher point-positive charge (pKa of 9.06). This allows vonoprazan to accumulate at higher concentrations in the canalicular space of the gastric parietal cells, where it binds H, K -ATPase in a K -competitive and reversible manner. Compared to other PCABs, such as SCH28080, or proton-pump inhibitors, such as lansoprazole, vonoprazan has a more potent H, K -ATPase inhibitory activity. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vonoprazan is a potassium-competitive acid blocker (PCAB) that inhibits the H, K -ATPase enzyme system in a potassium-competitive manner. Through this mechanism, vonoprazan suppresses basal and stimulated gastric acid secretion at the secretory surface of gastric parietal cells. Although both classes of drugs inhibit the H, K -ATPase, the mechanism of action of PCABs differs from that of proton-pump inhibitors (PPIs). PPIs form a covalent disulphide bond with a cysteine residue on the H, K -ATPase, which leads to the inactivation of the enzyme, while PCABs interfere with the binding of K to the H, K -ATPase. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vonoprazan has time-independent pharmacokinetics, and steady-state concentrations are reached after 3 to 4 days. In patients given a single dose of vonoprazan, the AUC 0-12h, C max and T max were 154.8 ng hr/mL, 25.2 ng/mL, and 2.5 h. In patients given vonoprazan twice daily, the AUC 0-12h, C max and T max were 272.5 ng hr/mL, 37.8 ng/mL, and 3.0 h. In patients given 10 mg to 40 mg of vonoprazan daily for 7 days, the AUC and C max increased in a dose-proportional manner. In healthy subjects given 20 mg of vonoprazan, a high-fat meal led to a 5% and 15% increase in C max and AUC; however, these changes were not considered clinically significant. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vonoprazan has an apparent oral volume of distribution of 1001 L following a single dose (20 mg). At steady state, the apparent oral volume of distribution of vonoprazan is 782.7 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In healthy subjects, the plasma protein binding of vonoprazan ranges from 85% to 88%. At plasma concentrations between 0.1 and 10 mcg/mL, the plasma protein binding of vonoprazan is independent of concentration. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vonoprazan is metabolized by several cytochrome P450 (CYP) isoforms, mainly CYP3A4, and to a lesser extent CYP3A5, CYP2B6, CYP2C19, CYP2C9 and CYP2D6. Sulfo- and glucuronosyl-transferases also participate in the metabolism of vonoprazan, and all metabolites are pharmacologically inactive. CYP3A4 converts vonoprazan into metabolites M-I and M-II, which are then converted to glucuronic-acid-conjugated products M-I-G and M-II-G, respectively. Unlike proton pump inhibitors, the presence of CYP2C19 polymorphisms does not have a significant effect on the pharmacokinetics of vonoprazan. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vonoprazan is excreted in urine (67%) and feces (31%). Approximately 8% and 1.4% of the dose administered are recovered unchanged in urine and feces, respectively. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vonoprazan has an elimination half-life of 7.1 h following a single dose (20 mg). At steady state, the elimination half-life of vonoprazan is 6.8 h. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Vonoprazan has an apparent oral clearance of 97.3 L/h following a single dose (20 mg). At steady state, the apparent oral clearance of vonoprazan is 81.3 L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Overdose with vonoprazan has not been reported. No serious adverse reactions were observed during clinical studies in subjects given a single dose of 120 mg of vonoprazan. Vonoprazan is not removed from the circulation by hemodialysis. In case of overdose, the FDA label for Voquezna Triple Pak and Voquezna Dual Pak recommends symptomatic and supportive treatment. Animal studies evaluating vonoprazan mutagenicity (Ames test) have reported negative results. No effects on fertility and reproductive performance were observed in rats given 300 mg/kg/day of vonoprazan orally (133, the maximum recommended human dose). Mice given 6, 20, 60 and 200 mg/kg/day of vonoprazan orally (0.4, 4, 19, and 93 times the maximum recommended human dose) developed hyperplasia of neuroendocrine cells, gastropathy and benign and/or malignant neuroendocrine cell tumors (carcinoids) in the stomach. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Voquezna, Voquezna 14 Day Dualpak 20;500, Voquezna 14 Day Triplepak 20;500;500 •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vonoprazan is a potassium-competitive acid blocker used in the treatment of acid-related disorders and as an adjunct to Helicobacter pylori eradication.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Vonoprazan interact? Information: •Drug A: Adalimumab •Drug B: Vonoprazan •Severity: MODERATE •Description: The metabolism of Vonoprazan can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vonoprazan, in combination with amoxicillin and clarithromycin in a co-packaged product, is indicated for the treatment of Helicobacter pylori ( H. pylori ) infection in adults. Another co-packaged product with only vonoprazan and amoxicillin is also indicated for the treatment of H. pylori infection in adults. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): The use of vonoprazan leads to an increase in intragastric pH. The inhibitory effect of vonoprazan on acid secretion increases with repeated daily dosing. Although the antisecretory effect of vonoprazan decreases after drug discontinuation, intragastric pH remains elevated for 24 to 48 hours. Vonoprazan does not have a clinically significant effect on QT prolongation. Compared to other potassium-competitive acid blockers (PCABs), vonoprazan has a higher point-positive charge (pKa of 9.06). This allows vonoprazan to accumulate at higher concentrations in the canalicular space of the gastric parietal cells, where it binds H, K -ATPase in a K -competitive and reversible manner. Compared to other PCABs, such as SCH28080, or proton-pump inhibitors, such as lansoprazole, vonoprazan has a more potent H, K -ATPase inhibitory activity. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vonoprazan is a potassium-competitive acid blocker (PCAB) that inhibits the H, K -ATPase enzyme system in a potassium-competitive manner. Through this mechanism, vonoprazan suppresses basal and stimulated gastric acid secretion at the secretory surface of gastric parietal cells. Although both classes of drugs inhibit the H, K -ATPase, the mechanism of action of PCABs differs from that of proton-pump inhibitors (PPIs). PPIs form a covalent disulphide bond with a cysteine residue on the H, K -ATPase, which leads to the inactivation of the enzyme, while PCABs interfere with the binding of K to the H, K -ATPase. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Vonoprazan has time-independent pharmacokinetics, and steady-state concentrations are reached after 3 to 4 days. In patients given a single dose of vonoprazan, the AUC 0-12h, C max and T max were 154.8 ng hr/mL, 25.2 ng/mL, and 2.5 h. In patients given vonoprazan twice daily, the AUC 0-12h, C max and T max were 272.5 ng hr/mL, 37.8 ng/mL, and 3.0 h. In patients given 10 mg to 40 mg of vonoprazan daily for 7 days, the AUC and C max increased in a dose-proportional manner. In healthy subjects given 20 mg of vonoprazan, a high-fat meal led to a 5% and 15% increase in C max and AUC; however, these changes were not considered clinically significant. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vonoprazan has an apparent oral volume of distribution of 1001 L following a single dose (20 mg). At steady state, the apparent oral volume of distribution of vonoprazan is 782.7 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In healthy subjects, the plasma protein binding of vonoprazan ranges from 85% to 88%. At plasma concentrations between 0.1 and 10 mcg/mL, the plasma protein binding of vonoprazan is independent of concentration. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vonoprazan is metabolized by several cytochrome P450 (CYP) isoforms, mainly CYP3A4, and to a lesser extent CYP3A5, CYP2B6, CYP2C19, CYP2C9 and CYP2D6. Sulfo- and glucuronosyl-transferases also participate in the metabolism of vonoprazan, and all metabolites are pharmacologically inactive. CYP3A4 converts vonoprazan into metabolites M-I and M-II, which are then converted to glucuronic-acid-conjugated products M-I-G and M-II-G, respectively. Unlike proton pump inhibitors, the presence of CYP2C19 polymorphisms does not have a significant effect on the pharmacokinetics of vonoprazan. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vonoprazan is excreted in urine (67%) and feces (31%). Approximately 8% and 1.4% of the dose administered are recovered unchanged in urine and feces, respectively. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vonoprazan has an elimination half-life of 7.1 h following a single dose (20 mg). At steady state, the elimination half-life of vonoprazan is 6.8 h. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Vonoprazan has an apparent oral clearance of 97.3 L/h following a single dose (20 mg). At steady state, the apparent oral clearance of vonoprazan is 81.3 L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Overdose with vonoprazan has not been reported. No serious adverse reactions were observed during clinical studies in subjects given a single dose of 120 mg of vonoprazan. Vonoprazan is not removed from the circulation by hemodialysis. In case of overdose, the FDA label for Voquezna Triple Pak and Voquezna Dual Pak recommends symptomatic and supportive treatment. Animal studies evaluating vonoprazan mutagenicity (Ames test) have reported negative results. No effects on fertility and reproductive performance were observed in rats given 300 mg/kg/day of vonoprazan orally (133, the maximum recommended human dose). Mice given 6, 20, 60 and 200 mg/kg/day of vonoprazan orally (0.4, 4, 19, and 93 times the maximum recommended human dose) developed hyperplasia of neuroendocrine cells, gastropathy and benign and/or malignant neuroendocrine cell tumors (carcinoids) in the stomach. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Voquezna, Voquezna 14 Day Dualpak 20;500, Voquezna 14 Day Triplepak 20;500;500 •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vonoprazan is a potassium-competitive acid blocker used in the treatment of acid-related disorders and as an adjunct to Helicobacter pylori eradication. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. The severity of the interaction is moderate.
Does Adalimumab and Vorapaxar interact?
•Drug A: Adalimumab •Drug B: Vorapaxar •Severity: MODERATE •Description: The metabolism of Vorapaxar can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vorapaxar is indicated for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or peripheral arterial disease (PAD). It is usually co-administered with acetylsalicylic acid (ASA) and/or clopidogrel, and should therefore be administered as an addition to these medications as it has not been studied alone. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vorapaxar inhibits platelet aggregation through the reversible antagonism of protease-activated receptor 1 (PAR-1), also known as thrombin receptor. PARs are a family of G-protein coupled receptors highly expressed on platelets and activated by serine protease activity of thrombin to mediate thrombotic response. By blocking PAR-1 activating, vorapaxar inhibits thrombin-induced platelet aggregation and thrombin receptor agonist peptide (TRAP)-induced platelet aggregation. Vorapaxar does not inhibit platelet aggregation induced by other agonists such as adenosine diphosphate (ADP), collagen or a thromboxane mimetic. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): After oral administration, vorapaxar is rapidly absorbed and peak concentrations occur at a median tmax of 1 hour under faster conditions. Vorapaxar may be taken with or without food as ingestion with a high-fat meal did not result in meaningful changes in AUC. The mean absolute bioavailability is 100%. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 424 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vorapaxar is extensively bound (>99%) to human plasma proteins, such as human serum albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vorapaxar is metabolized to its major circulating metabolite, M20, and its predominant metabolite excreted into feces, M19, by CYP3A4 and CYP 2J2. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vorapaxar is primarily eliminated as its metabolite M19 through the feces (91.5%), and partially eliminated in the urine (8.5%). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vorapaxar has an effective half life of 3-4 days and an apparent terminal half life of 8 days. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is an increased risk of bleeding and intracranial hemorrhage (ICH), which is why the use of vorapaxar is contraindicated in patients with a history of stroke, trans-ischemic attack (TIA), ICH, or active pathological bleeding such as peptic ulcer. Animal studies have suggested that there is a low probability of embryo/fetal toxicities, however there are no adequate and well-controlled studies describing use in pregnant women. Vorapaxar should also be avoided during breastfeeding as it is unknown whether vorapaxar or its metabolites are excreted in human milk, however it has been shown to be actively secreted in the milk of rats. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zontivity •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vorapaxar •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vorapaxar is a platelet aggregation inhibitor used to reduce thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or peripheral arterial disease (PAD).
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Vorapaxar interact? Information: •Drug A: Adalimumab •Drug B: Vorapaxar •Severity: MODERATE •Description: The metabolism of Vorapaxar can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vorapaxar is indicated for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or peripheral arterial disease (PAD). It is usually co-administered with acetylsalicylic acid (ASA) and/or clopidogrel, and should therefore be administered as an addition to these medications as it has not been studied alone. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vorapaxar inhibits platelet aggregation through the reversible antagonism of protease-activated receptor 1 (PAR-1), also known as thrombin receptor. PARs are a family of G-protein coupled receptors highly expressed on platelets and activated by serine protease activity of thrombin to mediate thrombotic response. By blocking PAR-1 activating, vorapaxar inhibits thrombin-induced platelet aggregation and thrombin receptor agonist peptide (TRAP)-induced platelet aggregation. Vorapaxar does not inhibit platelet aggregation induced by other agonists such as adenosine diphosphate (ADP), collagen or a thromboxane mimetic. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): After oral administration, vorapaxar is rapidly absorbed and peak concentrations occur at a median tmax of 1 hour under faster conditions. Vorapaxar may be taken with or without food as ingestion with a high-fat meal did not result in meaningful changes in AUC. The mean absolute bioavailability is 100%. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 424 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Vorapaxar is extensively bound (>99%) to human plasma proteins, such as human serum albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vorapaxar is metabolized to its major circulating metabolite, M20, and its predominant metabolite excreted into feces, M19, by CYP3A4 and CYP 2J2. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Vorapaxar is primarily eliminated as its metabolite M19 through the feces (91.5%), and partially eliminated in the urine (8.5%). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Vorapaxar has an effective half life of 3-4 days and an apparent terminal half life of 8 days. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is an increased risk of bleeding and intracranial hemorrhage (ICH), which is why the use of vorapaxar is contraindicated in patients with a history of stroke, trans-ischemic attack (TIA), ICH, or active pathological bleeding such as peptic ulcer. Animal studies have suggested that there is a low probability of embryo/fetal toxicities, however there are no adequate and well-controlled studies describing use in pregnant women. Vorapaxar should also be avoided during breastfeeding as it is unknown whether vorapaxar or its metabolites are excreted in human milk, however it has been shown to be actively secreted in the milk of rats. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zontivity •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Vorapaxar •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vorapaxar is a platelet aggregation inhibitor used to reduce thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or peripheral arterial disease (PAD). Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. The severity of the interaction is moderate.
Does Adalimumab and Voriconazole interact?
•Drug A: Adalimumab •Drug B: Voriconazole •Severity: MODERATE •Description: The metabolism of Voriconazole can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of esophageal candidiasis, cadidemia, invasive pulmonary aspergillosis, and serious fungal infections caused by Scedosporium apiospermum and Fusarium spp. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voriconazole is a fungistatic triazole antifungal used to treat infections by inhibiting fungal growth. It is known to cause hepatotoxic and photosensitivity reactions in some patients. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Voriconazole is used to treat fungal infections caused by a variety of organisms but including Aspergillus spp. and Candida spp. Voriconazole is a triazole antifungal exhibiting fungistatic activity against fungal pathogens. Like other triazoles, voriconazole binds to 14-alpha sterol demethylase, also known as CYP51, and inhibits the demethylation of lanosterol as part of the ergosterol synthesis pathway in yeast and other fungi. The lack of sufficient ergosterol disrupts fungal cell membrane function and limits fungal cell growth. With fungal growth limited, the host's immune system is able to clear the invading organism. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The oral bioavailability is estimated to be 96% in healthy adults. Population pharmacokinetic studies report a reduced bioavailability pediatric patients with a mean of 61.8% (range 44.6–64.5%) thought to be due to differences in first-pass metabolism or due to differences in diet. Of note, transplant patients also have reduced bioavailability but this is known to increase with time after transplantation and may be due in part to gastrointestinal upset from surgery and some transplant medications. Tmax is 1-2 hours with oral administration. When administered with a high-fat meal Cmax decreases by 34% and AUC by 24%. pH does not have an effect on absorption of voriconazole. Differences in Cmax and AUC have been observed between healthy adult males and females with Cmax increasing by 83% and AUC by 113% although this has not been observed to significantly impact medication safety profiles. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The estimated volume of distribution of voriconazole is 4.6 L/kg. Population pharmacokinetic studies estimate the median volume of distribution to be 77.6 L with the central compartment estimated at 1.07 L/kg Voriconazole is known to achieve therapeutic concentrations in many tissues including the brain, lungs, liver, spleen, kidneys, and heart. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Voriconazole is 58% bound to plasma proteins. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voriconazole undergoes extensive hepatic metabolism through cytochrome enzymes CYP2C9, CYP2C19, and CYP3A4. CYP2C19 mediates N-oxidation with an apparent Km of 14 μM and an apparent Vmax of 0.22 nmol/min/nmol CYP2C19. Voriconazole N-oxide is the major circulating metabolite, accounting for 72% of radiolabeled metabolites found. CYP3A4 contributes to N-oxidation with a Km of 16 μM and Vmax of 0.05 nmol/min/nmol CYP3A4 as well as 4-hydroxylation with a Km of 11 μM and a Vmax of 0.10 nmol/min/nmol CYP3A4. CYP3A5 and CYP3A7 provide minor contributions to N-oxidation and 4-hydroxylation. The N-oxide and 4-hydroxylated metabolites undergo glucuronidation and are excreted through the urine with other minor glucuronidated metabolites. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Voriconazole is eliminated via hepatic metabolism with less than 2% of the dose excreted unchanged in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Voriconazole follows non-linear kinetics and has a terminal half-life of elimination which is dose-dependent. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The clearance of voriconazole is estimated to be a mean of 5.25-7 L/h in healthy adults for the linear portion of the drug's kinetics. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Symptoms of overdose include photophobia and possible QTc prolongation. In case of overdose, supportive care and ECG monitoring are recommended. Activated charcoal may aid in the removal of unabsorbed drug. Voriconazole is cleared by hemodialysis at a rate of 121 mL/min which may be helpful in removing absorbed drug. Carcinogenicity studies found hepatocellular adenomas in female rats at doses of 50 mg/kg and hepatocellular carcinomas found in male rats at doses of 6 and 50 mg/kg. These doses are equivalent to 0.2 and 1.6 times the recommended maintenance dose (RMD). Studies in mice detected hepatocellular carcinomas in males at doses of 100 mg/kg or 1.4 times the RMD. Hepatocellular adenomas were detected in both male and female mice. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Vfend •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Voriconazol Voriconazole Voriconazolum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voriconazole is a triazole compound used to treat fungal infections.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Voriconazole interact? Information: •Drug A: Adalimumab •Drug B: Voriconazole •Severity: MODERATE •Description: The metabolism of Voriconazole can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of esophageal candidiasis, cadidemia, invasive pulmonary aspergillosis, and serious fungal infections caused by Scedosporium apiospermum and Fusarium spp. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voriconazole is a fungistatic triazole antifungal used to treat infections by inhibiting fungal growth. It is known to cause hepatotoxic and photosensitivity reactions in some patients. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Voriconazole is used to treat fungal infections caused by a variety of organisms but including Aspergillus spp. and Candida spp. Voriconazole is a triazole antifungal exhibiting fungistatic activity against fungal pathogens. Like other triazoles, voriconazole binds to 14-alpha sterol demethylase, also known as CYP51, and inhibits the demethylation of lanosterol as part of the ergosterol synthesis pathway in yeast and other fungi. The lack of sufficient ergosterol disrupts fungal cell membrane function and limits fungal cell growth. With fungal growth limited, the host's immune system is able to clear the invading organism. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The oral bioavailability is estimated to be 96% in healthy adults. Population pharmacokinetic studies report a reduced bioavailability pediatric patients with a mean of 61.8% (range 44.6–64.5%) thought to be due to differences in first-pass metabolism or due to differences in diet. Of note, transplant patients also have reduced bioavailability but this is known to increase with time after transplantation and may be due in part to gastrointestinal upset from surgery and some transplant medications. Tmax is 1-2 hours with oral administration. When administered with a high-fat meal Cmax decreases by 34% and AUC by 24%. pH does not have an effect on absorption of voriconazole. Differences in Cmax and AUC have been observed between healthy adult males and females with Cmax increasing by 83% and AUC by 113% although this has not been observed to significantly impact medication safety profiles. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The estimated volume of distribution of voriconazole is 4.6 L/kg. Population pharmacokinetic studies estimate the median volume of distribution to be 77.6 L with the central compartment estimated at 1.07 L/kg Voriconazole is known to achieve therapeutic concentrations in many tissues including the brain, lungs, liver, spleen, kidneys, and heart. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Voriconazole is 58% bound to plasma proteins. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voriconazole undergoes extensive hepatic metabolism through cytochrome enzymes CYP2C9, CYP2C19, and CYP3A4. CYP2C19 mediates N-oxidation with an apparent Km of 14 μM and an apparent Vmax of 0.22 nmol/min/nmol CYP2C19. Voriconazole N-oxide is the major circulating metabolite, accounting for 72% of radiolabeled metabolites found. CYP3A4 contributes to N-oxidation with a Km of 16 μM and Vmax of 0.05 nmol/min/nmol CYP3A4 as well as 4-hydroxylation with a Km of 11 μM and a Vmax of 0.10 nmol/min/nmol CYP3A4. CYP3A5 and CYP3A7 provide minor contributions to N-oxidation and 4-hydroxylation. The N-oxide and 4-hydroxylated metabolites undergo glucuronidation and are excreted through the urine with other minor glucuronidated metabolites. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Voriconazole is eliminated via hepatic metabolism with less than 2% of the dose excreted unchanged in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Voriconazole follows non-linear kinetics and has a terminal half-life of elimination which is dose-dependent. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The clearance of voriconazole is estimated to be a mean of 5.25-7 L/h in healthy adults for the linear portion of the drug's kinetics. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Symptoms of overdose include photophobia and possible QTc prolongation. In case of overdose, supportive care and ECG monitoring are recommended. Activated charcoal may aid in the removal of unabsorbed drug. Voriconazole is cleared by hemodialysis at a rate of 121 mL/min which may be helpful in removing absorbed drug. Carcinogenicity studies found hepatocellular adenomas in female rats at doses of 50 mg/kg and hepatocellular carcinomas found in male rats at doses of 6 and 50 mg/kg. These doses are equivalent to 0.2 and 1.6 times the recommended maintenance dose (RMD). Studies in mice detected hepatocellular carcinomas in males at doses of 100 mg/kg or 1.4 times the RMD. Hepatocellular adenomas were detected in both male and female mice. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Vfend •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Voriconazol Voriconazole Voriconazolum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voriconazole is a triazole compound used to treat fungal infections. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Does Adalimumab and Vorinostat interact?
•Drug A: Adalimumab •Drug B: Vorinostat •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Vorinostat. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC 50 < 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 71% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The major pathways of vorinostat metabolism involve glucuronidation and hydrolysis followed by β-oxidation. Human serum levels of two metabolites, O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were measured. Both metabolites are pharmacologically inactive. Compared to vorinostat, the mean steady state serum exposures in humans of the O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were 4-fold and 13-fold higher, respectively. In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). Vorinostat is eliminated predominantly through metabolism with less than 1% of the dose recovered as unchanged drug in urine, indicating that renal excretion does not play a role in the elimination of vorinostat. However, renal excretion does not play a role in the elimination of vorinostat. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 2 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zolinza •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Octanedioic acid hydroxyamide phenylamide SAHA Suberanilohydroxamic acid Suberoylanilide hydroxamic acid Vorinostat Vorinostatum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vorinostat is a histone deacetylase (HDAC) inhibitor used for the treatment of cutaneous manifestations in patients with progressive, persistent, or recurrent cutaneous T- cell lymphoma (CTCL) following prior systemic therapies.
Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Question: Does Adalimumab and Vorinostat interact? Information: •Drug A: Adalimumab •Drug B: Vorinostat •Severity: MAJOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Vorinostat. •Extended Description: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC 50 < 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 71% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The major pathways of vorinostat metabolism involve glucuronidation and hydrolysis followed by β-oxidation. Human serum levels of two metabolites, O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were measured. Both metabolites are pharmacologically inactive. Compared to vorinostat, the mean steady state serum exposures in humans of the O-glucuronide of vorinostat and 4-anilino-4-oxobutanoic acid were 4-fold and 13-fold higher, respectively. In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): In vitro studies using human liver microsomes indicate negligible biotransformation by cytochromes P450 (CYP). Vorinostat is eliminated predominantly through metabolism with less than 1% of the dose recovered as unchanged drug in urine, indicating that renal excretion does not play a role in the elimination of vorinostat. However, renal excretion does not play a role in the elimination of vorinostat. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 2 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zolinza •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Octanedioic acid hydroxyamide phenylamide SAHA Suberanilohydroxamic acid Suberoylanilide hydroxamic acid Vorinostat Vorinostatum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vorinostat is a histone deacetylase (HDAC) inhibitor used for the treatment of cutaneous manifestations in patients with progressive, persistent, or recurrent cutaneous T- cell lymphoma (CTCL) following prior systemic therapies. Output: Immunosuppressive agents may exert an additive effect on other immunosuppressive agents, leading to a greater risk of infection due to bone marrow suppression. The severity of the interaction is major.
Does Adalimumab and Vortioxetine interact?
•Drug A: Adalimumab •Drug B: Vortioxetine •Severity: MODERATE •Description: The metabolism of Vortioxetine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vortioxetine is indicated for the treatment of major depressive disorder (MDD). •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vortioxetine binds with high affinity to the human serotonin transporter (Ki=1.6 nM), but not to the norepinephrine (Ki=113 nM) or dopamine (Ki>1000 nM) transporters. Vortioxetine potently and selectively inhibits reuptake of serotonin by inhibition of the serotonin transporter (IC50=5.4 nM). Specifically, vortioxetine binds to 5­HT3 (Ki=3.7 nM), 5­HT1A (Ki=15 nM), 5­HT7 (Ki=19 nM), 5­HT1D (Ki=54 nM), and 5­HT1B (Ki=33 nM), receptors and is a 5­HT3, 5­HT1D, and 5­HT7 receptor antagonist, 5­HT1B receptor partial agonist, and 5­HT1A receptor agonist. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vortioxetine is classified as a serotonin modulator and simulator (SMS) as it has a multimodal mechanism of action towards the serotonin neurotransmitter system whereby it simultaneously modulates one or more serotonin receptors and inhibits the reuptake of serotonin. More specifically, vortioxetine acts via the following biological mechanisms: as a serotonin reuptake inhibitor (SRI) through inhibition of the serotonin transporter, while also acting as a partial agonist of the 5-HT1B receptor, an agonist of 5-HT1A, and antagonist of the 5-HT3, 5-HT1D, and 5-HT7 receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The maximal plasma vortioxetine concentration (Cmax) after dosing is reached within 7 to 11 hours postdose. Absolute bioavailability is 75%. No effect of food on the pharmacokinetics was observed. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of vortioxetine is approximately 2600 L, indicating extensive extravascular distribution. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The plasma protein binding of vortioxetine in humans is 98%, independent of plasma concentrations. No apparent difference in the plasma protein binding between healthy subjects and subjects with hepatic (mild, moderate) or renal (mild, moderate, severe, ESRD) impairment is observed. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vortioxetine is extensively metabolized primarily through oxidation via cytochrome P450 isozymes CYP2D6, CYP3A4/5, CYP2C19, CYP2C9, CYP2A6, CYP2C8 and CYP2B6 and subsequent glucuronic acid conjugation. CYP2D6 is the primary enzyme catalyzing the metabolism of vortioxetine to its major, pharmacologically inactive, carboxylic acid metabolite, and poor metabolizers of CYP2D6 have approximately twice the vortioxetine plasma concentration of extensive metabolizers. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following a single oral dose of [14C]­labeled vortioxetine, approximately 59% and 26% of the administered radioactivity was recovered in the urine and feces, respectively as metabolites. Negligible amounts of unchanged vortioxetine were excreted in the urine up to 48 hours. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Mean terminal half­life is approximately 66 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The most commonly reported adverse effects during clinical trials were nausea, diarrhea, and dry mouth. The FDA label includes a blackbox warning for the following risks and complications: serotonin syndrome, especially when combined with other serotonergic agents; increased risk of abnormal bleeding, especially when combined with NSAIDs, aspirin, or other drugs that affect coagulation; activation of mania/hypomania; hyponatremia; and suicidal thoughts and behaviour in children, adolescents, and young adults. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brintellix, Trintellix •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vortioxetine is a serotonin modulating antidepressant indicated for the treatment of major depressive disorder (MDD).
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Vortioxetine interact? Information: •Drug A: Adalimumab •Drug B: Vortioxetine •Severity: MODERATE •Description: The metabolism of Vortioxetine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Vortioxetine is indicated for the treatment of major depressive disorder (MDD). •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Vortioxetine binds with high affinity to the human serotonin transporter (Ki=1.6 nM), but not to the norepinephrine (Ki=113 nM) or dopamine (Ki>1000 nM) transporters. Vortioxetine potently and selectively inhibits reuptake of serotonin by inhibition of the serotonin transporter (IC50=5.4 nM). Specifically, vortioxetine binds to 5­HT3 (Ki=3.7 nM), 5­HT1A (Ki=15 nM), 5­HT7 (Ki=19 nM), 5­HT1D (Ki=54 nM), and 5­HT1B (Ki=33 nM), receptors and is a 5­HT3, 5­HT1D, and 5­HT7 receptor antagonist, 5­HT1B receptor partial agonist, and 5­HT1A receptor agonist. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Vortioxetine is classified as a serotonin modulator and simulator (SMS) as it has a multimodal mechanism of action towards the serotonin neurotransmitter system whereby it simultaneously modulates one or more serotonin receptors and inhibits the reuptake of serotonin. More specifically, vortioxetine acts via the following biological mechanisms: as a serotonin reuptake inhibitor (SRI) through inhibition of the serotonin transporter, while also acting as a partial agonist of the 5-HT1B receptor, an agonist of 5-HT1A, and antagonist of the 5-HT3, 5-HT1D, and 5-HT7 receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): The maximal plasma vortioxetine concentration (Cmax) after dosing is reached within 7 to 11 hours postdose. Absolute bioavailability is 75%. No effect of food on the pharmacokinetics was observed. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of vortioxetine is approximately 2600 L, indicating extensive extravascular distribution. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The plasma protein binding of vortioxetine in humans is 98%, independent of plasma concentrations. No apparent difference in the plasma protein binding between healthy subjects and subjects with hepatic (mild, moderate) or renal (mild, moderate, severe, ESRD) impairment is observed. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Vortioxetine is extensively metabolized primarily through oxidation via cytochrome P450 isozymes CYP2D6, CYP3A4/5, CYP2C19, CYP2C9, CYP2A6, CYP2C8 and CYP2B6 and subsequent glucuronic acid conjugation. CYP2D6 is the primary enzyme catalyzing the metabolism of vortioxetine to its major, pharmacologically inactive, carboxylic acid metabolite, and poor metabolizers of CYP2D6 have approximately twice the vortioxetine plasma concentration of extensive metabolizers. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following a single oral dose of [14C]­labeled vortioxetine, approximately 59% and 26% of the administered radioactivity was recovered in the urine and feces, respectively as metabolites. Negligible amounts of unchanged vortioxetine were excreted in the urine up to 48 hours. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Mean terminal half­life is approximately 66 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The most commonly reported adverse effects during clinical trials were nausea, diarrhea, and dry mouth. The FDA label includes a blackbox warning for the following risks and complications: serotonin syndrome, especially when combined with other serotonergic agents; increased risk of abnormal bleeding, especially when combined with NSAIDs, aspirin, or other drugs that affect coagulation; activation of mania/hypomania; hyponatremia; and suicidal thoughts and behaviour in children, adolescents, and young adults. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brintellix, Trintellix •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Vortioxetine is a serotonin modulating antidepressant indicated for the treatment of major depressive disorder (MDD). Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Voxelotor interact?
•Drug A: Adalimumab •Drug B: Voxelotor •Severity: MODERATE •Description: The metabolism of Voxelotor can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): In the US, voxelotor is indicated to treat sickle cell disease in both adult and pediatric patients aged 4 years and older. In Europe, it is indicated for the treatment of hemolytic anemia due to sickle cell disease (SCD) in adults and pediatric patients 12 years of age and older as monotherapy or in combination with hydroxyurea. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voxelotor increases hemoglobin (Hb) oxygen affinity in a dose-dependent manner. It has led to up to a 40% increase in hemoglobin in clinical trials. Voxelotor may inhibit red blood cell sickling, attenuate red blood cell deformability, and reduce whole blood viscosity. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Sickle cell disease is characterized by deoxygenated sickle hemoglobin (HbS) polymerization. The genetic mutation causing this disease leads to the formation of abnormal, sickle-shaped red blood cells that aggregate and block blood vessels throughout the body, causing vaso-occlusive crises. Sickle-shaped red blood cells cannot effectively bind oxygen, thus incapable of allowing normal blood flow to organs. Voxelotor increases Hb oxygen affinity. It binds reversibly to hemoglobin (Hb) by forming a covalent bond with the N‐terminal valine of the α‐chain of the protein, resulting in an allosteric modification of Hb. Voxelotor stabilizes the oxygenated Hb state and prevents HbS polymerization by increasing hemoglobin’s affinity for oxygen. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Voxelotor is rapidly absorbed after oral administration, with a plasma T max of 2 hours. T max in the red blood cells ranges from 17-24 hours. The C max in whole blood and red blood cells occur 6 and 18 hours after an oral dose, respectively. Consumption of a high-fat meal with voxelotor significantly increased exposure to the drug during clinical trials. After a daily dose of either 300, 600, or 900 mg for a period of 15 days, when steady-state concentrations were reached, the average RBC Cmax for the respective doses were measured to be 4950, 9610 and 14 000 μg*h mL−1, respectively. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of voxelotor in the central compartment is 338L and 72.2L in the plasma. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The protein binding of voxeletor is 99.8% in vitro. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voxeletor is heavily metabolized via two phases. Phase I metabolism consists of oxidation and reduction, while phase II metabolism consists of glucuronidation. Voseletor is oxidized mainly by CYP3A4 and by CYP2C19, CYP2B6, and CYP2C9, to a lesser extent. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): About 62.6% of the oral dose is found in the feces, of which 33.3% is an unchanged drug. About 35.5% of the dose is recovered in urine, with only 0.08% as the unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The plasma elimination half-life of voxelotor in sickle cell disease patients is about 35.5 hours. The mean half-life in the red blood cell is 60 days. In one study, the average plasma half-life of voxelotor was 50 hours in patients with sickle cell disease, compared with 61–85 hours in healthy subjects. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The apparent oral clearance of voxelotor is approximately 6.7 L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The LD 50 information and overdose information is unavailable at this time. Current clinical study results suggest that dose-limiting toxicities of voxelotor are unlikely. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Oxbryta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voxelotor is a drug used to inhibit the polymerization of hemoglobin S, preventing the painful and sometimes lethal vaso-occlusive crises associated with sickle cell disease.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Voxelotor interact? Information: •Drug A: Adalimumab •Drug B: Voxelotor •Severity: MODERATE •Description: The metabolism of Voxelotor can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): In the US, voxelotor is indicated to treat sickle cell disease in both adult and pediatric patients aged 4 years and older. In Europe, it is indicated for the treatment of hemolytic anemia due to sickle cell disease (SCD) in adults and pediatric patients 12 years of age and older as monotherapy or in combination with hydroxyurea. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Voxelotor increases hemoglobin (Hb) oxygen affinity in a dose-dependent manner. It has led to up to a 40% increase in hemoglobin in clinical trials. Voxelotor may inhibit red blood cell sickling, attenuate red blood cell deformability, and reduce whole blood viscosity. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Sickle cell disease is characterized by deoxygenated sickle hemoglobin (HbS) polymerization. The genetic mutation causing this disease leads to the formation of abnormal, sickle-shaped red blood cells that aggregate and block blood vessels throughout the body, causing vaso-occlusive crises. Sickle-shaped red blood cells cannot effectively bind oxygen, thus incapable of allowing normal blood flow to organs. Voxelotor increases Hb oxygen affinity. It binds reversibly to hemoglobin (Hb) by forming a covalent bond with the N‐terminal valine of the α‐chain of the protein, resulting in an allosteric modification of Hb. Voxelotor stabilizes the oxygenated Hb state and prevents HbS polymerization by increasing hemoglobin’s affinity for oxygen. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Voxelotor is rapidly absorbed after oral administration, with a plasma T max of 2 hours. T max in the red blood cells ranges from 17-24 hours. The C max in whole blood and red blood cells occur 6 and 18 hours after an oral dose, respectively. Consumption of a high-fat meal with voxelotor significantly increased exposure to the drug during clinical trials. After a daily dose of either 300, 600, or 900 mg for a period of 15 days, when steady-state concentrations were reached, the average RBC Cmax for the respective doses were measured to be 4950, 9610 and 14 000 μg*h mL−1, respectively. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The apparent volume of distribution of voxelotor in the central compartment is 338L and 72.2L in the plasma. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The protein binding of voxeletor is 99.8% in vitro. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Voxeletor is heavily metabolized via two phases. Phase I metabolism consists of oxidation and reduction, while phase II metabolism consists of glucuronidation. Voseletor is oxidized mainly by CYP3A4 and by CYP2C19, CYP2B6, and CYP2C9, to a lesser extent. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): About 62.6% of the oral dose is found in the feces, of which 33.3% is an unchanged drug. About 35.5% of the dose is recovered in urine, with only 0.08% as the unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The plasma elimination half-life of voxelotor in sickle cell disease patients is about 35.5 hours. The mean half-life in the red blood cell is 60 days. In one study, the average plasma half-life of voxelotor was 50 hours in patients with sickle cell disease, compared with 61–85 hours in healthy subjects. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The apparent oral clearance of voxelotor is approximately 6.7 L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The LD 50 information and overdose information is unavailable at this time. Current clinical study results suggest that dose-limiting toxicities of voxelotor are unlikely. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Oxbryta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Voxelotor is a drug used to inhibit the polymerization of hemoglobin S, preventing the painful and sometimes lethal vaso-occlusive crises associated with sickle cell disease. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Warfarin interact?
•Drug A: Adalimumab •Drug B: Warfarin •Severity: MODERATE •Description: The serum concentration of Warfarin can be decreased when it is combined with Adalimumab. •Extended Description: Prescribing information for adalimumab states that reduced cytokine activity from the use of adalimumab may influence the formation of cytochrome P450 enzymes. Cytokines have been shown to suppress CYP450 formation. When adalimumab is used, cytokine levels are normalized due to a decrease in inflammation. Warfarin is a substrate of the CYP450 enzymes, which may be induced by adalimumab indirectly via decreased levels of cytokines caused by adalimumab. This may lead to the increased metabolism and decreased serum concentration of warfarin, leading to subtherapeutic effects. Upon discontinuation of adalimumab, warfarin levels may increase, affecting INR and bleeding risk. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated for: 1) Prophylaxis and treatment of venous thromboembolism and related pulmonary embolism. 2) Prophylaxis and treatment of thromboembolism associated with atrial fibrillation. 3) Prophylaxis and treatment of thromboembolism associated with cardiac valve replacement. 4) Use as adjunct therapy to reduce mortality, recurrent myocardial infarction, and thromboembolic events post myocardial infarction. Off-label uses include: 1) Secondary prevention of stroke and transient ischemic attacks in patients with rheumatic mitral valve disease but without atrial fibrillation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Warfarin is an anticoagulant, as such it disrupts the coagulation cascade to reduce frequency and extent of thrombus formation. In patients with deep vein thrombosis or atrial fibrillation there is an increased risk of thrombus formation due to the reduced movement of blood. For patients with cardiac valve disease or valve replacements this increased coagulability is due to tissue damage. Thrombi due to venous thrombosis can travel to the lungs and become pulmonary emboli, blocking circulation to a portion of lung tissue. Thrombi which form in the heart can travel to the brain and cause ischemic strokes. Prevention of these events is the primary goal of warfarin therapy. Limitation of thrombus formation is also a source of adverse effects. In patients with atheroscelotic plaques rupture typically results in thrombus formation. When these patients are anticoagulated plaque rupture can allow the escape of cholesterol from the lipid core in the form of atheroemboli or cholesterol microemboli. These emboli are smaller than thrombi and block smaller vessels, usually less than 200 μm in diameter. The consequences of this are varied and depend on the location of the blockage. Effects include visual disturbances, acute kidney injury or worsening of chronic kidney disease, central nervous system ischemia, and purple or blue toe syndrome. Blue toe syndrome can be reversed if it has not progressed to tissue necrosis but the other effects of microemboli are often permanent. Antocoagulation appears to mediate warfarin-related nephropathy, a seemingly spontaneous kidney injury or worsening of chronic kidney disease associated with warfarin therapy. Nephropathy in this case appears to be due to increased passage of red blood cells through the glomerulus and subsequent blockage of renal tubules with red blood cell casts. This is worsened or possibly triggered by pre-existing kidney damage. Increased risk of warfarin-related nephropathy occurs at INRs over 3.0 but risk does not increase as a function of INR beyond this point. Warfarin has been linked to the development of calciphylaxis. This is thought to be due to warfarin's inhibition of vitamin K recycling as VKA is needed for the carboxylation of matrix Gla protein. This protein is an anti-calcification factor and its inhibition through preventing the carboxylation step in its production leads to a shift in calcification balance in favor of calciphylaxis. Tissue necrosis can occur early on in warfarin therapy. This is attributable to half lives of the clotting factors impacted by inhibition of vitamin K recycling. Proteins C and S are anticoagulation factors with half lives of 8 and 24 hours respectively. The coagulation factors IX, X, VII, and thrombin (factor II) have half lives of 24, 36, 6, and 50 hours respectively. This means proteins C and S are inactivated sooner than pro-coagulation proteins, with the exception of factor VII, resulting in a pro-thrombotic state for the first few days of therapy. Thrombi which form in this time period can occlude arterioles in various locations, blocking blood flow and causing tissue necrosis due to ischemia. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Warfarin is a [vitamin K] antagonist which acts to inhibit the production of vitamin K by vitamin K epoxide reductase. The reduced form of vitamin K, vitamin KH 2 is a cofactor used in the γ-carboxylation of coagulation factors VII, IX, X, and thrombin. Carboxylation induces a conformational change allowing the factors to bind Ca and to phospholipid surfaces. Uncarboxylated factors VII, IX, X, and thrombin are biologically inactive and therefore serve to interrupt the coagulation cascade. The endogenous anticoagulation proteins C and S also require γ-carboxylation to function. This is particularly true in the case of thrombin which must be activated in order to form a thrombus. vitamin KH 2 is converted to vitamin K epoxide as part of the γ-carboxylation reaction catalyzed by γ-glutamyl carboxylase. Vitamin K epoxide is then converted to vitamin K 1 by vitamin K epoxide reductase then back to vitamin KH 2 by vitamin K reductase. Warfarin binds to vitamin K epoxide reductase complex subunit 1 and irreversibly inhibits the enzyme thereby stopping the recycling of vitamin K by preventing the conversion of vitamin K epoxide to vitamin K 1. This process creates a hypercoagulable state for a short time as proteins C and S degrade first with half lives of 8 and 24 hours, with the exception of factor VII which has a half life of 6 hours. Factors IX, X, and finally thrombin degrade later with half lives of 24, 36, and 50 hours resulting in a dominant anticoagulation effect. In order to reverse this anticoagulation vitamin K must be supplied, either exogenously or by removal of the vitamin K epoxide reductase inhibition, and time allowed for new coagulation factors to be synthesized. It takes approximately 2 days for new coagulation factors to be synthesized in the liver. Vitamin K 2, functionally identical to vitamin K 1, is synthesized by gut bacteria leading to interactions with antibiotics as elimination of these bacteria can reduce vitamin K 2 16 •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Completely absorbed from the GI tract. The mean Tmax for warfarin sodium tablets is 4 hours. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vd of 0.14 L/kg. Warfarin has a distrubution phase lasting 6-12 hours. It is known to cross the placenta and achieves fetal serum concentrations similar to maternal concentrations. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 99% bound primarily to albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Metabolism of warfarin is both stereo- and regio-selective. The major metabolic pathway is oxidation to various hydroxywarfarins, comprising 80-85% of the total metabolites. CYP2C9 is the major enzyme catalyzing the 6- and 7-hydroxylation of S-warfarin while 4'-hydroxylation occurs through CYP2C18 with minor contributions from CYP2C19. R-warfarin is metabolized to 4'-hydroxywarfarin by CYP2C8 with some contirbuting by CYP2C19, 6- and 8-hydroxywarfarin by CYP1A2 and CYP2C19, 7-hydroxywarfarin by CYP1A2 and CYP2C8, and lastly to 10-hydroxywarfarin by CYP3A4. The 10-hydroxywarfarin metabolite as well as a benzylic alcohol metabolite undergo an elimination step to form dehydrowarfarin. The minor pathway of metabolism is the reduction of the ketone group to warfarin alcohols, comprising 20% of the metabolites. Limited conjugation occurs with sulfate and gluronic acid groups but these metabolites have only been confirmed for R-hydroxywarfarins. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The elimination of warfarin is almost entirely by metabolism with a small amount excreted unchanged. 80% of the total dose is excreted in the urine with the remaining 20% appearing in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): R-warfarin is cleared more slowly than S-warfarin, at about half the rate. T 1/2 for R-warfarin is 37-89 hours. T 1/2 for S-warfarin is 21-43 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Clearance of warfarin varies depending on CYP2C9 genotype. The *2 and *3 alleles appear in the Caucasian population at frequencies of 11% and 7% and are known to reduce clearance warfarin. Additional clearance reducing genotypes include the *5, *6, *9 and *11 alleles. Genotypes for which population clearance estimates have been found are listed below. *1/*1 = 0.065 mL/min/kg *1/*2, *1/*3 = 0.041 mL/min/kg *2/*2, *2/*3, *3/*3 = 0.020 mg/min/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): LD 50 Values Mouse: 3 mg/kg (Oral), 165 mg/kg (IV), 750 mg/kg (IP) Rat: 1.6 mg/kg (Oral), 320 mg/kg (Inhaled), 1400 mg/kg (Skin) Rabbit: 800 mg/kg (Oral) Pig: 1 mg/kg (Oral) Dog: 3 mg/kg (Oral) Cat: 6 mg/kg (Oral) Chicken: 942 mg/kg (Oral) Guinea Pig: 180 mg/kg (Oral) Overdose Doses of 1-2 mg/kg/day over a period of 15 days have been fatal in humans. Warfarin overdose is primarily associated with major bleeding particularly from the mucous membranes, gastrointestinal tract, and genitourinary system. Epistaxis, ecchymoses, as well as renal and hepatic bleeding are also associated. These symptoms become apparent within 2-4 days of overdose although increases in prothrombin time can be observed within 24 hours. Treatment for overdosed patients includes discontinuation of warfarin and administration of [vitamin K]. For more urgent reversal of anticoagulation prothrombin complex concentrate, blood plasma, or coagulation factor VIIa infusion can be used. Patients can be safely re-anticoagulated after reversal of the overdose. Carcinogenicity & Mutagenicity The carcinogenicity and mutagenicity of warfarin have not been thoroughly investigated. Reproductive Toxicity Warfarin is known to be a teratogen and its use during pregnancy is contraindicated in the absence of high thrombotic risk. Fetal warfarin syndrome, attributed to exposure during the 1st trimester, is characterized by nasal hypoplasia with or without stippled epiphyses, possible failure of nasal septum development, and low birth weight. Either dorsal midline dysplasia or ventral midline dysplasia can occur. Dorsal midline dysplasia includes agenisis of the corpus callosum, Dandy-Walker malformations, midline cerebellar hypoplasia. Ventral midline dysplasia is characterized by eye anomalies which can potentially include optic atrophy, blindness, and microphthalmia. Exposure during the 2nd and 3rd trimester is associated with hypoplasia of the extremities, developmental retardation, microcephaly, hydrocephaly, schizencephaly, seizures, scoliosis, deafness, congenital heart malformations, and fetal death. The critical exposure period is estimated to be week 6-9 based on case reports. Effects noted in the Canadian product monograph include developing a single kidney, asplenia, anencephaly, spina bifida, cranial nerve palsy, polydactyl malformations, corneal leukoma, diaphragm hernia, and cleft palate. Lactation Official product monographs mention a study in 15 women. Warfarin was not detected in the breast milk of any woman and 6 infants were documented as having normal prothrombin times. The remaining 9 infants were not tested. Another study in 13 women using doses of 2-12 mg also revealed no detectable warfarin in breast milk. A woman who mistakenly took 25 mg of warfarin for 7 days while breastfeeding presented to an emergency room with an INR of 10 and prothrombin time of over 100 s. Her infant had a normal INR of 1.0 and prothrombin time of 10.3. The infant in this case has an increased prothrombin time of 33.8 s three weeks previous but this was judged not to be due to warfarin exposure. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Coumadin, Jantoven •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Coumafene Warfarin Warfarina Zoocoumarin •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Warfarin is a vitamin K antagonist used to treat venous thromboembolism, pulmonary embolism, thromboembolism with atrial fibrillation, thromboembolism with cardiac valve replacement, and thromboembolic events post myocardial infarction.
Prescribing information for adalimumab states that reduced cytokine activity from the use of adalimumab may influence the formation of cytochrome P450 enzymes. Cytokines have been shown to suppress CYP450 formation. When adalimumab is used, cytokine levels are normalized due to a decrease in inflammation. Warfarin is a substrate of the CYP450 enzymes, which may be induced by adalimumab indirectly via decreased levels of cytokines caused by adalimumab. This may lead to the increased metabolism and decreased serum concentration of warfarin, leading to subtherapeutic effects. Upon discontinuation of adalimumab, warfarin levels may increase, affecting INR and bleeding risk. The severity of the interaction is moderate.
Question: Does Adalimumab and Warfarin interact? Information: •Drug A: Adalimumab •Drug B: Warfarin •Severity: MODERATE •Description: The serum concentration of Warfarin can be decreased when it is combined with Adalimumab. •Extended Description: Prescribing information for adalimumab states that reduced cytokine activity from the use of adalimumab may influence the formation of cytochrome P450 enzymes. Cytokines have been shown to suppress CYP450 formation. When adalimumab is used, cytokine levels are normalized due to a decrease in inflammation. Warfarin is a substrate of the CYP450 enzymes, which may be induced by adalimumab indirectly via decreased levels of cytokines caused by adalimumab. This may lead to the increased metabolism and decreased serum concentration of warfarin, leading to subtherapeutic effects. Upon discontinuation of adalimumab, warfarin levels may increase, affecting INR and bleeding risk. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated for: 1) Prophylaxis and treatment of venous thromboembolism and related pulmonary embolism. 2) Prophylaxis and treatment of thromboembolism associated with atrial fibrillation. 3) Prophylaxis and treatment of thromboembolism associated with cardiac valve replacement. 4) Use as adjunct therapy to reduce mortality, recurrent myocardial infarction, and thromboembolic events post myocardial infarction. Off-label uses include: 1) Secondary prevention of stroke and transient ischemic attacks in patients with rheumatic mitral valve disease but without atrial fibrillation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Warfarin is an anticoagulant, as such it disrupts the coagulation cascade to reduce frequency and extent of thrombus formation. In patients with deep vein thrombosis or atrial fibrillation there is an increased risk of thrombus formation due to the reduced movement of blood. For patients with cardiac valve disease or valve replacements this increased coagulability is due to tissue damage. Thrombi due to venous thrombosis can travel to the lungs and become pulmonary emboli, blocking circulation to a portion of lung tissue. Thrombi which form in the heart can travel to the brain and cause ischemic strokes. Prevention of these events is the primary goal of warfarin therapy. Limitation of thrombus formation is also a source of adverse effects. In patients with atheroscelotic plaques rupture typically results in thrombus formation. When these patients are anticoagulated plaque rupture can allow the escape of cholesterol from the lipid core in the form of atheroemboli or cholesterol microemboli. These emboli are smaller than thrombi and block smaller vessels, usually less than 200 μm in diameter. The consequences of this are varied and depend on the location of the blockage. Effects include visual disturbances, acute kidney injury or worsening of chronic kidney disease, central nervous system ischemia, and purple or blue toe syndrome. Blue toe syndrome can be reversed if it has not progressed to tissue necrosis but the other effects of microemboli are often permanent. Antocoagulation appears to mediate warfarin-related nephropathy, a seemingly spontaneous kidney injury or worsening of chronic kidney disease associated with warfarin therapy. Nephropathy in this case appears to be due to increased passage of red blood cells through the glomerulus and subsequent blockage of renal tubules with red blood cell casts. This is worsened or possibly triggered by pre-existing kidney damage. Increased risk of warfarin-related nephropathy occurs at INRs over 3.0 but risk does not increase as a function of INR beyond this point. Warfarin has been linked to the development of calciphylaxis. This is thought to be due to warfarin's inhibition of vitamin K recycling as VKA is needed for the carboxylation of matrix Gla protein. This protein is an anti-calcification factor and its inhibition through preventing the carboxylation step in its production leads to a shift in calcification balance in favor of calciphylaxis. Tissue necrosis can occur early on in warfarin therapy. This is attributable to half lives of the clotting factors impacted by inhibition of vitamin K recycling. Proteins C and S are anticoagulation factors with half lives of 8 and 24 hours respectively. The coagulation factors IX, X, VII, and thrombin (factor II) have half lives of 24, 36, 6, and 50 hours respectively. This means proteins C and S are inactivated sooner than pro-coagulation proteins, with the exception of factor VII, resulting in a pro-thrombotic state for the first few days of therapy. Thrombi which form in this time period can occlude arterioles in various locations, blocking blood flow and causing tissue necrosis due to ischemia. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Warfarin is a [vitamin K] antagonist which acts to inhibit the production of vitamin K by vitamin K epoxide reductase. The reduced form of vitamin K, vitamin KH 2 is a cofactor used in the γ-carboxylation of coagulation factors VII, IX, X, and thrombin. Carboxylation induces a conformational change allowing the factors to bind Ca and to phospholipid surfaces. Uncarboxylated factors VII, IX, X, and thrombin are biologically inactive and therefore serve to interrupt the coagulation cascade. The endogenous anticoagulation proteins C and S also require γ-carboxylation to function. This is particularly true in the case of thrombin which must be activated in order to form a thrombus. vitamin KH 2 is converted to vitamin K epoxide as part of the γ-carboxylation reaction catalyzed by γ-glutamyl carboxylase. Vitamin K epoxide is then converted to vitamin K 1 by vitamin K epoxide reductase then back to vitamin KH 2 by vitamin K reductase. Warfarin binds to vitamin K epoxide reductase complex subunit 1 and irreversibly inhibits the enzyme thereby stopping the recycling of vitamin K by preventing the conversion of vitamin K epoxide to vitamin K 1. This process creates a hypercoagulable state for a short time as proteins C and S degrade first with half lives of 8 and 24 hours, with the exception of factor VII which has a half life of 6 hours. Factors IX, X, and finally thrombin degrade later with half lives of 24, 36, and 50 hours resulting in a dominant anticoagulation effect. In order to reverse this anticoagulation vitamin K must be supplied, either exogenously or by removal of the vitamin K epoxide reductase inhibition, and time allowed for new coagulation factors to be synthesized. It takes approximately 2 days for new coagulation factors to be synthesized in the liver. Vitamin K 2, functionally identical to vitamin K 1, is synthesized by gut bacteria leading to interactions with antibiotics as elimination of these bacteria can reduce vitamin K 2 16 •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Completely absorbed from the GI tract. The mean Tmax for warfarin sodium tablets is 4 hours. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Vd of 0.14 L/kg. Warfarin has a distrubution phase lasting 6-12 hours. It is known to cross the placenta and achieves fetal serum concentrations similar to maternal concentrations. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 99% bound primarily to albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Metabolism of warfarin is both stereo- and regio-selective. The major metabolic pathway is oxidation to various hydroxywarfarins, comprising 80-85% of the total metabolites. CYP2C9 is the major enzyme catalyzing the 6- and 7-hydroxylation of S-warfarin while 4'-hydroxylation occurs through CYP2C18 with minor contributions from CYP2C19. R-warfarin is metabolized to 4'-hydroxywarfarin by CYP2C8 with some contirbuting by CYP2C19, 6- and 8-hydroxywarfarin by CYP1A2 and CYP2C19, 7-hydroxywarfarin by CYP1A2 and CYP2C8, and lastly to 10-hydroxywarfarin by CYP3A4. The 10-hydroxywarfarin metabolite as well as a benzylic alcohol metabolite undergo an elimination step to form dehydrowarfarin. The minor pathway of metabolism is the reduction of the ketone group to warfarin alcohols, comprising 20% of the metabolites. Limited conjugation occurs with sulfate and gluronic acid groups but these metabolites have only been confirmed for R-hydroxywarfarins. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The elimination of warfarin is almost entirely by metabolism with a small amount excreted unchanged. 80% of the total dose is excreted in the urine with the remaining 20% appearing in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): R-warfarin is cleared more slowly than S-warfarin, at about half the rate. T 1/2 for R-warfarin is 37-89 hours. T 1/2 for S-warfarin is 21-43 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Clearance of warfarin varies depending on CYP2C9 genotype. The *2 and *3 alleles appear in the Caucasian population at frequencies of 11% and 7% and are known to reduce clearance warfarin. Additional clearance reducing genotypes include the *5, *6, *9 and *11 alleles. Genotypes for which population clearance estimates have been found are listed below. *1/*1 = 0.065 mL/min/kg *1/*2, *1/*3 = 0.041 mL/min/kg *2/*2, *2/*3, *3/*3 = 0.020 mg/min/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): LD 50 Values Mouse: 3 mg/kg (Oral), 165 mg/kg (IV), 750 mg/kg (IP) Rat: 1.6 mg/kg (Oral), 320 mg/kg (Inhaled), 1400 mg/kg (Skin) Rabbit: 800 mg/kg (Oral) Pig: 1 mg/kg (Oral) Dog: 3 mg/kg (Oral) Cat: 6 mg/kg (Oral) Chicken: 942 mg/kg (Oral) Guinea Pig: 180 mg/kg (Oral) Overdose Doses of 1-2 mg/kg/day over a period of 15 days have been fatal in humans. Warfarin overdose is primarily associated with major bleeding particularly from the mucous membranes, gastrointestinal tract, and genitourinary system. Epistaxis, ecchymoses, as well as renal and hepatic bleeding are also associated. These symptoms become apparent within 2-4 days of overdose although increases in prothrombin time can be observed within 24 hours. Treatment for overdosed patients includes discontinuation of warfarin and administration of [vitamin K]. For more urgent reversal of anticoagulation prothrombin complex concentrate, blood plasma, or coagulation factor VIIa infusion can be used. Patients can be safely re-anticoagulated after reversal of the overdose. Carcinogenicity & Mutagenicity The carcinogenicity and mutagenicity of warfarin have not been thoroughly investigated. Reproductive Toxicity Warfarin is known to be a teratogen and its use during pregnancy is contraindicated in the absence of high thrombotic risk. Fetal warfarin syndrome, attributed to exposure during the 1st trimester, is characterized by nasal hypoplasia with or without stippled epiphyses, possible failure of nasal septum development, and low birth weight. Either dorsal midline dysplasia or ventral midline dysplasia can occur. Dorsal midline dysplasia includes agenisis of the corpus callosum, Dandy-Walker malformations, midline cerebellar hypoplasia. Ventral midline dysplasia is characterized by eye anomalies which can potentially include optic atrophy, blindness, and microphthalmia. Exposure during the 2nd and 3rd trimester is associated with hypoplasia of the extremities, developmental retardation, microcephaly, hydrocephaly, schizencephaly, seizures, scoliosis, deafness, congenital heart malformations, and fetal death. The critical exposure period is estimated to be week 6-9 based on case reports. Effects noted in the Canadian product monograph include developing a single kidney, asplenia, anencephaly, spina bifida, cranial nerve palsy, polydactyl malformations, corneal leukoma, diaphragm hernia, and cleft palate. Lactation Official product monographs mention a study in 15 women. Warfarin was not detected in the breast milk of any woman and 6 infants were documented as having normal prothrombin times. The remaining 9 infants were not tested. Another study in 13 women using doses of 2-12 mg also revealed no detectable warfarin in breast milk. A woman who mistakenly took 25 mg of warfarin for 7 days while breastfeeding presented to an emergency room with an INR of 10 and prothrombin time of over 100 s. Her infant had a normal INR of 1.0 and prothrombin time of 10.3. The infant in this case has an increased prothrombin time of 33.8 s three weeks previous but this was judged not to be due to warfarin exposure. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Coumadin, Jantoven •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Coumafene Warfarin Warfarina Zoocoumarin •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Warfarin is a vitamin K antagonist used to treat venous thromboembolism, pulmonary embolism, thromboembolism with atrial fibrillation, thromboembolism with cardiac valve replacement, and thromboembolic events post myocardial infarction. Output: Prescribing information for adalimumab states that reduced cytokine activity from the use of adalimumab may influence the formation of cytochrome P450 enzymes. Cytokines have been shown to suppress CYP450 formation. When adalimumab is used, cytokine levels are normalized due to a decrease in inflammation. Warfarin is a substrate of the CYP450 enzymes, which may be induced by adalimumab indirectly via decreased levels of cytokines caused by adalimumab. This may lead to the increased metabolism and decreased serum concentration of warfarin, leading to subtherapeutic effects. Upon discontinuation of adalimumab, warfarin levels may increase, affecting INR and bleeding risk. The severity of the interaction is moderate.
Does Adalimumab and Yellow fever vaccine interact?
•Drug A: Adalimumab •Drug B: Yellow fever vaccine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Yellow fever vaccine. •Extended Description: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found
In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. The severity of the interaction is minor.
Question: Does Adalimumab and Yellow fever vaccine interact? Information: •Drug A: Adalimumab •Drug B: Yellow fever vaccine •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Yellow fever vaccine. •Extended Description: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): No metabolism available •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Summary not found Output: In a placebo-controlled clinical trial of patients with RA, no difference was detected in antipneumococcal antibody response between adalimumab and placebo treatment groups when the pneumococcal polysaccharide vaccine and influenza vaccine were administered concurrently with adalimumab. Similar proportions of patients developed protective levels of anti-influenza antibodies between adalimumab and placebo treatment groups; however, titers in aggregate to influenza antigens were moderately lower in patients receiving adalimumab. The severity of the interaction is minor.
Does Adalimumab and Yohimbine interact?
•Drug A: Adalimumab •Drug B: Yohimbine •Severity: MODERATE •Description: The metabolism of Yohimbine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated as a sympatholytic and mydriatic. Impotence has been successfully treated with yohimbine in male patients with vascular or diabetic origins and psychogenic origins. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Yohimbine is an indolalkylamine alkaloid with chemical similarity to reserpine. Yohimbine blocks presynaptic alpha-2 adrenergic receptors. Its action on peripheral blood vessels resembles that of reserpine, though it is weaker and of short duration. Yohimbine's peripheral autonomic nervous system effect is to increase parasympathetic (cholinergic) and decrease sympathetic (adrenergic) activity. It is to be noted that in male sexual performance, erection is linked to cholinergic activity and to alpha-2 adrenergic blockade which may theoretically result in increased penile inflow, decreased penile outflow or both. Yohimbine exerts a stimulating action on the mood and may increase anxiety. Such actions have not been adequately studied or related to dosage although they appear to require high doses of the drug. Yohimbine has a mild anti-diuretic action, probably via stimulation of hypothalmic center and release of posterior pituitary hormone. Reportedly Yohimbine exerts no significant influence on cardiac stimulation and other effects mediated by (beta)-adrenergic receptors. Its effect on blood pressure, if any, would be to lower it; however, no adequate studies are at hand to quantitate this effect in terms of Yohimbine dosage. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Yohimbine is a pre-synaptic alpha 2-adrenergic blocking agent. The exact mechanism for its use in impotence has not been fully elucidated. However, yohimbine may exert its beneficial effect on erectile ability through blockade of central alpha 2-adrenergic receptors producing an increase in sympathetic drive secondary to an increase in norepinephrine release and in firing rate of cells in the brain noradrenergic nuclei. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration. Bioavailability is highly variable, ranging from 7 to 87% (mean 33%). •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Yohimbine appears to undergo extensive metabolism in an organ of high flow such as the liver or kidney, however, the precise metabolic fate of yohimbine has not been fully determined. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half-life is approximately 36 minutes. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Johimbin Quebrachin Yohimbic acid methyl ester Yohimbin Yohimbine Yohimbinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Yohimbine is an alpha-2-adrenergic blocker and sympatholytic found in supplements used to.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Yohimbine interact? Information: •Drug A: Adalimumab •Drug B: Yohimbine •Severity: MODERATE •Description: The metabolism of Yohimbine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Indicated as a sympatholytic and mydriatic. Impotence has been successfully treated with yohimbine in male patients with vascular or diabetic origins and psychogenic origins. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Yohimbine is an indolalkylamine alkaloid with chemical similarity to reserpine. Yohimbine blocks presynaptic alpha-2 adrenergic receptors. Its action on peripheral blood vessels resembles that of reserpine, though it is weaker and of short duration. Yohimbine's peripheral autonomic nervous system effect is to increase parasympathetic (cholinergic) and decrease sympathetic (adrenergic) activity. It is to be noted that in male sexual performance, erection is linked to cholinergic activity and to alpha-2 adrenergic blockade which may theoretically result in increased penile inflow, decreased penile outflow or both. Yohimbine exerts a stimulating action on the mood and may increase anxiety. Such actions have not been adequately studied or related to dosage although they appear to require high doses of the drug. Yohimbine has a mild anti-diuretic action, probably via stimulation of hypothalmic center and release of posterior pituitary hormone. Reportedly Yohimbine exerts no significant influence on cardiac stimulation and other effects mediated by (beta)-adrenergic receptors. Its effect on blood pressure, if any, would be to lower it; however, no adequate studies are at hand to quantitate this effect in terms of Yohimbine dosage. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Yohimbine is a pre-synaptic alpha 2-adrenergic blocking agent. The exact mechanism for its use in impotence has not been fully elucidated. However, yohimbine may exert its beneficial effect on erectile ability through blockade of central alpha 2-adrenergic receptors producing an increase in sympathetic drive secondary to an increase in norepinephrine release and in firing rate of cells in the brain noradrenergic nuclei. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration. Bioavailability is highly variable, ranging from 7 to 87% (mean 33%). •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Yohimbine appears to undergo extensive metabolism in an organ of high flow such as the liver or kidney, however, the precise metabolic fate of yohimbine has not been fully determined. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half-life is approximately 36 minutes. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Johimbin Quebrachin Yohimbic acid methyl ester Yohimbin Yohimbine Yohimbinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Yohimbine is an alpha-2-adrenergic blocker and sympatholytic found in supplements used to. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zafirlukast interact?
•Drug A: Adalimumab •Drug B: Zafirlukast •Severity: MODERATE •Description: The metabolism of Zafirlukast can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the prophylaxis and chronic treatment of asthma. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zafirlukast is a synthetic, selective peptide leukotriene receptor antagonist (LTRA) indicated for the prophylaxis and chronic treatment of asthma. Patients with asthma were found in one study to be 25-100 times more sensitive to the bronchoconstricting activity of inhaled LTD 4 than nonasthmatic subjects. In vitro studies demonstrated that zafirlukast antagonized the contractile activity of three leukotrienes (LTC 4, LTD 4 and LTE 4 ) in conducting airway smooth muscle from laboratory animals and humans. Zafirlukast prevented intradermal LTD 4 -induced increases in cutaneous vascular permeability and inhibited inhaled LTD 4 -induced influx of eosinophils into animal lungs. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zafirlukast is a selective and competitive receptor antagonist of leukotriene D4 and E4 (LTD 4 and LTE4), components of slow-reacting substance of anaphylaxis (SRSA). Cysteinyl leukotriene production and receptor occupation have been correlated with the pathophysiology of asthma, including airway edema, smooth muscle constriction, and altered cellular activity associated with the inflammatory process, which contribute to the signs and symptoms of asthma. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration, reduced following a high-fat or high-protein meal. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 70 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The most common metabolic products are hydroxylated metabolites which are excreted in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 10 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): apparent oral CL=20 L/h 11.4 L/h [7-11 yrs] 9.2 L/h [5-6 yrs] •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Side effects include rash and upset stomach. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Accolate •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zafirlukast •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zafirlukast is a leukotriene receptor antagonist used for prophylaxis and chronic treatment of asthma.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zafirlukast interact? Information: •Drug A: Adalimumab •Drug B: Zafirlukast •Severity: MODERATE •Description: The metabolism of Zafirlukast can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the prophylaxis and chronic treatment of asthma. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zafirlukast is a synthetic, selective peptide leukotriene receptor antagonist (LTRA) indicated for the prophylaxis and chronic treatment of asthma. Patients with asthma were found in one study to be 25-100 times more sensitive to the bronchoconstricting activity of inhaled LTD 4 than nonasthmatic subjects. In vitro studies demonstrated that zafirlukast antagonized the contractile activity of three leukotrienes (LTC 4, LTD 4 and LTE 4 ) in conducting airway smooth muscle from laboratory animals and humans. Zafirlukast prevented intradermal LTD 4 -induced increases in cutaneous vascular permeability and inhibited inhaled LTD 4 -induced influx of eosinophils into animal lungs. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zafirlukast is a selective and competitive receptor antagonist of leukotriene D4 and E4 (LTD 4 and LTE4), components of slow-reacting substance of anaphylaxis (SRSA). Cysteinyl leukotriene production and receptor occupation have been correlated with the pathophysiology of asthma, including airway edema, smooth muscle constriction, and altered cellular activity associated with the inflammatory process, which contribute to the signs and symptoms of asthma. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration, reduced following a high-fat or high-protein meal. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 70 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): The most common metabolic products are hydroxylated metabolites which are excreted in the feces. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 10 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): apparent oral CL=20 L/h 11.4 L/h [7-11 yrs] 9.2 L/h [5-6 yrs] •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Side effects include rash and upset stomach. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Accolate •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zafirlukast •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zafirlukast is a leukotriene receptor antagonist used for prophylaxis and chronic treatment of asthma. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zaleplon interact?
•Drug A: Adalimumab •Drug B: Zaleplon •Severity: MODERATE •Description: The metabolism of Zaleplon can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of short-term treatment of insomnia in adults. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zaleplon is a nonbenzodiazepine hypnotic from the pyrazolopyrimidine class and is indicated for the short-term treatment of insomnia. While Zaleplon is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABA B Z) receptor complex. Subunit modulation of the GABA B Z receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Zaleplon also binds selectively to the CNS GABA A -receptor chloride ionophore complex at benzodiazepine(BZ) omega-1 (BZ1, ο1) receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zaleplon exerts its action through subunit modulation of the GABA B Z receptor chloride channel macromolecular complex. Zaleplon also binds selectively to the brain omega-1 receptor located on the alpha subunit of the GABA-A/chloride ion channel receptor complex and potentiates t-butyl-bicyclophosphorothionate (TBPS) binding. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Absorption Zaleplon is rapidly and almost completely absorbed following oral administration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 1.4 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 60% (in vitro plasma protein binding). •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zaleplon is primarily metabolized by aldehyde oxidase. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zaleplon is metabolized primarily by the liver and undergoes significant presystemic metabolism. After oral administration, zaleplon is extensively metabolized, with less than 1% of the dose excreted unchanged in urine. Renal excretion of unchanged zaleplon accounts for less than 1% of the administered dose. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Approximately 1 hour •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): 1 L/h/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Side effects include abdominal pain, amnesia, dizziness, drowsiness, eye pain, headache, memory loss, menstrual pain, nausea, sleepiness, tingling, weakness •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Sonata •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zaleplon •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zaleplon is a sedative used for short term treatment of insomnia in adults.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zaleplon interact? Information: •Drug A: Adalimumab •Drug B: Zaleplon •Severity: MODERATE •Description: The metabolism of Zaleplon can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the treatment of short-term treatment of insomnia in adults. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zaleplon is a nonbenzodiazepine hypnotic from the pyrazolopyrimidine class and is indicated for the short-term treatment of insomnia. While Zaleplon is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABA B Z) receptor complex. Subunit modulation of the GABA B Z receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Zaleplon also binds selectively to the CNS GABA A -receptor chloride ionophore complex at benzodiazepine(BZ) omega-1 (BZ1, ο1) receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zaleplon exerts its action through subunit modulation of the GABA B Z receptor chloride channel macromolecular complex. Zaleplon also binds selectively to the brain omega-1 receptor located on the alpha subunit of the GABA-A/chloride ion channel receptor complex and potentiates t-butyl-bicyclophosphorothionate (TBPS) binding. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Absorption Zaleplon is rapidly and almost completely absorbed following oral administration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 1.4 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 60% (in vitro plasma protein binding). •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zaleplon is primarily metabolized by aldehyde oxidase. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zaleplon is metabolized primarily by the liver and undergoes significant presystemic metabolism. After oral administration, zaleplon is extensively metabolized, with less than 1% of the dose excreted unchanged in urine. Renal excretion of unchanged zaleplon accounts for less than 1% of the administered dose. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Approximately 1 hour •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): 1 L/h/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Side effects include abdominal pain, amnesia, dizziness, drowsiness, eye pain, headache, memory loss, menstrual pain, nausea, sleepiness, tingling, weakness •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Sonata •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zaleplon •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zaleplon is a sedative used for short term treatment of insomnia in adults. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A5 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zanubrutinib interact?
•Drug A: Adalimumab •Drug B: Zanubrutinib •Severity: MAJOR •Description: The metabolism of Zanubrutinib can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zanubrutinib is indicated for the treatment of: Mantle cell lymphoma (MCL) in adults who have received at least one prior therapy. Waldenström’s macroglobulinemia in adults. Relapsed or refractory marginal zone lymphoma (MZL) in adults who have received at least one anti-CD20-based regimen. Chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) in adults. Refractory or relapsed follicular lymphoma, in combination with obinutuzumab, in adults who have received at least two prior systemic therapies. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zanubrutinib is an immunomodulating agent that decreases the survival of malignant B cells. It inhibits BTK by binding to its active site. It works to inhibit the proliferation and survival of malignant B cells to reduce the tumour size in mantle cell lymphoma. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Bruton's tyrosine kinase (BTK) is a non-receptor kinase and a signalling molecule for the B cell receptors expressed on the peripheral B cell surface. The BCR signalling pathway plays a crucial role in normal B-cell development but also the proliferation and survival of malignant B cells in many B cell malignancies, including mantle-cell lymphoma (MCL). Once activated by upstream Src-family kinases, BTK phosphorylates phospholipase-Cγ (PLCγ), leading to Ca2+ mobilization and activation of NF-κB and MAP kinase pathways. These downstream cascades promote the expression of genes involved in B cell proliferation and survival. The BCR signalling pathway also induces the anti-apoptotic protein Bcl-xL and regulates the integrin α4β1 (VLA-4)-mediated adhesion of B cells to vascular cell adhesion molecule-1 (VCAM-1) and fibronectin via BTK. Apart from the direct downstream signal transduction pathway of B cells, BTK is also involved in chemokine receptor, Toll-like receptor (TLR) and Fc receptor signalling pathways. Zanubrutinib inhibits BTK by forming a covalent bond with cysteine 481 residue in the adenosine triphosphate (ATP)–binding pocket of BTK, which is the enzyme's active site. This binding specificity is commonly seen with other BTK inhibitors. Due to this binding profile, zanubrutinib may also bind with varying affinities to related and unrelated ATP-binding kinases that possess a cysteine residue at this position. By blocking the BCR signalling pathway, zanubrutinib inhibits the proliferation, trafficking, chemotaxis, and adhesion of malignant B cells, ultimately leading to reduced tumour size. Zanubrutinib was also shown to downregulate programmed death-ligand 1 (PD-1) expression and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on CD4+ T cells. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Following oral administration of zanubrutinib 160 mg twice daily and 320 mg once daily, the mean (%CV) zanubrutinib steady-state concentrations were 2,295 (37%) ng·h/mL and 2,180 (41%) ng·h/mL, respectively. The mean Cmax (%CV) was 314 (46%) ng/mL following 160 mg twice daily and 543 (51%) ng/mL following 320 mg once daily. The Cmax and AUC of zanubrutinib increase in a dose-proportional manner and there is minimal systemic accumulation after repeated dosing. The median Tmax is 2 hours. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The geometric mean (%CV) apparent steady-state Vd is 881 (95%) L. The blood-to­ plasma ratio is about 0.7 to 0.8. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The plasma protein binding of zanubrutinib is approximately 94%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zanubrutinib is predominantly metabolized by CYP3A4. Its metabolites have not been characterized. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following oral administration of 320 mg radiolabelled zanubrutinib, approximately 87% of the dose was excreted in the feces and about 8% of the dose was recovered in the urine, where less than 1% of the recovered drug comprised of unchanged parent drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Following administration of a single oral dose of 160 mg or 320 mg of zanubrutinib, the mean half-life is approximately 2 to 4 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean (%CV) apparent oral clearance (CL/F) of zanubrutinib is 182 (37%) L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is limited data on zanubrutinib overdose. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brukinsa •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zanubrutinib is a kinase inhibitor used to treat mantle cell lymphoma, a type of B-cell non-Hodgkin lymphoma, in adults who previously received therapy.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates with a narrow therapeutic index. The severity of the interaction is major.
Question: Does Adalimumab and Zanubrutinib interact? Information: •Drug A: Adalimumab •Drug B: Zanubrutinib •Severity: MAJOR •Description: The metabolism of Zanubrutinib can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates with a narrow therapeutic index. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zanubrutinib is indicated for the treatment of: Mantle cell lymphoma (MCL) in adults who have received at least one prior therapy. Waldenström’s macroglobulinemia in adults. Relapsed or refractory marginal zone lymphoma (MZL) in adults who have received at least one anti-CD20-based regimen. Chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) in adults. Refractory or relapsed follicular lymphoma, in combination with obinutuzumab, in adults who have received at least two prior systemic therapies. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zanubrutinib is an immunomodulating agent that decreases the survival of malignant B cells. It inhibits BTK by binding to its active site. It works to inhibit the proliferation and survival of malignant B cells to reduce the tumour size in mantle cell lymphoma. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Bruton's tyrosine kinase (BTK) is a non-receptor kinase and a signalling molecule for the B cell receptors expressed on the peripheral B cell surface. The BCR signalling pathway plays a crucial role in normal B-cell development but also the proliferation and survival of malignant B cells in many B cell malignancies, including mantle-cell lymphoma (MCL). Once activated by upstream Src-family kinases, BTK phosphorylates phospholipase-Cγ (PLCγ), leading to Ca2+ mobilization and activation of NF-κB and MAP kinase pathways. These downstream cascades promote the expression of genes involved in B cell proliferation and survival. The BCR signalling pathway also induces the anti-apoptotic protein Bcl-xL and regulates the integrin α4β1 (VLA-4)-mediated adhesion of B cells to vascular cell adhesion molecule-1 (VCAM-1) and fibronectin via BTK. Apart from the direct downstream signal transduction pathway of B cells, BTK is also involved in chemokine receptor, Toll-like receptor (TLR) and Fc receptor signalling pathways. Zanubrutinib inhibits BTK by forming a covalent bond with cysteine 481 residue in the adenosine triphosphate (ATP)–binding pocket of BTK, which is the enzyme's active site. This binding specificity is commonly seen with other BTK inhibitors. Due to this binding profile, zanubrutinib may also bind with varying affinities to related and unrelated ATP-binding kinases that possess a cysteine residue at this position. By blocking the BCR signalling pathway, zanubrutinib inhibits the proliferation, trafficking, chemotaxis, and adhesion of malignant B cells, ultimately leading to reduced tumour size. Zanubrutinib was also shown to downregulate programmed death-ligand 1 (PD-1) expression and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on CD4+ T cells. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Following oral administration of zanubrutinib 160 mg twice daily and 320 mg once daily, the mean (%CV) zanubrutinib steady-state concentrations were 2,295 (37%) ng·h/mL and 2,180 (41%) ng·h/mL, respectively. The mean Cmax (%CV) was 314 (46%) ng/mL following 160 mg twice daily and 543 (51%) ng/mL following 320 mg once daily. The Cmax and AUC of zanubrutinib increase in a dose-proportional manner and there is minimal systemic accumulation after repeated dosing. The median Tmax is 2 hours. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The geometric mean (%CV) apparent steady-state Vd is 881 (95%) L. The blood-to­ plasma ratio is about 0.7 to 0.8. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): The plasma protein binding of zanubrutinib is approximately 94%. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zanubrutinib is predominantly metabolized by CYP3A4. Its metabolites have not been characterized. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Following oral administration of 320 mg radiolabelled zanubrutinib, approximately 87% of the dose was excreted in the feces and about 8% of the dose was recovered in the urine, where less than 1% of the recovered drug comprised of unchanged parent drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Following administration of a single oral dose of 160 mg or 320 mg of zanubrutinib, the mean half-life is approximately 2 to 4 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean (%CV) apparent oral clearance (CL/F) of zanubrutinib is 182 (37%) L/h. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): There is limited data on zanubrutinib overdose. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Brukinsa •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zanubrutinib is a kinase inhibitor used to treat mantle cell lymphoma, a type of B-cell non-Hodgkin lymphoma, in adults who previously received therapy. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2B6 substrates with a narrow therapeutic index. The severity of the interaction is major.
Does Adalimumab and Zidovudine interact?
•Drug A: Adalimumab •Drug B: Zidovudine •Severity: MODERATE •Description: The metabolism of Zidovudine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapid and nearly complete absorption from the gastrointestinal tract following oral administration; however, because of first-pass metabolism, systemic bioavailability of zidovudine capsules and solution is approximately 65% (range, 52 to 75%). Bioavailability in neonates up to 14 days of age is approximately 89%, and it decreases to approximately 61% and 65% in neonates over 14 days of age and children 3 months to 12 years, respectively. Administration with a high-fat meal may decrease the rate and extent of absorption. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Apparent volume of distribution, HIV-infected patients, IV administration = 1.6 ± 0.6 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 30-38% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Metabolized by glucuronide conjugation to major, inactive metabolite, 3′-azido-3′-deoxy-5′- O-beta-D-glucopyranuronosylthymidine (GZDV). UGT2B7 is the primary UGT isoform that is responsible for glucuronidation. Compared to zidovudine, GZDV's area under the curve is approximately 3-fold greater. The cytochrome P450 isozymes are responsible for the reduction of the azido moiety to form 3'-amino-3'- deoxythymidine (AMT). •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): As in adult patients, the major route of elimination was by metabolism to GZDV. After intravenous dosing, about 29% of the dose was excreted in the urine unchanged and about 45% of the dose was excreted as GZDV. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life, HIV-infected patients, IV administration = 1.1 hours (range of 0.5 - 2.9 hours) •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): 0.65 +/- 0.29 L/hr/kg [HIV-infected, Birth to 14 Days of Age] 1.14 +/- 0.24 L/hr/kg [HIV-infected, 14 Days to 3 Months of Age] 1.85 +/- 0.47 L/hr/kg [HIV-infected, 3 Months to 12 Years of Age]. The transporters, ABCB1, ABCC4, ABCC5, and ABCG2 are involved with the clearance of zidovudine. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Symptoms of overdose include fatigue, headache, nausea, and vomiting. LD 50 is 3084 mg/kg (orally in mice). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Combivir, Retrovir, Trizivir •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Azidothymidine Zidovudina Zidovudine Zidovudinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zidovudine is a dideoxynucleoside used in the treatment of HIV infection.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zidovudine interact? Information: •Drug A: Adalimumab •Drug B: Zidovudine •Severity: MODERATE •Description: The metabolism of Zidovudine can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapid and nearly complete absorption from the gastrointestinal tract following oral administration; however, because of first-pass metabolism, systemic bioavailability of zidovudine capsules and solution is approximately 65% (range, 52 to 75%). Bioavailability in neonates up to 14 days of age is approximately 89%, and it decreases to approximately 61% and 65% in neonates over 14 days of age and children 3 months to 12 years, respectively. Administration with a high-fat meal may decrease the rate and extent of absorption. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Apparent volume of distribution, HIV-infected patients, IV administration = 1.6 ± 0.6 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 30-38% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Metabolized by glucuronide conjugation to major, inactive metabolite, 3′-azido-3′-deoxy-5′- O-beta-D-glucopyranuronosylthymidine (GZDV). UGT2B7 is the primary UGT isoform that is responsible for glucuronidation. Compared to zidovudine, GZDV's area under the curve is approximately 3-fold greater. The cytochrome P450 isozymes are responsible for the reduction of the azido moiety to form 3'-amino-3'- deoxythymidine (AMT). •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): As in adult patients, the major route of elimination was by metabolism to GZDV. After intravenous dosing, about 29% of the dose was excreted in the urine unchanged and about 45% of the dose was excreted as GZDV. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life, HIV-infected patients, IV administration = 1.1 hours (range of 0.5 - 2.9 hours) •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): 0.65 +/- 0.29 L/hr/kg [HIV-infected, Birth to 14 Days of Age] 1.14 +/- 0.24 L/hr/kg [HIV-infected, 14 Days to 3 Months of Age] 1.85 +/- 0.47 L/hr/kg [HIV-infected, 3 Months to 12 Years of Age]. The transporters, ABCB1, ABCC4, ABCC5, and ABCG2 are involved with the clearance of zidovudine. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Symptoms of overdose include fatigue, headache, nausea, and vomiting. LD 50 is 3084 mg/kg (orally in mice). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Combivir, Retrovir, Trizivir •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Azidothymidine Zidovudina Zidovudine Zidovudinum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zidovudine is a dideoxynucleoside used in the treatment of HIV infection. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2A6 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zileuton interact?
•Drug A: Adalimumab •Drug B: Zileuton •Severity: MODERATE •Description: The metabolism of Zileuton can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the prophylaxis and chronic treatment of asthma in adults and children 12 years of age and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zileuton is an asthma drug that differs chemically and pharmacologically from other antiasthmatic agents. It blocks leukotriene synthesis by inhibiting 5-lipoxygenase, an enzyme of the eicosanoid synthesis pathway. Current data indicates that asthma is a chronic inflammatory disorder of the airways involving the production and activity of several endogenous inflammatory mediators, including leukotrienes. Sulfido-peptide leukotrienes (LTC4, LTD4, LTE4, also known as the slow-releasing substances of anaphylaxis) and LTB4, a chemoattractant for neutrophils and eosinophils, are derived from the initial unstable product of arachidonic acid metabolism, leukotriene A4 (LTA4), and can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients. In humans, pretreatment with zileuton attenuated bronchoconstriction caused by cold air challenge in patients with asthma. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Leukotrienes are substances that induce numerous biological effects including augmentation of neutrophil and eosinophil migration, neutrophil and monocyte aggregation, leukocyte adhesion, increased capillary permeability, and smooth muscle contraction. These effects contribute to inflammation, edema, mucus secretion, and bronchoconstriction in the airways of asthmatic patients. Zileuton relieves such symptoms through its selective inhibition of 5-lipoxygenase, the enzyme that catalyzes the formation of leukotrienes from arachidonic acid. Specifically, it inhibits leukotriene LTB4, LTC4, LTD4, and LTE4 formation. Both the R(+) and S(-) enantiomers are pharmacologically active as 5-lipoxygenase inhibitors in in vitro systems. Due to the role of leukotrienes in the pathogenesis of asthma, modulation of leukotriene formation by interruption of 5-lipoxygenase activity may reduce airway symptoms, decrease bronchial smooth muscle tone, and improve asthma control. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly and almost completely absorbed. The absolute bioavailability is unknown. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 1.2 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 93% bound to plasma proteins, primarily to albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Zileuton and its N-dehydroxylated metabolite are oxidatively metabolized by the cytochrome P450 isoenzymes 1A2, 2C9 and 3A4. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Elimination of zileuton is predominantly via metabolism with a mean terminal half-life of 2.5 hours. The urinary excretion of the inactive N-dehydroxylated metabolite and unchanged zileuton each accounted for less than 0.5% of the dose. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 2.5 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Apparent oral cl=7 mL/min/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Minimum oral lethal dose of zileuton in various preparations was 500-4000 mg/kg in mice and 300-1000 mg/kg in rats (providing greater than 3 and 9 times the systemic exposure [AUC] achieved at the maximum recommended human daily oral dose, respectively). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zyflo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Leutrol Zileuton Zileutón Zileutonum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zileuton is a leukotriene synthesis inhibitor used in the prophylaxis and treatment of chronic asthma.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zileuton interact? Information: •Drug A: Adalimumab •Drug B: Zileuton •Severity: MODERATE •Description: The metabolism of Zileuton can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the prophylaxis and chronic treatment of asthma in adults and children 12 years of age and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zileuton is an asthma drug that differs chemically and pharmacologically from other antiasthmatic agents. It blocks leukotriene synthesis by inhibiting 5-lipoxygenase, an enzyme of the eicosanoid synthesis pathway. Current data indicates that asthma is a chronic inflammatory disorder of the airways involving the production and activity of several endogenous inflammatory mediators, including leukotrienes. Sulfido-peptide leukotrienes (LTC4, LTD4, LTE4, also known as the slow-releasing substances of anaphylaxis) and LTB4, a chemoattractant for neutrophils and eosinophils, are derived from the initial unstable product of arachidonic acid metabolism, leukotriene A4 (LTA4), and can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients. In humans, pretreatment with zileuton attenuated bronchoconstriction caused by cold air challenge in patients with asthma. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Leukotrienes are substances that induce numerous biological effects including augmentation of neutrophil and eosinophil migration, neutrophil and monocyte aggregation, leukocyte adhesion, increased capillary permeability, and smooth muscle contraction. These effects contribute to inflammation, edema, mucus secretion, and bronchoconstriction in the airways of asthmatic patients. Zileuton relieves such symptoms through its selective inhibition of 5-lipoxygenase, the enzyme that catalyzes the formation of leukotrienes from arachidonic acid. Specifically, it inhibits leukotriene LTB4, LTC4, LTD4, and LTE4 formation. Both the R(+) and S(-) enantiomers are pharmacologically active as 5-lipoxygenase inhibitors in in vitro systems. Due to the role of leukotrienes in the pathogenesis of asthma, modulation of leukotriene formation by interruption of 5-lipoxygenase activity may reduce airway symptoms, decrease bronchial smooth muscle tone, and improve asthma control. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly and almost completely absorbed. The absolute bioavailability is unknown. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 1.2 L/kg •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 93% bound to plasma proteins, primarily to albumin. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Hepatic. Zileuton and its N-dehydroxylated metabolite are oxidatively metabolized by the cytochrome P450 isoenzymes 1A2, 2C9 and 3A4. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Elimination of zileuton is predominantly via metabolism with a mean terminal half-life of 2.5 hours. The urinary excretion of the inactive N-dehydroxylated metabolite and unchanged zileuton each accounted for less than 0.5% of the dose. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 2.5 hours •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Apparent oral cl=7 mL/min/kg •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Minimum oral lethal dose of zileuton in various preparations was 500-4000 mg/kg in mice and 300-1000 mg/kg in rats (providing greater than 3 and 9 times the systemic exposure [AUC] achieved at the maximum recommended human daily oral dose, respectively). •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zyflo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Leutrol Zileuton Zileutón Zileutonum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zileuton is a leukotriene synthesis inhibitor used in the prophylaxis and treatment of chronic asthma. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Does Adalimumab and Ziprasidone interact?
•Drug A: Adalimumab •Drug B: Ziprasidone •Severity: MODERATE •Description: The metabolism of Ziprasidone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): In its oral form, ziprasidone is approved for the treatment of schizophrenia, as monotherapy for acute treatment of manic or mixed episodes related to bipolar I disorder, and as adjunctive therapy to lithium or valproate for maintenance treatment of bipolar I disorder. The injectable formulation is approved only for treatment of acute agitation in schizophrenia. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Ziprasidone is classified as a "second generation" or "atypical" antipsychotic and is a dopamine and 5HT2A receptor antagonist with a unique receptor binding profile. As previously mentioned, ziprasidone has a very high 5-HT2A/D2 affinity ratio, binds to multiple serotonin receptors in addition to 5-HT2A, and blocks monoamine transporters which prevents 5HT and NE reuptake. On the other hand, ziprasidone has a low affinity for muscarinic cholinergic M1, histamine H1, and alpha1-adrenergic receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The effects of ziprasidone are differentiated from other antispychotics based on its preference and affinity for certain receptors. Ziprasidone binds to serotonin-2A (5-HT2A) and dopamine D2 receptors in a similar fashion to other atypical antipsychotics; however, one key difference is that ziprasidone has a higher 5-HT2A/D2 receptor affinity ratio when compared to other antipsychotics such as olanzapine, quetiapine, risperidone, and aripiprazole. Ziprasidone offers enhanced modulation of mood, notable negative symptom relief, overall cognitive improvement and reduced motor dysfunction which is linked to it's potent interaction with 5-HT2C, 5-HT1D, and 5-HT1A receptors in brain tissue. Ziprasidone can bind moderately to norepinephrine and serotonin reuptake sites which may contribute to its antidepressant and anxiolytic activity. Patient's taking ziprasidone will likely experience a lower incidence of orthostatic hypotension, cognitive disturbance, sedation, weight gain, and disruption in prolactin levels since ziprasidone has a lower affinity for histamine H1, muscarinic M1, and alpha1-adrenoceptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): In the absence of food, ziprasidone's oral bioavailability is 60%, and absorption may reach 100% if ziprasidone is taken with a meal containing at least 500 kcal. The difference in bioavailability has little to do with the fat content of the food and appears to be related to the bulk of the meal since more absorption occurs the longer ziprasidone remains in the stomach. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The mean apparent volume of distribution of Ziprasidone is 1.5 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Ziprasidone is extensively protein bound with over 99% of the drug bound to plasma proteins, primarily albumin and alpha1-acid glycoprotein. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Ziprasidone is heavily metabolized in the liver with less than 5% of the drug excreted unchanged in the urine. The primary reductive pathway is catalyzed by aldehyde oxidase, while 2 other less prominent oxidative pathways are catalyzed by CYP3A4. Ziprasidone is unlikely to interact with other medications metabolized by CYP3A4 since only 1/3 of the antipsychotic is metabolized by the CYP3A4 system. There are 12 identified ziprasidone metabolites (abbreviations italicized): Ziprasidone sulfoxide, ziprasidone sulfone, (6-chloro-2-oxo-2,3-dihydro-1H-indol-5-yl)acetic acid ( OX-COOH ), OX-COOH glucuronide, 3-(piperazine-1-yl)-1,2-benzisothiazole ( BITP ), BITP sulfoxide, BITP sulfone, BITP sulfone lactam, S-Methyl-dihydro-ziprasidone, S-Methyl-dihydro-ziprasidone-sulfoxide, 6-chloro-5-(2-piperazin-1-yl-ethyl)-1,3-dihydro-indol-2-one ( OX-P ), and dihydro-ziprasidone-sulfone. As suggested by the quantity of metabolites, ziprasidone is metabolized through several different pathways. Ziprasidone is sequentially oxidized to ziprasidone sulfoxide and ziprasidone sulfone, and oxidative N-dealkylation of ziprasidone produces OX-COOH and BITP. OX-COOH undergoes phase II metabolism to yield a glucuronidated metabolite while BITP is sequentially oxidized into BITP sulfoxide, BITP sulfone, then BITP sulfone lactam. Ziprasidone can also undergo reductive cleavage and methylation to produce S-Methyl-dihydro-ziprasidone and then further oxidation to produce S-Methyl-dihydro-ziprasidone-sulfoxide. Finally dearylation of ziprasidone produces OX-P, and the process of hydration and oxidation transforms the parent drug into dihydro-ziprasidone-sulfone. Although CYP3A4 and aldehyde oxidase are the primary enzymes involved in ziprasidone metabolism, the pathways associated with each enzyme have not been specified. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Ziprasidone is extensively metabolized after oral administration with only a small amount excreted in the urine (<1%) or feces (<4%) as unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The half life of ziprasidone is 6-7 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean apparent systemic clearance is 7.5 mL/min/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The most common adverse reactions reported with ziprasidone include somnolence, respiratory tract infections, extrapyramidal symptoms, dizziness, akathisia, abnormal vision, asthenia, vomiting, headache and nausea. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Geodon, Zeldox •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Ziprasidone is an atypical antipsychotic used to manage schizophrenia, bipolar mania, and agitation in patients with schizophrenia.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Ziprasidone interact? Information: •Drug A: Adalimumab •Drug B: Ziprasidone •Severity: MODERATE •Description: The metabolism of Ziprasidone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): In its oral form, ziprasidone is approved for the treatment of schizophrenia, as monotherapy for acute treatment of manic or mixed episodes related to bipolar I disorder, and as adjunctive therapy to lithium or valproate for maintenance treatment of bipolar I disorder. The injectable formulation is approved only for treatment of acute agitation in schizophrenia. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Ziprasidone is classified as a "second generation" or "atypical" antipsychotic and is a dopamine and 5HT2A receptor antagonist with a unique receptor binding profile. As previously mentioned, ziprasidone has a very high 5-HT2A/D2 affinity ratio, binds to multiple serotonin receptors in addition to 5-HT2A, and blocks monoamine transporters which prevents 5HT and NE reuptake. On the other hand, ziprasidone has a low affinity for muscarinic cholinergic M1, histamine H1, and alpha1-adrenergic receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The effects of ziprasidone are differentiated from other antispychotics based on its preference and affinity for certain receptors. Ziprasidone binds to serotonin-2A (5-HT2A) and dopamine D2 receptors in a similar fashion to other atypical antipsychotics; however, one key difference is that ziprasidone has a higher 5-HT2A/D2 receptor affinity ratio when compared to other antipsychotics such as olanzapine, quetiapine, risperidone, and aripiprazole. Ziprasidone offers enhanced modulation of mood, notable negative symptom relief, overall cognitive improvement and reduced motor dysfunction which is linked to it's potent interaction with 5-HT2C, 5-HT1D, and 5-HT1A receptors in brain tissue. Ziprasidone can bind moderately to norepinephrine and serotonin reuptake sites which may contribute to its antidepressant and anxiolytic activity. Patient's taking ziprasidone will likely experience a lower incidence of orthostatic hypotension, cognitive disturbance, sedation, weight gain, and disruption in prolactin levels since ziprasidone has a lower affinity for histamine H1, muscarinic M1, and alpha1-adrenoceptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): In the absence of food, ziprasidone's oral bioavailability is 60%, and absorption may reach 100% if ziprasidone is taken with a meal containing at least 500 kcal. The difference in bioavailability has little to do with the fat content of the food and appears to be related to the bulk of the meal since more absorption occurs the longer ziprasidone remains in the stomach. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): The mean apparent volume of distribution of Ziprasidone is 1.5 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Ziprasidone is extensively protein bound with over 99% of the drug bound to plasma proteins, primarily albumin and alpha1-acid glycoprotein. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Ziprasidone is heavily metabolized in the liver with less than 5% of the drug excreted unchanged in the urine. The primary reductive pathway is catalyzed by aldehyde oxidase, while 2 other less prominent oxidative pathways are catalyzed by CYP3A4. Ziprasidone is unlikely to interact with other medications metabolized by CYP3A4 since only 1/3 of the antipsychotic is metabolized by the CYP3A4 system. There are 12 identified ziprasidone metabolites (abbreviations italicized): Ziprasidone sulfoxide, ziprasidone sulfone, (6-chloro-2-oxo-2,3-dihydro-1H-indol-5-yl)acetic acid ( OX-COOH ), OX-COOH glucuronide, 3-(piperazine-1-yl)-1,2-benzisothiazole ( BITP ), BITP sulfoxide, BITP sulfone, BITP sulfone lactam, S-Methyl-dihydro-ziprasidone, S-Methyl-dihydro-ziprasidone-sulfoxide, 6-chloro-5-(2-piperazin-1-yl-ethyl)-1,3-dihydro-indol-2-one ( OX-P ), and dihydro-ziprasidone-sulfone. As suggested by the quantity of metabolites, ziprasidone is metabolized through several different pathways. Ziprasidone is sequentially oxidized to ziprasidone sulfoxide and ziprasidone sulfone, and oxidative N-dealkylation of ziprasidone produces OX-COOH and BITP. OX-COOH undergoes phase II metabolism to yield a glucuronidated metabolite while BITP is sequentially oxidized into BITP sulfoxide, BITP sulfone, then BITP sulfone lactam. Ziprasidone can also undergo reductive cleavage and methylation to produce S-Methyl-dihydro-ziprasidone and then further oxidation to produce S-Methyl-dihydro-ziprasidone-sulfoxide. Finally dearylation of ziprasidone produces OX-P, and the process of hydration and oxidation transforms the parent drug into dihydro-ziprasidone-sulfone. Although CYP3A4 and aldehyde oxidase are the primary enzymes involved in ziprasidone metabolism, the pathways associated with each enzyme have not been specified. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Ziprasidone is extensively metabolized after oral administration with only a small amount excreted in the urine (<1%) or feces (<4%) as unchanged drug. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The half life of ziprasidone is 6-7 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): The mean apparent systemic clearance is 7.5 mL/min/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): The most common adverse reactions reported with ziprasidone include somnolence, respiratory tract infections, extrapyramidal symptoms, dizziness, akathisia, abnormal vision, asthenia, vomiting, headache and nausea. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Geodon, Zeldox •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Ziprasidone is an atypical antipsychotic used to manage schizophrenia, bipolar mania, and agitation in patients with schizophrenia. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP3A4 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zolmitriptan interact?
•Drug A: Adalimumab •Drug B: Zolmitriptan •Severity: MODERATE •Description: The metabolism of Zolmitriptan can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zolmitriptan is indicated for the acute treatment of migraine with or without auras in patients aged 18 and over. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zolmitriptan, like other triptans, is a serotonin (5-hydroxytryptamine; 5-HT) receptor agonist, with enhanced specificity for the 5-HT 1B and 5-HT 1D receptor subtypes. It is through the downstream effects of 5-HT 1B/1D activation that triptans are proposed to provide acute relief of migraines. Zolmitriptan is also a vasoconstrictor, leading to possible adverse cardiovascular effects such as myocardial ischemia/infarction, arrhythmias, cerebral and subarachnoid hemorrhage, stroke, gastrointestinal ischemia, and peripheral vasospastic reactions. In addition, chest/throat/neck/jaw pain, tightness, and/or pressure has been reported, along with the possibility of medication overuse headaches and serotonin syndrome. Patients with phenylketonuria should be advised that ZOMIG-ZMT contains phenylalanine. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Migraines are complex physiological events characterized by unilateral throbbing headaches combined with photophobia and other aversions to sensory input. Migraine attacks are generally divided into phases: the premonitory phase, which typically involves irritability, fatigue, yawning, and stiff neck; the headache phase, which lasts for between four and 72 hours; and the postdrome phase, which lasts for up to a day following resolution of pain and whose symptoms are similar to those of the premonitory phase. In addition, neurological deficits, collectively termed migraine aura, may precede the headache phase. The underlying pathophysiology of migraines is a matter of active research but involves both neurological and vascular components. The head pain associated with migraine is thought to be a consequence of activation of the nociceptive nerves comprising the trigeminocervical complex (TCC). Terminals of nociceptive nerves that innervate the dura matter release vasoactive peptides, such as calcitonin gene-related peptide (CGRP), resulting in cranial vasodilation. Finally, when present, migraine aura appears to correlate with a transient wave(s) of cortical depolarization, termed cortical spreading depression (CSD). Triptans, including zolmitriptan, are proposed to act in three ways. The main mechanism is through modulation of nociceptive nerve signalling in the central nervous system through 5-HT 1B/1D receptors throughout the TCC and associated areas of the brain. In addition, triptans can enhance vasoconstriction, both through direct 5-HT 1B -mediated dilation of cranial blood vessels, as well as through 5-HT 1D -mediated suppression of CGRP release. Although triptans are classically described solely in terms of their effects on 5-HT 1B/1D receptors, they also act as 5-HT 1F agonists as well. This 5-HT subtype is also found throughout the TCC, but is not present appreciably in cerebral vasculature; the significance of triptan-mediated 5-HT 1F activation is currently not well described. Additionally, CSD that initiates in the ipsilateral parietal region may exert its effects in a manner that relies on 5-HT 1B/1D receptor activation, suggesting that triptans may have some effect on CSD-mediated symptoms. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Zolmitriptan tablets have a mean absolute oral bioavailability of approximately 40%, with food having no effect on the rate or extent of absorption. The dosing kinetics are linear over a range of 2.5 to 50 mg with 75% of the eventual C max being attained within 1 hour of dosing. The median T max for the tablet form is 1.5 hours, while for the orally disintegrating tablet form, it is 3 hours. The AUC across studies was in the range of 84.4-173.8 ng/mL*h while the C max was between 16 and 25.2 ng/mL. Zolmitriptan administered as a nasal spray is detected in the plasma within 2-5 minutes, compared to 10-15 minutes for the tablet form; the faster kinetics likely reflect fast absorption across the nasal mucosa. The bioavailability compared to the tablet is 102%, and plasma zolmitriptan concentration is maintained for 4-6 hours after intranasal delivery. The active N-desmethyl metabolite of zolmitriptan has a mean plasma concentration that is roughly two-thirds of zolmitriptan, regardless of dosage route or concentration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Zolmitriptan has a volume of distribution between 7 and 8.4 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Zolmitriptan and its active N-desmethyl metabolite remain approximately 25% bound to plasma proteins over a concentration range of 10-1000 ng/mL. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zolmitriptan is metabolized in the liver, and studies using cytochrome P450 inhibitors like cimetidine suggest that it is likely metabolized by CYP1A2, as well as by monoamine oxidase (MAO). Zolmitriptan metabolism results in three major metabolites: an active N-desmethyl metabolite (183C91) as well as inactive N-oxide (1652W92) and indole acetic acid (2161W92) metabolites. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zolmitriptan is primarily excreted in urine (approximately 65%) and feces (approximately 30%). Within urine, the most common form is the indole acetic acid metabolite (31%), followed by the N-oxide (7%), and N-desmethyl (4%) metabolites; the majority of zolmitriptan recovered in feces remains unchanged. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Zolmitriptan has a mean elimination half-life of approximately three hours following oral or nasal administration. Its active N-desmethyl metabolite has a slightly longer (approximately 3.5 hours) half-life. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Zolmitriptan has a clearance of 31.5 mL/min/kg for oral tablets and 25.9 mL/min/kg for nasal administration; one-sixth of the clearance is renal. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Toxicity information regarding zolmitriptan is not readily available. Patients experiencing an overdose are at an increased risk of severe adverse effects such as cardiovascular symptoms due to excessive vasoconstriction and activation of serotonergic receptors. Patients receiving a single 50 mg oral dose of zolmitriptan often experienced sedation. Symptomatic and supportive measures are recommended. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zomig •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zolmitriptan Zolmitriptán Zolmitriptanum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zolmitriptan is a member of the triptan class of 5-HT(1B/1D/1F) receptor agonist drugs used for the acute treatment of migraine with or without aura in adults.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zolmitriptan interact? Information: •Drug A: Adalimumab •Drug B: Zolmitriptan •Severity: MODERATE •Description: The metabolism of Zolmitriptan can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zolmitriptan is indicated for the acute treatment of migraine with or without auras in patients aged 18 and over. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zolmitriptan, like other triptans, is a serotonin (5-hydroxytryptamine; 5-HT) receptor agonist, with enhanced specificity for the 5-HT 1B and 5-HT 1D receptor subtypes. It is through the downstream effects of 5-HT 1B/1D activation that triptans are proposed to provide acute relief of migraines. Zolmitriptan is also a vasoconstrictor, leading to possible adverse cardiovascular effects such as myocardial ischemia/infarction, arrhythmias, cerebral and subarachnoid hemorrhage, stroke, gastrointestinal ischemia, and peripheral vasospastic reactions. In addition, chest/throat/neck/jaw pain, tightness, and/or pressure has been reported, along with the possibility of medication overuse headaches and serotonin syndrome. Patients with phenylketonuria should be advised that ZOMIG-ZMT contains phenylalanine. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Migraines are complex physiological events characterized by unilateral throbbing headaches combined with photophobia and other aversions to sensory input. Migraine attacks are generally divided into phases: the premonitory phase, which typically involves irritability, fatigue, yawning, and stiff neck; the headache phase, which lasts for between four and 72 hours; and the postdrome phase, which lasts for up to a day following resolution of pain and whose symptoms are similar to those of the premonitory phase. In addition, neurological deficits, collectively termed migraine aura, may precede the headache phase. The underlying pathophysiology of migraines is a matter of active research but involves both neurological and vascular components. The head pain associated with migraine is thought to be a consequence of activation of the nociceptive nerves comprising the trigeminocervical complex (TCC). Terminals of nociceptive nerves that innervate the dura matter release vasoactive peptides, such as calcitonin gene-related peptide (CGRP), resulting in cranial vasodilation. Finally, when present, migraine aura appears to correlate with a transient wave(s) of cortical depolarization, termed cortical spreading depression (CSD). Triptans, including zolmitriptan, are proposed to act in three ways. The main mechanism is through modulation of nociceptive nerve signalling in the central nervous system through 5-HT 1B/1D receptors throughout the TCC and associated areas of the brain. In addition, triptans can enhance vasoconstriction, both through direct 5-HT 1B -mediated dilation of cranial blood vessels, as well as through 5-HT 1D -mediated suppression of CGRP release. Although triptans are classically described solely in terms of their effects on 5-HT 1B/1D receptors, they also act as 5-HT 1F agonists as well. This 5-HT subtype is also found throughout the TCC, but is not present appreciably in cerebral vasculature; the significance of triptan-mediated 5-HT 1F activation is currently not well described. Additionally, CSD that initiates in the ipsilateral parietal region may exert its effects in a manner that relies on 5-HT 1B/1D receptor activation, suggesting that triptans may have some effect on CSD-mediated symptoms. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Zolmitriptan tablets have a mean absolute oral bioavailability of approximately 40%, with food having no effect on the rate or extent of absorption. The dosing kinetics are linear over a range of 2.5 to 50 mg with 75% of the eventual C max being attained within 1 hour of dosing. The median T max for the tablet form is 1.5 hours, while for the orally disintegrating tablet form, it is 3 hours. The AUC across studies was in the range of 84.4-173.8 ng/mL*h while the C max was between 16 and 25.2 ng/mL. Zolmitriptan administered as a nasal spray is detected in the plasma within 2-5 minutes, compared to 10-15 minutes for the tablet form; the faster kinetics likely reflect fast absorption across the nasal mucosa. The bioavailability compared to the tablet is 102%, and plasma zolmitriptan concentration is maintained for 4-6 hours after intranasal delivery. The active N-desmethyl metabolite of zolmitriptan has a mean plasma concentration that is roughly two-thirds of zolmitriptan, regardless of dosage route or concentration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Zolmitriptan has a volume of distribution between 7 and 8.4 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Zolmitriptan and its active N-desmethyl metabolite remain approximately 25% bound to plasma proteins over a concentration range of 10-1000 ng/mL. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zolmitriptan is metabolized in the liver, and studies using cytochrome P450 inhibitors like cimetidine suggest that it is likely metabolized by CYP1A2, as well as by monoamine oxidase (MAO). Zolmitriptan metabolism results in three major metabolites: an active N-desmethyl metabolite (183C91) as well as inactive N-oxide (1652W92) and indole acetic acid (2161W92) metabolites. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zolmitriptan is primarily excreted in urine (approximately 65%) and feces (approximately 30%). Within urine, the most common form is the indole acetic acid metabolite (31%), followed by the N-oxide (7%), and N-desmethyl (4%) metabolites; the majority of zolmitriptan recovered in feces remains unchanged. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Zolmitriptan has a mean elimination half-life of approximately three hours following oral or nasal administration. Its active N-desmethyl metabolite has a slightly longer (approximately 3.5 hours) half-life. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): Zolmitriptan has a clearance of 31.5 mL/min/kg for oral tablets and 25.9 mL/min/kg for nasal administration; one-sixth of the clearance is renal. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Toxicity information regarding zolmitriptan is not readily available. Patients experiencing an overdose are at an increased risk of severe adverse effects such as cardiovascular symptoms due to excessive vasoconstriction and activation of serotonergic receptors. Patients receiving a single 50 mg oral dose of zolmitriptan often experienced sedation. Symptomatic and supportive measures are recommended. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zomig •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zolmitriptan Zolmitriptán Zolmitriptanum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zolmitriptan is a member of the triptan class of 5-HT(1B/1D/1F) receptor agonist drugs used for the acute treatment of migraine with or without aura in adults. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zolpidem interact?
•Drug A: Adalimumab •Drug B: Zolpidem •Severity: MODERATE •Description: The metabolism of Zolpidem can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): This drug is indicated for the short-term treatment of insomnia in adults characterized by difficulties with sleep initiation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Effects on the central nervous system (CNS) This drug has CNS depressant effects, which may include somnolence, decreased alertness, sedation, drowsiness, dizziness, and other changes in psychomotor function. Due to the above effects, the FDA has recommended an initial dose of zolpidem (immediate-acting) is a single dose of 5 mg for women and a single dose of 5 or 10 mg for men, immediately before bedtime with at least 7-8 hours remaining before the planned time of awakening. Refer to product labeling for detailed information,. Effects on memory Controlled studies in adults using objective measures of memory demonstrated no significant evidence of next-day memory impairment after the administration of zolpidem. On the contrary, in a clinical study involving the administration of zolpidem doses of 10 and 20 mg, a marked reduction in a next-morning recall of information relayed to subjects during peak drug effect (90 minutes after dosing) was observed. These subjects experienced a condition known as anterograde amnesia. Subjective evidence from adverse event data has suggested that anterograde amnesia may occur after zolpidem administration, mainly at doses above 10 mg. Effects on psychomotor function This drug may cause decreased psychomotor performance. Additive psychomotor effects may occur with other drugs that cause depression of psychomotor function, including alcohol. Patients taking zolpidem should be cautioned against participating in hazardous activities or occupations requiring complete mental alertness or motor coordination, including operating machinery or driving a motor vehicle after ingesting the drug. Potential impairment of the performance of the above types of activities may also occur the day after zolpidem ingestion, especially at higher doses and ingestion of the extended-release form,. Effects on insomnia and sleep stages Evidence suggests that this drug is associated with minimal rebound insomnia. During clinical trials with patients using zolpidem on an ‘as-needed’ basis, zolpidem use resulted in global improvements in sleep. Zolpidem has been demonstrated to decrease sleep latency (the time it takes to fall asleep) for up to 35 days in controlled clinical studies. In studies measuring the percentage of sleep time spent in each sleep stage, zolpidem has primarily been shown to preserve sleep stages. Sleep time spent in stages 3 and 4 (deep sleep) was measured as similar to placebo with only minor and inconsistent changes in REM (paradoxical) sleep at the recommended dose. Next-day residual effects In 2013, the FDA issued a statement warning that patients who take zolpidem extended-release (Ambien CR)―either 6.25 mg or 12.5 mg―should not drive or participate in other activities requiring full mental alertness the day after taking the drug, due to the fact that zolpidem concentrations can remain increased the next day, and impair the ability to perform these activities,. Patients may decrease their risk of next-morning impairment by taking the lowest dose of their insomnia medicine that treats their symptoms, according to the FDA. Specific dosing recommendations for both men and women are included in this statement. This information is also available on product labeling,. Rebound effects There was no polysomnographic (objective) evidence of rebound insomnia at normal doses, in studies evaluating sleep on the nights following discontinuation of zolpidem tartrate. Subjective evidence of impaired sleep in the elderly on the first post-treatment night was observed at doses higher than the recommended 5mg dose for elderly patients. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zolpidem, the active moiety of zolpidem tartrate, is a hypnotic substance with a chemical structure that is not related to the structure benzodiazepines, barbiturates, pyrrolopyrazines, pyrazolopyrimidines or other drugs exerting hypnotic effects. It interacts with a GABA-BZ receptor complex and shares various pharmacological properties with the benzodiazepine class of drugs. Subunit binding of the GABAA receptor chloride channel macromolecular complex is thought to lead to the sedative, anticonvulsant, anxiolytic, and myorelaxant drug effects of zolpidem. The main regulatory site of the GABAA receptor complex can be found on its alpha (α) subunit and is called the benzodiazepine (BZ) or omega (ω) receptor. At least three different subtypes of the (ω) receptor have been identified to this date. In contrast to benzodiazepine drugs, which are found to modulate all benzodiazepine receptor subtypes in a non-selective fashion, zolpidem binds the (BZ1) receptor specifically with a potent affinity for the alpha 1/alpha 5 subunits (in vitro). More recent studies suggest that zolpidem binds primarily to the alpha 1, 2, and 3 subunits of the GABA receptor,,, and not the alpha 5 subunit. The ( BZ1 ) receptor is found primarily on the Lamina IV of the brain sensorimotor cortical regions, substantia nigra (pars reticulata), cerebellum molecular layer, olfactory bulb, ventral thalamic complex, pons, inferior colliculus, and globus pallidus. Specific and selective binding of zolpidem on the (BZ1) receptor is not considered absolute, however, this binding could potentially explain the relative lack of myorelaxant and anticonvulsant activity in animal studies in addition to the preservation of deep sleep (stages 3 and 4) in human studies of zolpidem at hypnotic doses. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Zolpidem is rapidly absorbed from the gastrointestinal tract. In a single-dose crossover study in 45 healthy subjects given 5 and 10 mg zolpidem tartrate tablets, the average peak zolpidem concentrations (Cmax) were 59 and 121 ng/mL, respectively, occurring at a mean time (Tmax) of 1.6 hours for both doses. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 0.54 to 0.68 L/kg (in humans). In patients with long term renal insufficiency who were not yet on hemodialysis, the volume of distribution was found to increase significantly, AUC increased by 60%, and half-life nearly doubled. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 92.5 ± 0.1% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zolpidem is metabolized to three pharmacologically by various hepatic cytochrome P450 (CYP) isoenzymes, mainly CYP3A4, but also CYP1A2 and CYP2C9,. Although zolpidem is heavily metabolized, all three metabolites are inactive. The major metabolic routes in humans are oxidation of the methyl group on the phenyl ring or the methyl group on the imidazopyridine moiety, to produce carboxylic acids (metabolites I and II), and hydroxylation of one of the imidazopyridine groups (to produce metabolite X). Another less common pathway is by the oxidation of the methyl groups on the substituted amide. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zolpidem tartrate tablets are converted to inactive metabolites that are eliminated mainly by renal excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The average zolpidem elimination half-life was 2.6 and 2.5 hours, for the 5 and 10 mg tablets, respectively. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): In a clinical trial, after a 20mg dose, total clearance of zolpidem 0.24 to 0.27 ml/min/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral (male rat) LD 50 = 695 mg/kg. Overdose Symptoms of overdose include impairment of consciousness ranging from somnolence to light coma, in addition to cardiorespiratory collapse resulting in fatal outcomes have been reported. Withdrawal effects Following rapid decreases in dose or abrupt discontinuation of zolpidem and other sedative/hypnotics, reports of signs and symptoms similar to those associated with withdrawal from other CNS-depressant drugs have been made. Carcinogenesis Zolpidem was administered to rats and mice over a span of 2 years at dietary dosages of 4, 18, and 80 mg/kg/day. In mice, these doses are considered 26 to 520 times or 2 to 35 times the maximum 10 mg human dose, respectively. In rats, these doses are 43 to 876 times or 6 to 115 times the maximum 10 mg human dose. No evidence of carcinogenicity was seen in mice. Renal liposarcomas were observed in 4/100 rats (3 males, 1 female) receiving 80 mg/kg/day, and a renal lipoma was observed in one male rat at the 18 mg/kg/day dose. Incidence rates of lipoma and liposarcoma for zolpidem were similar to those seen in historical control cases, and the tumor findings are presumed to be a spontaneous occurrence, not causally related to zolpidem. Mutagenesis Zolpidem did not show mutagenic activity in several tests including the Ames test, genotoxicity in mouse lymphoma cells in vitro, chromosomal aberrations in cultured human lymphocytes, abnormal DNA synthesis in rat hepatocytes in vitro, and the micronucleus test performed in mice. Impairment of fertility In a rat reproduction study, the high dose (100 mg base/kg) of zolpidem lead to irregular estrus cycles and prolonged precoital intervals, however, there was no effect on male or female fertility after daily oral doses comparable to 5 to 130 times the recommended human dose. No effects on any other fertility parameters were observed. Use in pregnancy This drug is considered a pregnancy category C drug. There are currently no sufficient conclusive studies completed in pregnant women to determine the safety of zolpidem use during pregnancy. Zolpidem should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus. Use in nursing From 0.004% to 0.019% of the total administered zolpidem dose is excreted into milk. The effect of zolpidem on the nursing infant is unknown at this time. Caution should be observed when zolpidem is administered to a nursing mother. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Ambien, Edluar, Intermezzo, Tovalt •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zolpidem Zolpidemum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zolpidem is a sedative hypnotic used for the short-term treatment of insomnia to improve sleep latency.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zolpidem interact? Information: •Drug A: Adalimumab •Drug B: Zolpidem •Severity: MODERATE •Description: The metabolism of Zolpidem can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): This drug is indicated for the short-term treatment of insomnia in adults characterized by difficulties with sleep initiation. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Effects on the central nervous system (CNS) This drug has CNS depressant effects, which may include somnolence, decreased alertness, sedation, drowsiness, dizziness, and other changes in psychomotor function. Due to the above effects, the FDA has recommended an initial dose of zolpidem (immediate-acting) is a single dose of 5 mg for women and a single dose of 5 or 10 mg for men, immediately before bedtime with at least 7-8 hours remaining before the planned time of awakening. Refer to product labeling for detailed information,. Effects on memory Controlled studies in adults using objective measures of memory demonstrated no significant evidence of next-day memory impairment after the administration of zolpidem. On the contrary, in a clinical study involving the administration of zolpidem doses of 10 and 20 mg, a marked reduction in a next-morning recall of information relayed to subjects during peak drug effect (90 minutes after dosing) was observed. These subjects experienced a condition known as anterograde amnesia. Subjective evidence from adverse event data has suggested that anterograde amnesia may occur after zolpidem administration, mainly at doses above 10 mg. Effects on psychomotor function This drug may cause decreased psychomotor performance. Additive psychomotor effects may occur with other drugs that cause depression of psychomotor function, including alcohol. Patients taking zolpidem should be cautioned against participating in hazardous activities or occupations requiring complete mental alertness or motor coordination, including operating machinery or driving a motor vehicle after ingesting the drug. Potential impairment of the performance of the above types of activities may also occur the day after zolpidem ingestion, especially at higher doses and ingestion of the extended-release form,. Effects on insomnia and sleep stages Evidence suggests that this drug is associated with minimal rebound insomnia. During clinical trials with patients using zolpidem on an ‘as-needed’ basis, zolpidem use resulted in global improvements in sleep. Zolpidem has been demonstrated to decrease sleep latency (the time it takes to fall asleep) for up to 35 days in controlled clinical studies. In studies measuring the percentage of sleep time spent in each sleep stage, zolpidem has primarily been shown to preserve sleep stages. Sleep time spent in stages 3 and 4 (deep sleep) was measured as similar to placebo with only minor and inconsistent changes in REM (paradoxical) sleep at the recommended dose. Next-day residual effects In 2013, the FDA issued a statement warning that patients who take zolpidem extended-release (Ambien CR)―either 6.25 mg or 12.5 mg―should not drive or participate in other activities requiring full mental alertness the day after taking the drug, due to the fact that zolpidem concentrations can remain increased the next day, and impair the ability to perform these activities,. Patients may decrease their risk of next-morning impairment by taking the lowest dose of their insomnia medicine that treats their symptoms, according to the FDA. Specific dosing recommendations for both men and women are included in this statement. This information is also available on product labeling,. Rebound effects There was no polysomnographic (objective) evidence of rebound insomnia at normal doses, in studies evaluating sleep on the nights following discontinuation of zolpidem tartrate. Subjective evidence of impaired sleep in the elderly on the first post-treatment night was observed at doses higher than the recommended 5mg dose for elderly patients. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zolpidem, the active moiety of zolpidem tartrate, is a hypnotic substance with a chemical structure that is not related to the structure benzodiazepines, barbiturates, pyrrolopyrazines, pyrazolopyrimidines or other drugs exerting hypnotic effects. It interacts with a GABA-BZ receptor complex and shares various pharmacological properties with the benzodiazepine class of drugs. Subunit binding of the GABAA receptor chloride channel macromolecular complex is thought to lead to the sedative, anticonvulsant, anxiolytic, and myorelaxant drug effects of zolpidem. The main regulatory site of the GABAA receptor complex can be found on its alpha (α) subunit and is called the benzodiazepine (BZ) or omega (ω) receptor. At least three different subtypes of the (ω) receptor have been identified to this date. In contrast to benzodiazepine drugs, which are found to modulate all benzodiazepine receptor subtypes in a non-selective fashion, zolpidem binds the (BZ1) receptor specifically with a potent affinity for the alpha 1/alpha 5 subunits (in vitro). More recent studies suggest that zolpidem binds primarily to the alpha 1, 2, and 3 subunits of the GABA receptor,,, and not the alpha 5 subunit. The ( BZ1 ) receptor is found primarily on the Lamina IV of the brain sensorimotor cortical regions, substantia nigra (pars reticulata), cerebellum molecular layer, olfactory bulb, ventral thalamic complex, pons, inferior colliculus, and globus pallidus. Specific and selective binding of zolpidem on the (BZ1) receptor is not considered absolute, however, this binding could potentially explain the relative lack of myorelaxant and anticonvulsant activity in animal studies in addition to the preservation of deep sleep (stages 3 and 4) in human studies of zolpidem at hypnotic doses. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Zolpidem is rapidly absorbed from the gastrointestinal tract. In a single-dose crossover study in 45 healthy subjects given 5 and 10 mg zolpidem tartrate tablets, the average peak zolpidem concentrations (Cmax) were 59 and 121 ng/mL, respectively, occurring at a mean time (Tmax) of 1.6 hours for both doses. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 0.54 to 0.68 L/kg (in humans). In patients with long term renal insufficiency who were not yet on hemodialysis, the volume of distribution was found to increase significantly, AUC increased by 60%, and half-life nearly doubled. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 92.5 ± 0.1% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zolpidem is metabolized to three pharmacologically by various hepatic cytochrome P450 (CYP) isoenzymes, mainly CYP3A4, but also CYP1A2 and CYP2C9,. Although zolpidem is heavily metabolized, all three metabolites are inactive. The major metabolic routes in humans are oxidation of the methyl group on the phenyl ring or the methyl group on the imidazopyridine moiety, to produce carboxylic acids (metabolites I and II), and hydroxylation of one of the imidazopyridine groups (to produce metabolite X). Another less common pathway is by the oxidation of the methyl groups on the substituted amide. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zolpidem tartrate tablets are converted to inactive metabolites that are eliminated mainly by renal excretion. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): The average zolpidem elimination half-life was 2.6 and 2.5 hours, for the 5 and 10 mg tablets, respectively. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): In a clinical trial, after a 20mg dose, total clearance of zolpidem 0.24 to 0.27 ml/min/kg. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Oral (male rat) LD 50 = 695 mg/kg. Overdose Symptoms of overdose include impairment of consciousness ranging from somnolence to light coma, in addition to cardiorespiratory collapse resulting in fatal outcomes have been reported. Withdrawal effects Following rapid decreases in dose or abrupt discontinuation of zolpidem and other sedative/hypnotics, reports of signs and symptoms similar to those associated with withdrawal from other CNS-depressant drugs have been made. Carcinogenesis Zolpidem was administered to rats and mice over a span of 2 years at dietary dosages of 4, 18, and 80 mg/kg/day. In mice, these doses are considered 26 to 520 times or 2 to 35 times the maximum 10 mg human dose, respectively. In rats, these doses are 43 to 876 times or 6 to 115 times the maximum 10 mg human dose. No evidence of carcinogenicity was seen in mice. Renal liposarcomas were observed in 4/100 rats (3 males, 1 female) receiving 80 mg/kg/day, and a renal lipoma was observed in one male rat at the 18 mg/kg/day dose. Incidence rates of lipoma and liposarcoma for zolpidem were similar to those seen in historical control cases, and the tumor findings are presumed to be a spontaneous occurrence, not causally related to zolpidem. Mutagenesis Zolpidem did not show mutagenic activity in several tests including the Ames test, genotoxicity in mouse lymphoma cells in vitro, chromosomal aberrations in cultured human lymphocytes, abnormal DNA synthesis in rat hepatocytes in vitro, and the micronucleus test performed in mice. Impairment of fertility In a rat reproduction study, the high dose (100 mg base/kg) of zolpidem lead to irregular estrus cycles and prolonged precoital intervals, however, there was no effect on male or female fertility after daily oral doses comparable to 5 to 130 times the recommended human dose. No effects on any other fertility parameters were observed. Use in pregnancy This drug is considered a pregnancy category C drug. There are currently no sufficient conclusive studies completed in pregnant women to determine the safety of zolpidem use during pregnancy. Zolpidem should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus. Use in nursing From 0.004% to 0.019% of the total administered zolpidem dose is excreted into milk. The effect of zolpidem on the nursing infant is unknown at this time. Caution should be observed when zolpidem is administered to a nursing mother. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Ambien, Edluar, Intermezzo, Tovalt •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zolpidem Zolpidemum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zolpidem is a sedative hypnotic used for the short-term treatment of insomnia to improve sleep latency. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP1A2 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zonisamide interact?
•Drug A: Adalimumab •Drug B: Zonisamide •Severity: MODERATE •Description: The metabolism of Zonisamide can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zonisamide capsules are indicated as adjunctive therapy in the treatment of partial seizures in adults with epilepsy. Zonisamide oral suspension is indicated as adjunctive therapy for the treatment of partial-onset seizures in adults and pediatric patients 16 years of age and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): By stopping the spread of seizure discharges, zonisamide prevents the extensor component of tonic convulsion, restricts the spread of focal seizures and prevents the propagation of seizures from the cortex to subcortical structures. In animal models, zonisamide was effective against tonic extension seizures but ineffective against clonic seizures. It also increased the threshold for generalized seizures and reduced the duration of cortical focal seizures. Aside from its antiepileptic effects, zonisamide is capable of activating neuroprotective mechanisms. It inhibits nitric oxide synthase and ​​reduces ischemia-induced memory impairment and lipid peroxidation. The use of zonisamide may lead to potentially fatal reactions. Severe reactions such as Stevens-Johnson syndrome, toxic epidermal necrolysis, fulminant hepatic necrosis, agranulocytosis, and aplastic anemia have been reported in patients treated with sulfonamides such as zonisamide. Zonisamide may also lead to the development of serious hematological events, drug reaction with eosinophilia and systemic symptoms (DRESS) and multi-organ hypersensitivity, acute myopia and secondary angle closure glaucoma, as well as suicidal behaviour and ideation. Zonisamide is a carbonic anhydrase inhibitor, which may lead to metabolic acidosis in patients treated with this drug. Its therapeutic effects due to this pharmacological action are unknown. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The mechanism of action by which zonisamide controls seizures has not been fully established. However, its antiepileptic properties may be due to its effects on sodium and calcium channels. Zonisamide blocks sodium channels and reduces voltage-dependent, transient inward currents, stabilizing neuronal membranes and suppressing neuronal hypersynchronization. It affects T-type calcium currents, but has no effect on L-type calcium currents. Zonisamide suppresses synaptically-driven electrical activity by altering the synthesis, release, and degradation of neurotransmitters, such as glutamate, gamma-aminobutyric acid (GABA), dopamine, serotonin (5-hydroxytryptamine 5-HT ), and acetylcholine. Furthermore, it binds to the GABA/benzodiazepine receptor ionophore complex without producing changes in chloride flux. In vitro studies have suggested that zonisamide does not affect postsynaptic GABA or glutamate responses, nor the neuronal or glial uptake of [ H]-GABA. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Between 200 and 400 mg, zonisamide follows a dose-proportional pharmacokinetic profile. At concentrations higher than 800 mg, the C max and AUC increase in a disproportional manner, possibly due to zonisamide binding red blood cells. In healthy volunteers given 200 to 400 mg of zonisamide orally, peak plasma concentrations (C max ) range between 2 and 5 µg/mL and are reached within 2–6 hours (T max ). In healthy volunteers given 100 mg of zonisamide oral suspension, the T max ranged from 0.5 to 5 hours. Zonisamide has a high oral bioavailability (95%). The T max of zonisamide was delayed by food intake (4-6 hours); however, food has no effect on its bioavailability. Steady state is achieved 14 days after a stable dose is reached. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Following a 400 mg oral dose, zonisamide has an apparent volume of distribution (V/F) of 1.45 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): At concentrations between 1.0 and 7.0 μg/mL, zonisamide is approximately 40% bound to human plasma proteins. The concentration of zonisamide is 8-fold higher in red blood cells than in plasma due to its ability to bind extensively to erythrocytes. The presence of therapeutic concentrations of phenytoin, phenobarbital, or carbamazepine does not affect zonisamide protein binding. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zonisamide metabolites are generated mainly by principally reductive and conjugative mechanisms. Oxidation reactions play a minor role in the metabolism of zonisamide. Zonisamide is metabolized by N-acetyl-transferases to form N-acetyl zonisamide and reduced to form the open ring metabolite, 2–sulfamoylacetylphenol (SMAP). The reduction of zonisamide to SMAP is mediated by CYP3A4. Zonisamide does not induce liver enzymes or its own metabolism. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zonisamide is mainly excreted as the parent drug and the glucuronide of a metabolite. Urine is the main route of zonisamide excretion, and only a small portion of this drug is excreted in feces. Following multiple doses of radiolabeled zonisamide, 62% of the dose was recovered in the urine, and 3% in feces by day 10. Of the excreted dose of zonisamide, 35% was recovered unchanged, 15% as N-acetyl zonisamide, and 50% as the glucuronide of 2–sulfamoylacetylphenol (SMAP). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): In plasma, the elimination half-life of zonisamide is approximately 63 hours. In red blood cells, it is approximately 105 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): In patients not taking enzyme-inducing antiepilepsy drugs (AEDs), the plasma clearance of oral zonisamide is approximately 0.30-0.35 mL/min/kg. In patients treated with AEDs, this value increases to 0.5 mL/min/kg. Renal clearance is approximately 3.5 mL/min after a single-dose of zonisamide. In red blood cells, the clearance of an oral dose of zonisamide is 2 mL/min. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Information on daily doses over 800 mg/day of zonisamide is limited. During clinical development, three patients ingested unknown amounts of zonisamide as suicide attempts, and all of them were hospitalized with central nervous system symptoms. One patient became comatose and developed bradycardia, hypotension, and respiratory depression; 31 hours after zonisamide ingestion, plasma level was 100.1 µg/mL. Zonisamide plasma levels fell with a half-life of 57 hours, and the patient became alert five days later. There are no specific antidotes for zonisamide overdosage. In case of a suspected recent overdose, emesis should be induced or gastric lavage performed with the usual precautions to protect the airway. General supportive care is indicated, including frequent monitoring of vital signs and close observation. Due to its long half-life and low protein binding, renal dialysis may be effective in treating zonisamide overdose; however, the effectiveness of this procedure has not been formally studied. In vivo studies found no evidence of carcinogenicity at zonisamide doses equivalent to or higher than the maximum recommended human dose (MRHD). In an in vitro chromosomal aberration assay in CHL cells, zonisamide displayed mutagenicity. Signs of reproductive toxicity were also detected in rats treated with a dose 0.5 times the MRHD. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zonegran, Zonisade •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zonisamida Zonisamide Zonisamidum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zonisamide is a sulfonamide anticonvulsant used to treat partial seizures.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zonisamide interact? Information: •Drug A: Adalimumab •Drug B: Zonisamide •Severity: MODERATE •Description: The metabolism of Zonisamide can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Zonisamide capsules are indicated as adjunctive therapy in the treatment of partial seizures in adults with epilepsy. Zonisamide oral suspension is indicated as adjunctive therapy for the treatment of partial-onset seizures in adults and pediatric patients 16 years of age and older. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): By stopping the spread of seizure discharges, zonisamide prevents the extensor component of tonic convulsion, restricts the spread of focal seizures and prevents the propagation of seizures from the cortex to subcortical structures. In animal models, zonisamide was effective against tonic extension seizures but ineffective against clonic seizures. It also increased the threshold for generalized seizures and reduced the duration of cortical focal seizures. Aside from its antiepileptic effects, zonisamide is capable of activating neuroprotective mechanisms. It inhibits nitric oxide synthase and ​​reduces ischemia-induced memory impairment and lipid peroxidation. The use of zonisamide may lead to potentially fatal reactions. Severe reactions such as Stevens-Johnson syndrome, toxic epidermal necrolysis, fulminant hepatic necrosis, agranulocytosis, and aplastic anemia have been reported in patients treated with sulfonamides such as zonisamide. Zonisamide may also lead to the development of serious hematological events, drug reaction with eosinophilia and systemic symptoms (DRESS) and multi-organ hypersensitivity, acute myopia and secondary angle closure glaucoma, as well as suicidal behaviour and ideation. Zonisamide is a carbonic anhydrase inhibitor, which may lead to metabolic acidosis in patients treated with this drug. Its therapeutic effects due to this pharmacological action are unknown. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): The mechanism of action by which zonisamide controls seizures has not been fully established. However, its antiepileptic properties may be due to its effects on sodium and calcium channels. Zonisamide blocks sodium channels and reduces voltage-dependent, transient inward currents, stabilizing neuronal membranes and suppressing neuronal hypersynchronization. It affects T-type calcium currents, but has no effect on L-type calcium currents. Zonisamide suppresses synaptically-driven electrical activity by altering the synthesis, release, and degradation of neurotransmitters, such as glutamate, gamma-aminobutyric acid (GABA), dopamine, serotonin (5-hydroxytryptamine 5-HT ), and acetylcholine. Furthermore, it binds to the GABA/benzodiazepine receptor ionophore complex without producing changes in chloride flux. In vitro studies have suggested that zonisamide does not affect postsynaptic GABA or glutamate responses, nor the neuronal or glial uptake of [ H]-GABA. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Between 200 and 400 mg, zonisamide follows a dose-proportional pharmacokinetic profile. At concentrations higher than 800 mg, the C max and AUC increase in a disproportional manner, possibly due to zonisamide binding red blood cells. In healthy volunteers given 200 to 400 mg of zonisamide orally, peak plasma concentrations (C max ) range between 2 and 5 µg/mL and are reached within 2–6 hours (T max ). In healthy volunteers given 100 mg of zonisamide oral suspension, the T max ranged from 0.5 to 5 hours. Zonisamide has a high oral bioavailability (95%). The T max of zonisamide was delayed by food intake (4-6 hours); however, food has no effect on its bioavailability. Steady state is achieved 14 days after a stable dose is reached. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): Following a 400 mg oral dose, zonisamide has an apparent volume of distribution (V/F) of 1.45 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): At concentrations between 1.0 and 7.0 μg/mL, zonisamide is approximately 40% bound to human plasma proteins. The concentration of zonisamide is 8-fold higher in red blood cells than in plasma due to its ability to bind extensively to erythrocytes. The presence of therapeutic concentrations of phenytoin, phenobarbital, or carbamazepine does not affect zonisamide protein binding. •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Zonisamide metabolites are generated mainly by principally reductive and conjugative mechanisms. Oxidation reactions play a minor role in the metabolism of zonisamide. Zonisamide is metabolized by N-acetyl-transferases to form N-acetyl zonisamide and reduced to form the open ring metabolite, 2–sulfamoylacetylphenol (SMAP). The reduction of zonisamide to SMAP is mediated by CYP3A4. Zonisamide does not induce liver enzymes or its own metabolism. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Zonisamide is mainly excreted as the parent drug and the glucuronide of a metabolite. Urine is the main route of zonisamide excretion, and only a small portion of this drug is excreted in feces. Following multiple doses of radiolabeled zonisamide, 62% of the dose was recovered in the urine, and 3% in feces by day 10. Of the excreted dose of zonisamide, 35% was recovered unchanged, 15% as N-acetyl zonisamide, and 50% as the glucuronide of 2–sulfamoylacetylphenol (SMAP). •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): In plasma, the elimination half-life of zonisamide is approximately 63 hours. In red blood cells, it is approximately 105 hours. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): In patients not taking enzyme-inducing antiepilepsy drugs (AEDs), the plasma clearance of oral zonisamide is approximately 0.30-0.35 mL/min/kg. In patients treated with AEDs, this value increases to 0.5 mL/min/kg. Renal clearance is approximately 3.5 mL/min after a single-dose of zonisamide. In red blood cells, the clearance of an oral dose of zonisamide is 2 mL/min. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Information on daily doses over 800 mg/day of zonisamide is limited. During clinical development, three patients ingested unknown amounts of zonisamide as suicide attempts, and all of them were hospitalized with central nervous system symptoms. One patient became comatose and developed bradycardia, hypotension, and respiratory depression; 31 hours after zonisamide ingestion, plasma level was 100.1 µg/mL. Zonisamide plasma levels fell with a half-life of 57 hours, and the patient became alert five days later. There are no specific antidotes for zonisamide overdosage. In case of a suspected recent overdose, emesis should be induced or gastric lavage performed with the usual precautions to protect the airway. General supportive care is indicated, including frequent monitoring of vital signs and close observation. Due to its long half-life and low protein binding, renal dialysis may be effective in treating zonisamide overdose; however, the effectiveness of this procedure has not been formally studied. In vivo studies found no evidence of carcinogenicity at zonisamide doses equivalent to or higher than the maximum recommended human dose (MRHD). In an in vitro chromosomal aberration assay in CHL cells, zonisamide displayed mutagenicity. Signs of reproductive toxicity were also detected in rats treated with a dose 0.5 times the MRHD. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Zonegran, Zonisade •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zonisamida Zonisamide Zonisamidum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zonisamide is a sulfonamide anticonvulsant used to treat partial seizures. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C19 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zopiclone interact?
•Drug A: Adalimumab •Drug B: Zopiclone •Severity: MODERATE •Description: The metabolism of Zopiclone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the short-term treatment of insomnia. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zopiclone is a nonbenzodiazepine hypnotic from the pyrazolopyrimidine class and is indicated for the short-term treatment of insomnia. While Zopiclone is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABA B Z) receptor complex. Subunit modulation of the GABA B Z receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Zopiclone binds selectively to the brain alpha subunit of the GABA A omega-1 receptor. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zopiclone exerts its action by binding on the benzodiazepine receptor complex and modulation of the GABA B Z receptor chloride channel macromolecular complex. Both zopiclone and benzodiazepines act indiscriminately at the benzodiazepine binding site on α1, α2, α3 and α5 GABAA containing receptors as full agonists causing an enhancement of the inhibitory actions of GABA to produce the therapeutic (hypnotic and anxiolytic) and adverse effects of zopiclone. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 45% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Extensively metabolized in the liver via decarboxylation (major pathway), demethylation, and side chain oxidation. Metabolites include an N-oxide derivative (weakly active; approximately 12% of a dose) and an N-desmethyl metabolite (inactive; approximately 16%). Approximately 50% of a dose is converted to other inactive metabolites via decarboxylation. Hepatic microsomal enzymes are apparently not involved in zopiclone clearance. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life is approximately 5 hours (range 3.8 to 6.5 hours) and is prolonged to 11.9 hours in patients with hepatic insufficiency. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Rare individual instances of fatal outcomes following overdose with racemic zopiclone have been reported in European postmarketing reports, most often associated with overdose with other CNS-depressant agent. Signs and symptoms of overdose effects of CNS depressants can be expected to present as exaggerations of the pharmacological effects noted in preclinical testing. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Imovane •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zopiclona Zopiclone Zopiclonum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zopiclone is a nonbenzodiazepine hypnotic used for the short-term management of insomnia.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zopiclone interact? Information: •Drug A: Adalimumab •Drug B: Zopiclone •Severity: MODERATE •Description: The metabolism of Zopiclone can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): For the short-term treatment of insomnia. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zopiclone is a nonbenzodiazepine hypnotic from the pyrazolopyrimidine class and is indicated for the short-term treatment of insomnia. While Zopiclone is a hypnotic agent with a chemical structure unrelated to benzodiazepines, barbiturates, or other drugs with known hypnotic properties, it interacts with the gamma-aminobutyric acid-benzodiazepine (GABA B Z) receptor complex. Subunit modulation of the GABA B Z receptor chloride channel macromolecular complex is hypothesized to be responsible for some of the pharmacological properties of benzodiazepines, which include sedative, anxiolytic, muscle relaxant, and anticonvulsive effects in animal models. Zopiclone binds selectively to the brain alpha subunit of the GABA A omega-1 receptor. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zopiclone exerts its action by binding on the benzodiazepine receptor complex and modulation of the GABA B Z receptor chloride channel macromolecular complex. Both zopiclone and benzodiazepines act indiscriminately at the benzodiazepine binding site on α1, α2, α3 and α5 GABAA containing receptors as full agonists causing an enhancement of the inhibitory actions of GABA to produce the therapeutic (hypnotic and anxiolytic) and adverse effects of zopiclone. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Rapidly absorbed following oral administration. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 45% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): Extensively metabolized in the liver via decarboxylation (major pathway), demethylation, and side chain oxidation. Metabolites include an N-oxide derivative (weakly active; approximately 12% of a dose) and an N-desmethyl metabolite (inactive; approximately 16%). Approximately 50% of a dose is converted to other inactive metabolites via decarboxylation. Hepatic microsomal enzymes are apparently not involved in zopiclone clearance. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): Elimination half life is approximately 5 hours (range 3.8 to 6.5 hours) and is prolonged to 11.9 hours in patients with hepatic insufficiency. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Rare individual instances of fatal outcomes following overdose with racemic zopiclone have been reported in European postmarketing reports, most often associated with overdose with other CNS-depressant agent. Signs and symptoms of overdose effects of CNS depressants can be expected to present as exaggerations of the pharmacological effects noted in preclinical testing. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Imovane •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zopiclona Zopiclone Zopiclonum •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zopiclone is a nonbenzodiazepine hypnotic used for the short-term management of insomnia. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2C9 substrates. The severity of the interaction is moderate.
Does Adalimumab and Zuclopenthixol interact?
•Drug A: Adalimumab •Drug B: Zuclopenthixol •Severity: MODERATE •Description: The metabolism of Zuclopenthixol can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Used in the management of acute psychoses such as mania or schizophrenia. However, the use of zuclopenthixol acetate in psychiatric emergencies as an alternative to standard treatments (haloperidol, clotiapine, etc.) should be cautioned, since well executed and documented trials of zuclopenthixol acetate for this use have yet to be conducted. Zuclopenthixol acetate is not intended for long-term use. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zuclopenthixol is a thioxanthene with therapeutic actions similar to the phenothiazine antipsychotics. It is an antagonist at D1 and D2 dopamine receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zuclopenthixol is a typical antipsychotic neuroleptic drug of the thioxanthene class. It mainly acts by antagonism of D1 and D2 dopamine receptors. Zuclopenthixol also has high affinity for alpha1-adrenergic and 5-HT2 receptors. It has weaker histamine H1 receptor blocking activity, and even lower affinity for muscarinic cholinergic and alpha2-adrenergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Upon reaching the body water phase, the decanoate ester is slowly released from the oil depot, which is resultantly hydrolyzed to the active substance, zuclopenthixol. The decanoate ester provides a means of slow release since zuclopenthixol itself is a short-acting drug. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 20 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 98-99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The metabolism of zuclopenthixol is mainly by sulphoxidation, side chain N-dealkylation and glucuronic acid conjugation. The metabolites are devoid of pharmacological activity. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Primarily in the feces with approximately 10% in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 20 hours (range 12-28 hours) for the tablet form, 19 days for the depot form. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): approximately 0.9 L/min. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Although there have not been any cases of overdosage reported, the symptoms are likely to be somnolence, coma, extrapyramidal symptoms, convulsions, hypotension, shock, or hyper- or hypothermia. Neuroleptic malignant syndrome may occur. Zuclopenthixol may potentiate anticholinergic effects of concurrent medications. Zuclopenthixol has a demonstrated antiemetic effect in animals, and may mask signs of toxicity due to other drug overdoses, or may mask symptoms of disease. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Clopixol, Clopixol Acuphase, Clopixol Depot •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zuclopenthixol Zuclopenthixolum Zuclopentixol •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zuclopenthixol is an antipsychotic indicated for the management of schizophrenia. The acuphase formulation is indicated for initial treatment of acute psychosis or exacerbation of psychosis, while the depot formulation is best for maintenance.
The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Question: Does Adalimumab and Zuclopenthixol interact? Information: •Drug A: Adalimumab •Drug B: Zuclopenthixol •Severity: MODERATE •Description: The metabolism of Zuclopenthixol can be increased when combined with Adalimumab. •Extended Description: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. •Indication (Drug A): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Indication (Drug B): Used in the management of acute psychoses such as mania or schizophrenia. However, the use of zuclopenthixol acetate in psychiatric emergencies as an alternative to standard treatments (haloperidol, clotiapine, etc.) should be cautioned, since well executed and documented trials of zuclopenthixol acetate for this use have yet to be conducted. Zuclopenthixol acetate is not intended for long-term use. •Pharmacodynamics (Drug A): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Pharmacodynamics (Drug B): Zuclopenthixol is a thioxanthene with therapeutic actions similar to the phenothiazine antipsychotics. It is an antagonist at D1 and D2 dopamine receptors. •Mechanism of action (Drug A): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Mechanism of action (Drug B): Zuclopenthixol is a typical antipsychotic neuroleptic drug of the thioxanthene class. It mainly acts by antagonism of D1 and D2 dopamine receptors. Zuclopenthixol also has high affinity for alpha1-adrenergic and 5-HT2 receptors. It has weaker histamine H1 receptor blocking activity, and even lower affinity for muscarinic cholinergic and alpha2-adrenergic receptors. •Absorption (Drug A): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Absorption (Drug B): Upon reaching the body water phase, the decanoate ester is slowly released from the oil depot, which is resultantly hydrolyzed to the active substance, zuclopenthixol. The decanoate ester provides a means of slow release since zuclopenthixol itself is a short-acting drug. •Volume of distribution (Drug A): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Volume of distribution (Drug B): 20 L/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): 98-99% •Metabolism (Drug A): No metabolism available •Metabolism (Drug B): The metabolism of zuclopenthixol is mainly by sulphoxidation, side chain N-dealkylation and glucuronic acid conjugation. The metabolites are devoid of pharmacological activity. •Route of elimination (Drug A): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Route of elimination (Drug B): Primarily in the feces with approximately 10% in the urine. •Half-life (Drug A): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Half-life (Drug B): 20 hours (range 12-28 hours) for the tablet form, 19 days for the depot form. •Clearance (Drug A): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Clearance (Drug B): approximately 0.9 L/min. •Toxicity (Drug A): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Toxicity (Drug B): Although there have not been any cases of overdosage reported, the symptoms are likely to be somnolence, coma, extrapyramidal symptoms, convulsions, hypotension, shock, or hyper- or hypothermia. Neuroleptic malignant syndrome may occur. Zuclopenthixol may potentiate anticholinergic effects of concurrent medications. Zuclopenthixol has a demonstrated antiemetic effect in animals, and may mask signs of toxicity due to other drug overdoses, or may mask symptoms of disease. •Brand Names (Drug A): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Brand Names (Drug B): Clopixol, Clopixol Acuphase, Clopixol Depot •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Zuclopenthixol Zuclopenthixolum Zuclopentixol •Summary (Drug A): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. •Summary (Drug B): Zuclopenthixol is an antipsychotic indicated for the management of schizophrenia. The acuphase formulation is indicated for initial treatment of acute psychosis or exacerbation of psychosis, while the depot formulation is best for maintenance. Output: The formation of CYP450 enzymes is inhibited by the presence of increased levels of cytokines during chronic inflammation. Agents that reduce cytokine levels can normalize CYP450 formation and increase the metabolism of drugs. This interaction may significantly alter the therapeutic efficacy of CYP2D6 substrates. The severity of the interaction is moderate.
Does Aducanumab and Abciximab interact?
•Drug A: Aducanumab •Drug B: Abciximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Abciximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/or conformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following intravenous bolus administration, free plasma concentrations of Abciximab decrease rapidly with an initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes, probably related to rapid binding to the platelet GPIIb/IIIa receptors. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Abciximab is a monoclonal anti-glycoprotein IIb/IIIa receptor antibody used to prevent thrombosis during percutaneous coronary intervention.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Abciximab interact? Information: •Drug A: Aducanumab •Drug B: Abciximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Abciximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/or conformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following intravenous bolus administration, free plasma concentrations of Abciximab decrease rapidly with an initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes, probably related to rapid binding to the platelet GPIIb/IIIa receptors. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Abciximab is a monoclonal anti-glycoprotein IIb/IIIa receptor antibody used to prevent thrombosis during percutaneous coronary intervention. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Adalimumab interact?
•Drug A: Aducanumab •Drug B: Adalimumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Adalimumab interact? Information: •Drug A: Aducanumab •Drug B: Adalimumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Adalimumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Adalimumab is indicated for the following conditions: Moderately to severely active Rheumatoid Arthritis (RA) in adults, as monotherapy or in combination with methotrexate or other non-biologic disease-modifying anti-rheumatic drugs (DMARDs). Moderately to severely active polyarticular Juvenile Idiopathic Arthritis (JIA) in patients two years of age and older, as monotherapy or in combination with methotrexate. Psoriatic Arthritis (PsA) in adults. Ankylosing Spondylitis (AS) in adults. Moderately to severely active Crohn’s Disease (CD) in adults and pediatric patients six years of age and older. Moderately to severely active Ulcerative Colitis (UC) in adults. Effectiveness has not been established in patients who have lost response to or were intolerant to TNF blockers. Moderate to severe chronic plaque psoriasis in adult candidates for systemic therapy or phototherapy and when other systemic therapies are medically less appropriate. Moderate to severe Hidradenitis Suppurativa (HS) in adults. Non-infectious intermediate, posterior, and panuveitis in adults and pediatric patients two years of age and older. Adalimumab has also been used off-label to treat Pyoderma gangrenosum. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): After treatment with adalimumab, a decrease in levels of acute phase reactant proteins of inflammation (C­ reactive protein [CRP] and erythrocyte sedimentation rate [ESR]) and serum cytokines (IL-6) was measured compared to baseline in patients diagnosed with rheumatoid arthritis. A decrease in CRP levels was also observed in patients diagnosed with Crohn’s disease. Serum levels of matrix metalloproteinases (MMP-1 and MMP-3) that lead to the tissue remodeling responsible for cartilage destruction were also found to be decreased after administration of adalimumab. A reduction in signs and symptoms of disease, the induction of clinical response, inhibition of structural damage, and improvements in physical function in adult and pediatric patients with various inflammatory conditions have been demonstrated. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Adalimumab binds with specificity to tumor necrosis factor-alpha (TNF-alpha) and inhibits its interaction with the p55 and p75 cell surface TNF receptors. Adalimumab also lyses surface tumor necrosis factor expressing cells in vitro when in the presence of complement. Adalimumab does not bind or inactivate lymphotoxin (Tumor necrosis factor-beta). TNF is a naturally occurring cytokine that plays a role in normal inflammatory and immune responses. Increased levels of TNF are found in the joint synovial fluid of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis patients, and play an imperative role in pathologic inflammation and joint destruction that are major complications of these diseases. Increased levels of TNF are also measured in psoriasis plaques. In plaque psoriasis, treatment with adalimumab may decrease the epidermal thickness and inflammatory cell infiltration. The relationship between these pharmacodynamics and the mechanism(s) by which adalimumab achieves its clinical effects is not known. Additionally, adalimumab alters biological responses that are induced/regulated by TNF, including changes in the levels of adhesion molecules responsible for leukocyte migration during inflammation (ELAM-1, VCAM-1, and ICAM-1 with an IC50 of 1-2 X 10-10M). •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The maximum serum concentration (Cmax) and the time to reach the maximum concentration (Tmax) were 4.7 ± 1.6 μg/mL and 131 ± 56 hours respectively, following a single 40 mg subcutaneous administration of adalimumab to healthy adult subjects. The average absolute bioavailability of adalimumab estimated from three clinical studies after a single 40 mg subcutaneous dose of adalimumab was 64%. The pharmacokinetics of adalimumab showed a linear pattern over the dose range of 0.5 to 10.0 mg/kg following a single intravenous dose. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution volume (Vss) ranged from 4.7 to 6.0 L following intravenous administration of doses ranging from 0.25 to 10 mg/kg in RA patients. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Adalimumab is most likely removed by opsonization via the reticuloendothelial system. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal half-life was approximately 2 weeks, ranging from 10 to 20 days across studies. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The single-dose pharmacokinetics of adalimumab in RA patients were determined in several studies with intravenous doses ranging from 0.25 to 10 mg/kg. The systemic clearance of adalimumab is approximately 12 mL/hr. In long-term studies with dosing more than two years, there was no evidence of changes in clearance over time in RA patients. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Doses up to 10 mg/kg have been administered to patients in clinical trials without evidence of dose-limiting toxicities. In case of overdosage, it is recommended that the patient be monitored for any signs or symptoms of adverse reactions or effects and appropriate symptomatic treatment instituted immediately. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Amjevita, Cyltezo, Humira, Hyrimoz, Yusimry •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Adalimumab is a monoclonal anti-tumor necrosis factor alpha antibody used in the treatment of a wide variety of inflammatory conditions such as rheumatoid arthritis, Crohn's disease, and ankylosing spondylitis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Alemtuzumab interact?
•Drug A: Aducanumab •Drug B: Alemtuzumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Alemtuzumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): LEMTRADA is indicated for the treatment of relapsing forms of multiple sclerosis (MS), including relapsing-remitting disease and active secondary progressive disease, in adults. Because of its safety profile, the use of LEMTRADA should generally be reserved for patients who have had an inadequate response to two or more drugs indicated for the treatment of MS. LEMTRADA contains the same active ingredient (alemtuzumab) found in CAMPATH, and CAMPATH is approved for the treatment of B-cell chronic lymphocytic leukemia (B-CLL), although generally administered at higher and more frequent doses (e.g., 30 mg) than recommended in the treatment of MS. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Alemtuzumab depletes circulating T and B lymphocytes after each treatment course. In clinical trials, the lowest cell counts occurred 1 month after a course of treatment at the time of the first post-treatment blood count. Lymphocyte counts then increased over time: B cell counts usually recovered within 6 months; T cell counts increased more slowly and usually remained below baseline 12 months after treatment. Approximately 60% of patients had total lymphocyte counts below the lower limit of normal 6 months after each treatment course and 20% had counts below the lower limit of normal after 12 months. Reconstitution of the lymphocyte population varies for the different lymphocyte subtypes. At Month 1 in clinical trials, the mean CD4+ lymphocyte count was 40 cells per microliter, and, at Month 12, 270 cells per microliter. At 30 months, approximately half of patients had CD4+ lymphocyte counts that remained below the lower limit of normal. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The precise mechanism by which alemtuzumab exerts its therapeutic effects in multiple sclerosis is unknown but is presumed to involve binding to CD52, a cell surface antigen present on T and B lymphocytes, and on natural killer cells, monocytes, and macrophages. Following cell surface binding to T and B lymphocytes, alemtuzumab results in antibody-dependent cellular cytolysis and complement-mediated lysis. Research suggests that alemtuzumab can also exert immunomodulatory effects through the depletion and repopulation of lymphocytes, including alterations in the number, proportions, and properties of some lymphocyte subsets posttreatment, increasing representation of regulatory T cell subsets, and increasing representation of memory T- and B-lymphocytes. The reduction in the level of circulating B and T cells by alemtuzumab and subsequent repopulation may reduce the potential for relapse, which ultimately delays disease progression. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Serum concentrations increased with each consecutive dose within a treatment course, with the highest observed concentrations occurring following the last infusion of a treatment course. The mean maximum concentration was 3014 ng/mL on Day 5 of the first treatment course, and 2276 ng/mL on Day 3 of the second treatment course. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Alemtuzumab is largely confined to the blood and interstitial space with a central volume of distribution of 14.1 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Alemtuzumab is a large-molecule monoclonal antibody and as such, it is cleared primarily through target-mediated clearance and through simple non-target specific IgG clearance mechanisms. Alemtuzumab is not excreted renally or eliminated via cytochrome P450 (CYP450) isoenzymes. Alemtuzumab is most likely removed by opsonization via the reticuloendothelial system when bound to B or T lymphocytes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The elimination half-life was approximately 2 weeks and was comparable between courses. The serum concentrations were generally undetectable (<60 ng/mL) within approximately 30 days following each treatment course. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Clearance of alemtuzumab ranged from 0.012 – 0.096 l/h depending on the study, dose group, and anti-alemtuzumab antibody status. The inter-subject variability for clearance was large (58 %). Higher clearance values were observed in cycle 1 compared to cycle 2, with the decrease in clearance from cycle 1 to cycle 2 being less than 20%. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LEMTRADA induces persistent thyroid disorders [see Warnings and Precautions (5.8)]. Untreated hypothyroidism in pregnant women increases the risk of miscarriage and may have effects on the fetus including mental retardation and dwarfism. In mothers with Graves’ disease, maternal thyroid stimulating hormone receptor antibodies can be transferred to a developing fetus and can cause neonatal Graves’ disease. In a patient who developed Graves’ disease after treatment with alemtuzumab, placental transfer of anti-thyrotropin receptor antibodies resulted in neonatal Graves’ disease with thyroid storm in her infant who was born 1 year after alemtuzumab dosing. When LEMTRADA was administered to pregnant huCD52 transgenic mice during organogenesis (gestation days [GD] 6-10 or GD 11-15) at doses of 3 or 10 mg/kg IV, no teratogenic effects were observed. However, there was an increase in embryo lethality (increased postimplantation loss and the number of dams with all fetuses dead or resorbed) in pregnant animals dosed during GD 11-15. In a separate study in pregnant huCD52 transgenic mice, administration of LEMTRADA during organogenesis (GD 6-10 or GD 11-15) at doses of 3 or 10 mg/kg IV, decreases in B- and T-lymphocyte populations were observed in the offspring at both doses tested. In pregnant huCD52 transgenic mice administered LEMTRADA at doses of 3 or 10 mg/kg/day IV throughout gestation and lactation, there was an increase in pup deaths during the lactation period at 10 mg/kg. Decreases in T- and B-lymphocyte populations and in antibody response were observed in offspring at both doses tested. Before initiation of LEMTRADA treatment, women of childbearing potential should be counseled on the potential for serious risk to the fetus. To avoid in-utero exposure to LEMTRADA, women of childbearing potential should use effective contraceptive measures when receiving a course of treatment with LEMTRADA and for 4 months following that course of treatment. In huCD52 transgenic mice, administration of LEMTRADA prior to and during the mating period resulted in adverse effects on sperm parameters in males and a reduced number of corpora lutea and implantations in females. Two MS patients experienced serious reactions (headache, rash, and either hypotension or sinus tachycardia) after a single accidental infusion of up to 60 mg of LEMTRADA. Doses of LEMTRADA greater than those recommended may increase the intensity and/or duration of infusion reactions or their immune effects. There is no known antidote for alemtuzumab overdosage. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Campath, Lemtrada, MabCampath •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Alemtuzumab is a monoclonal anti-CD52 antibody used in the treatment of B-cell chronic lymphocytic leukemia and relapsing forms of multiple sclerosis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Alemtuzumab interact? Information: •Drug A: Aducanumab •Drug B: Alemtuzumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Alemtuzumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): LEMTRADA is indicated for the treatment of relapsing forms of multiple sclerosis (MS), including relapsing-remitting disease and active secondary progressive disease, in adults. Because of its safety profile, the use of LEMTRADA should generally be reserved for patients who have had an inadequate response to two or more drugs indicated for the treatment of MS. LEMTRADA contains the same active ingredient (alemtuzumab) found in CAMPATH, and CAMPATH is approved for the treatment of B-cell chronic lymphocytic leukemia (B-CLL), although generally administered at higher and more frequent doses (e.g., 30 mg) than recommended in the treatment of MS. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Alemtuzumab depletes circulating T and B lymphocytes after each treatment course. In clinical trials, the lowest cell counts occurred 1 month after a course of treatment at the time of the first post-treatment blood count. Lymphocyte counts then increased over time: B cell counts usually recovered within 6 months; T cell counts increased more slowly and usually remained below baseline 12 months after treatment. Approximately 60% of patients had total lymphocyte counts below the lower limit of normal 6 months after each treatment course and 20% had counts below the lower limit of normal after 12 months. Reconstitution of the lymphocyte population varies for the different lymphocyte subtypes. At Month 1 in clinical trials, the mean CD4+ lymphocyte count was 40 cells per microliter, and, at Month 12, 270 cells per microliter. At 30 months, approximately half of patients had CD4+ lymphocyte counts that remained below the lower limit of normal. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The precise mechanism by which alemtuzumab exerts its therapeutic effects in multiple sclerosis is unknown but is presumed to involve binding to CD52, a cell surface antigen present on T and B lymphocytes, and on natural killer cells, monocytes, and macrophages. Following cell surface binding to T and B lymphocytes, alemtuzumab results in antibody-dependent cellular cytolysis and complement-mediated lysis. Research suggests that alemtuzumab can also exert immunomodulatory effects through the depletion and repopulation of lymphocytes, including alterations in the number, proportions, and properties of some lymphocyte subsets posttreatment, increasing representation of regulatory T cell subsets, and increasing representation of memory T- and B-lymphocytes. The reduction in the level of circulating B and T cells by alemtuzumab and subsequent repopulation may reduce the potential for relapse, which ultimately delays disease progression. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Serum concentrations increased with each consecutive dose within a treatment course, with the highest observed concentrations occurring following the last infusion of a treatment course. The mean maximum concentration was 3014 ng/mL on Day 5 of the first treatment course, and 2276 ng/mL on Day 3 of the second treatment course. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Alemtuzumab is largely confined to the blood and interstitial space with a central volume of distribution of 14.1 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Alemtuzumab is a large-molecule monoclonal antibody and as such, it is cleared primarily through target-mediated clearance and through simple non-target specific IgG clearance mechanisms. Alemtuzumab is not excreted renally or eliminated via cytochrome P450 (CYP450) isoenzymes. Alemtuzumab is most likely removed by opsonization via the reticuloendothelial system when bound to B or T lymphocytes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The elimination half-life was approximately 2 weeks and was comparable between courses. The serum concentrations were generally undetectable (<60 ng/mL) within approximately 30 days following each treatment course. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Clearance of alemtuzumab ranged from 0.012 – 0.096 l/h depending on the study, dose group, and anti-alemtuzumab antibody status. The inter-subject variability for clearance was large (58 %). Higher clearance values were observed in cycle 1 compared to cycle 2, with the decrease in clearance from cycle 1 to cycle 2 being less than 20%. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LEMTRADA induces persistent thyroid disorders [see Warnings and Precautions (5.8)]. Untreated hypothyroidism in pregnant women increases the risk of miscarriage and may have effects on the fetus including mental retardation and dwarfism. In mothers with Graves’ disease, maternal thyroid stimulating hormone receptor antibodies can be transferred to a developing fetus and can cause neonatal Graves’ disease. In a patient who developed Graves’ disease after treatment with alemtuzumab, placental transfer of anti-thyrotropin receptor antibodies resulted in neonatal Graves’ disease with thyroid storm in her infant who was born 1 year after alemtuzumab dosing. When LEMTRADA was administered to pregnant huCD52 transgenic mice during organogenesis (gestation days [GD] 6-10 or GD 11-15) at doses of 3 or 10 mg/kg IV, no teratogenic effects were observed. However, there was an increase in embryo lethality (increased postimplantation loss and the number of dams with all fetuses dead or resorbed) in pregnant animals dosed during GD 11-15. In a separate study in pregnant huCD52 transgenic mice, administration of LEMTRADA during organogenesis (GD 6-10 or GD 11-15) at doses of 3 or 10 mg/kg IV, decreases in B- and T-lymphocyte populations were observed in the offspring at both doses tested. In pregnant huCD52 transgenic mice administered LEMTRADA at doses of 3 or 10 mg/kg/day IV throughout gestation and lactation, there was an increase in pup deaths during the lactation period at 10 mg/kg. Decreases in T- and B-lymphocyte populations and in antibody response were observed in offspring at both doses tested. Before initiation of LEMTRADA treatment, women of childbearing potential should be counseled on the potential for serious risk to the fetus. To avoid in-utero exposure to LEMTRADA, women of childbearing potential should use effective contraceptive measures when receiving a course of treatment with LEMTRADA and for 4 months following that course of treatment. In huCD52 transgenic mice, administration of LEMTRADA prior to and during the mating period resulted in adverse effects on sperm parameters in males and a reduced number of corpora lutea and implantations in females. Two MS patients experienced serious reactions (headache, rash, and either hypotension or sinus tachycardia) after a single accidental infusion of up to 60 mg of LEMTRADA. Doses of LEMTRADA greater than those recommended may increase the intensity and/or duration of infusion reactions or their immune effects. There is no known antidote for alemtuzumab overdosage. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Campath, Lemtrada, MabCampath •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Alemtuzumab is a monoclonal anti-CD52 antibody used in the treatment of B-cell chronic lymphocytic leukemia and relapsing forms of multiple sclerosis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Alirocumab interact?
•Drug A: Aducanumab •Drug B: Alirocumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Alirocumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Alirocumab is an antibody eliciting proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor activity that is indicated for: (i) use in reducing the risk of myocardial infarction, stroke, and unstable angina requiring hospitalization in adults with established cardiovascular disease, and/or (ii) use as an adjunct to diet or use alone or in combination with other lipid-lowering therapies (statins, ezetimibe, for example) for the treatment of adults with primary hyperlipidemia (including heterozygous familial hypercholesterolemia) to reduce low-density lipoprotein cholesterol (LDL-C) levels in the body. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Alirocumab reduces levels of PCSK9 in a concentration-dependent manner. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Alirocumab is a fully human IgG1 monoclonal antibody that binds and inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzyme found to have "gain of function" mutations in autosomal dominant hypercholesterolemia. PCSK9 is secreted by the liver and typically binds to the LDL receptors in serum and marks them for lysosomal degradation. In result, the LDL receptors are not able to recycle to the plasma membrane, reducing their binding to LDL-C and therefore reducing the clearance of LDL-C from plasma. Therefore by inhibiting PCSK9's actions, alirocumab allows for more LDL-C reuptake by the liver and facilitates a higher rate of clearance. Lower LDL cholesterol concentrations are associated with a reduced risk of coronary heart disease. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following subcutaneous (SC) administration, alirocumab is absorbed into the bloodstream and maximum concentrations are reached at a median time of 3-7 days. The absolute availability after SC administration was 85%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Alirocumab is mainly distributed through the circulatory system, with minimal extravascular distribution. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Antibodies are generally metabolized by the reticuloendothelial system and degraded into small peptides and individual amino acids - therefore specific metabolism studies were not conducted. Alirocumab did not show evidence of affecting CYP 450 enzymes or transporter proteins in co-administration with statins. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In monotherapy, the median half-life of alirocumab at steady state was 17–20 days in patients receiving alirocumab at SC doses of 75 or 150 mg every 2 weeks. As statin therapy increases the production of PCSK9, statin co-administration is thought to shorten alirocumab half-life; therefore the median apparent half-life of alirocumab was reduced to 12 days at equivalent alirocumab doses. However, this difference is not considered clinically significant and does not change dosing recommendations. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Praluent •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Alirocumab is a PCSK9 inhibitor used as an adjunct to manage heterozygous familial hypercholesterolemia or clinical atherosclerotic cardiovascular disease in patients who require additional lowering of LDL-cholesterol (LDL-C).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Alirocumab interact? Information: •Drug A: Aducanumab •Drug B: Alirocumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Alirocumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Alirocumab is an antibody eliciting proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor activity that is indicated for: (i) use in reducing the risk of myocardial infarction, stroke, and unstable angina requiring hospitalization in adults with established cardiovascular disease, and/or (ii) use as an adjunct to diet or use alone or in combination with other lipid-lowering therapies (statins, ezetimibe, for example) for the treatment of adults with primary hyperlipidemia (including heterozygous familial hypercholesterolemia) to reduce low-density lipoprotein cholesterol (LDL-C) levels in the body. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Alirocumab reduces levels of PCSK9 in a concentration-dependent manner. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Alirocumab is a fully human IgG1 monoclonal antibody that binds and inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzyme found to have "gain of function" mutations in autosomal dominant hypercholesterolemia. PCSK9 is secreted by the liver and typically binds to the LDL receptors in serum and marks them for lysosomal degradation. In result, the LDL receptors are not able to recycle to the plasma membrane, reducing their binding to LDL-C and therefore reducing the clearance of LDL-C from plasma. Therefore by inhibiting PCSK9's actions, alirocumab allows for more LDL-C reuptake by the liver and facilitates a higher rate of clearance. Lower LDL cholesterol concentrations are associated with a reduced risk of coronary heart disease. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following subcutaneous (SC) administration, alirocumab is absorbed into the bloodstream and maximum concentrations are reached at a median time of 3-7 days. The absolute availability after SC administration was 85%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Alirocumab is mainly distributed through the circulatory system, with minimal extravascular distribution. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Antibodies are generally metabolized by the reticuloendothelial system and degraded into small peptides and individual amino acids - therefore specific metabolism studies were not conducted. Alirocumab did not show evidence of affecting CYP 450 enzymes or transporter proteins in co-administration with statins. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In monotherapy, the median half-life of alirocumab at steady state was 17–20 days in patients receiving alirocumab at SC doses of 75 or 150 mg every 2 weeks. As statin therapy increases the production of PCSK9, statin co-administration is thought to shorten alirocumab half-life; therefore the median apparent half-life of alirocumab was reduced to 12 days at equivalent alirocumab doses. However, this difference is not considered clinically significant and does not change dosing recommendations. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Praluent •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Alirocumab is a PCSK9 inhibitor used as an adjunct to manage heterozygous familial hypercholesterolemia or clinical atherosclerotic cardiovascular disease in patients who require additional lowering of LDL-cholesterol (LDL-C). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Amivantamab interact?
•Drug A: Aducanumab •Drug B: Amivantamab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Amivantamab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Amivantamab is indicated in the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, whose disease has progressed on or after platinum-based chemotherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Amivantamab is an EGF and MET receptor targeted antibody indicated in the treatment of non-small cell lung cancer with an EGFR 20 exon insertion mutation. It has a long duration of action, as activity can be detected up to 8 weeks after treatment. Patients should be counselled regarding the risk of infusion-related reactions, interstitial lung disease and pneumonitis, skin reactions, ocular toxicity, and paronychia. Patients should not take amivantamab if they are pregnant or breastfeeding. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Mesenchymal-epithelial transition factor (MET) is a receptor with tyrosine kinase activity expressed on epithelial cells that, upon signalling, dimerizes and activates downstream pathways that signal cell division. The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with tyrosine kinase activity that can further activate downstream pathways that signal cell division, survival, and angiogenesis. Patients with NSCLC with exon 20 insertion mutations in EGFR do not respond to tyrosine kinase inhibitors, and are generally treated with platinum-based therapy. Exon 20 insertion mutations in EGFR also lead to conformational changes that activate EGFR. Amivantamab targets both EGFR and MET, preventing ligands from binding to the receptors, blocking signalling, marking the cancerous cells for antibody-dependant cellular cytotoxicity by natural killer cells, and allowing macrophages to perform trogocytosis. Amivantamab's binding to the EGFR H epitope shares some of the same amino acids that cetuximab binds to. Amivantamab's binding to the alpha chain of MET stabilizes the Sema domain loop 1 to 2 in a position 6 Angstroms away from the position it would be in under normal binding, preventing its interaction with the hepatocyte growth factor's (HGF) beta chain. Another smaller conformational change in the MET Sema domain loop 1 to 3 also contributes to preventing the interaction of the MET Sema domain with HGF's beta chain. HGF is no longer able to bind to MET, preventing downstream signalling. Amivantamab's Fc portion contains 90% less fucose than normal antibodies, allowing for increased binding to the FcγRIIIa region. Binding of the Fc portion of Amivantamab signals the complement system and innate immune system to target the bound cells for complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. Binding of amivantamab to the Fc receptor also leads to and increase in levels of IFNγ. Amivantamab also significantly downregulates the expression of EGFR and MET on NSCLC cell surfaces, further reducing downstream signalling. EGFR and MET on the cell surface are internalized, and possibly degrading by fusing endosomes with lysosomes. Alternatively, EGFR and MET are the subjects of monocyte-dependent trogocytosis. Trogocytosis allows monocytes to internalize and break down EGFR and MET from the NSCLC cells without cytotoxicity, downmodulating EGFR and MET receptors. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean volume of distribution of amivantamab-vmjw is 5.13 ±1.78 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Antibodies are expected to be metabolized to oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half life of amivantamab-vmjw is 11.3 ± 4.53 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The mean clearance of amivantamab-vmjw is 360 ± 144 mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdoses of amivantamab are not readily available. Patients experiencing an overdose should be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Rybrevant •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Amivantamab is an EGF and MET receptor targeted antibody indicated in the treatment of non-small cell lung cancer with an EGFR 20 exon insertion mutation.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Amivantamab interact? Information: •Drug A: Aducanumab •Drug B: Amivantamab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Amivantamab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Amivantamab is indicated in the treatment of adult patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion mutations, whose disease has progressed on or after platinum-based chemotherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Amivantamab is an EGF and MET receptor targeted antibody indicated in the treatment of non-small cell lung cancer with an EGFR 20 exon insertion mutation. It has a long duration of action, as activity can be detected up to 8 weeks after treatment. Patients should be counselled regarding the risk of infusion-related reactions, interstitial lung disease and pneumonitis, skin reactions, ocular toxicity, and paronychia. Patients should not take amivantamab if they are pregnant or breastfeeding. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Mesenchymal-epithelial transition factor (MET) is a receptor with tyrosine kinase activity expressed on epithelial cells that, upon signalling, dimerizes and activates downstream pathways that signal cell division. The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein with tyrosine kinase activity that can further activate downstream pathways that signal cell division, survival, and angiogenesis. Patients with NSCLC with exon 20 insertion mutations in EGFR do not respond to tyrosine kinase inhibitors, and are generally treated with platinum-based therapy. Exon 20 insertion mutations in EGFR also lead to conformational changes that activate EGFR. Amivantamab targets both EGFR and MET, preventing ligands from binding to the receptors, blocking signalling, marking the cancerous cells for antibody-dependant cellular cytotoxicity by natural killer cells, and allowing macrophages to perform trogocytosis. Amivantamab's binding to the EGFR H epitope shares some of the same amino acids that cetuximab binds to. Amivantamab's binding to the alpha chain of MET stabilizes the Sema domain loop 1 to 2 in a position 6 Angstroms away from the position it would be in under normal binding, preventing its interaction with the hepatocyte growth factor's (HGF) beta chain. Another smaller conformational change in the MET Sema domain loop 1 to 3 also contributes to preventing the interaction of the MET Sema domain with HGF's beta chain. HGF is no longer able to bind to MET, preventing downstream signalling. Amivantamab's Fc portion contains 90% less fucose than normal antibodies, allowing for increased binding to the FcγRIIIa region. Binding of the Fc portion of Amivantamab signals the complement system and innate immune system to target the bound cells for complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. Binding of amivantamab to the Fc receptor also leads to and increase in levels of IFNγ. Amivantamab also significantly downregulates the expression of EGFR and MET on NSCLC cell surfaces, further reducing downstream signalling. EGFR and MET on the cell surface are internalized, and possibly degrading by fusing endosomes with lysosomes. Alternatively, EGFR and MET are the subjects of monocyte-dependent trogocytosis. Trogocytosis allows monocytes to internalize and break down EGFR and MET from the NSCLC cells without cytotoxicity, downmodulating EGFR and MET receptors. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean volume of distribution of amivantamab-vmjw is 5.13 ±1.78 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Antibodies are expected to be metabolized to oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half life of amivantamab-vmjw is 11.3 ± 4.53 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The mean clearance of amivantamab-vmjw is 360 ± 144 mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdoses of amivantamab are not readily available. Patients experiencing an overdose should be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Rybrevant •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Amivantamab is an EGF and MET receptor targeted antibody indicated in the treatment of non-small cell lung cancer with an EGFR 20 exon insertion mutation. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Anifrolumab interact?
•Drug A: Aducanumab •Drug B: Anifrolumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Anifrolumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Anifrolumab is indicated in the treatment of adults with moderate to severe systemic lupus erythematosus who are receiving standard therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Anifrolumab is a type 1 interferon receptor (IFNAR) inhibiting IgG1κ monoclonal antibody indicated in the treatment of adults with moderate to severe systemic lupus erythematosus. It has a long duration of action as it is given every 4 weeks. Patients should be counseled regarding the risks of serious infections, hypersensitivity reactions, and malignancies. In patients with SLE, following the administration of anifrolumab- at 300 mg dose, via intravenous infusion every 4 weeks for 52 weeks, neutralization (≥80%) of a type I IFN gene signature was observed from Week 4 to Week 52 in blood samples of patients with elevated levels of type I IFN inducible genes and returned to baseline levels within 8 to 12 weeks following withdrawal of anifrolumab at the end of the 52-week treatment period. However, the clinical relevance of the type I IFN gene signature neutralization is unclear. In SLE patients with positive anti-dsDNA antibodies at baseline (Trials 2 and 3), treatment with anifrolumab 300 mg led to numerical reductions in anti-dsDNA antibodies over time through Week 52. In patients with low complement levels (C3 and C4), increases in complement levels were observed in patients receiving anifrolumab through Week 52. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting multiple systems in the body. SLE may manifest as a rash on the skin, and can progress to life-threatening autoimmune reactions in the kidney or nervous system. Type 1 interferon pathway activation has been identified as a mediator of pathogenesis in SLE, and the level of type 1 interferon expression is correlated with severity of SLE. Activation of the type 1 interferon receptor (INFAR1) by interferons alpha, beta, epsilon, kappa, and omega lead to stimulation of gene transcription. Activation of INFAR1 and INFAR2 lead to phosphorylation of STAT1 and STAT2, which are translocated with interferon regulatory factor 9 (IRF9) to the cell nucleus to activate the interferon-stimulated response element (ISRE). Activation of ISRE leads to the expression of many proinflammatory and immunomodulatory proteins, as well as the activation of a positive feedback loop that produces more type 1 interferons. Interferon alpha stimulates monocytes to mature into myeloid dendritic cells that express self antigens. CD4+ and CD8+ T-cells, as well as B cells, that are autoreactive will respond to the self antigens and induce inflammmation and apoptosis in cells. This self-reactive immune response damages otherwise healthy tissue throughout the body. Anifrolumab is an immunoglobulin gamma 1 kappa (IgG1κ) monoclonal antibody that selectively binds to subunit 1 of INFAR1. This binding inhibits type I IFN signaling, thereby blocking the biological activity of type I IFNs. Anifrolumab also induces the internalization of IFNAR1, thereby reducing the levels of cell surface IFNAR1 available for receptor assembly. Blockade of receptor-mediated type I IFN signaling inhibits IFN-responsive gene expression as well as downstream inflammatory and immunological processes. Inhibition of type I IFN blocks plasma cell differentiation and normalizes peripheral T-cell subsets. The Fc region of anifrolumab carries the triple mutaion L234F/L235E/P331S to prevent binding of the Fc region of the antibody to cell surface Fc receptors. In a phase IIb clinical trial, the primary endpoint was reached by 34.3% of patients in the 300 mg treatment group, 28.8% of patients in the 1000 mg treatment group, and 17.6% of patients in the placebo group. Patients with higher interferon-stimulated gene transcription at baseline showed a greater response to treatment. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The PK of anifrolumab was studied in adult patients with SLE following intravenous doses ranging from 100 to 1000 mg once every 4 weeks, and healthy volunteers following a single intravenous dose at 300 mg. Anifrolumab exhibits non-linear PK in the dose range of 100 mg to 1000 mg with more than dose-proportional increases in the exposure as measured by AUC. Following the 300 mg every 4 weeks intravenous administrations of anifrolumab, a steady state was reached by Day 85. The accumulation ratio was approximately 1.36 for C max and 2.49 for C trough. A 300 mg intravenous dose reaches a mean C max of 82.4 µg/mL, with a T max of 0.03 days, and an AUC of 907 day*µg/mL. A 300 mg subcutaneous dose reaches a mean C max of 36.2 µg/mL, with a T max of 4.1 days, and an AUC of 785 day*µg/mL. A 600 mg subcutaneous dose reaches a mean C max of 63.9 µg/mL, with a T max of 7.0 days, and an AUC of 1828 day*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Based on population PK analysis, the estimated volume of distribution at steady state for a typical patient with SLE (69.1 kg) is 6.23 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are mainly catabolized to smaller oligopeptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The serum elimination half life anifrolumab in a phase 1 trial in patients with scleroderma was 0.84 days for a 0.1 mg/kg single dose, 1.24 days for a 0.3 mg/kg single dose, 2.96 days for a 1.0 mg/kg single dose, 4.07 days for a 3.0 mg/kg single dose, and 7.70 days for a 10.0 mg/kg single dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following the administration of anifrolumab at a dose of 300 mg via intravenous infusion every 4 weeks, the estimated systemic clearance (CL) for anifrolumab was 0.193 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdose is not readily available. In a phase 1 clinical trial, patients given a single dose of 20.0 mg/kg experienced upper respiratory tract infections, headache, diarrhea, and nausea. 2 patients in the 3.0 mg/kg single dose group experienced osteomyelitis and skin ulcer. A single patient in the 1.0 mg/kg/week group developed chronic myelogenous leukemia. The frequency and severity of adverse effects does not appear to be closely related to dose. In the event of an overdose, treat patients with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Saphnelo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Anifrolumab is a monoclonal antibody that inhibits type 1 interferon receptors, indicated in the treatment of moderate to severe systemic lupus erythematosus.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Anifrolumab interact? Information: •Drug A: Aducanumab •Drug B: Anifrolumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Anifrolumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Anifrolumab is indicated in the treatment of adults with moderate to severe systemic lupus erythematosus who are receiving standard therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Anifrolumab is a type 1 interferon receptor (IFNAR) inhibiting IgG1κ monoclonal antibody indicated in the treatment of adults with moderate to severe systemic lupus erythematosus. It has a long duration of action as it is given every 4 weeks. Patients should be counseled regarding the risks of serious infections, hypersensitivity reactions, and malignancies. In patients with SLE, following the administration of anifrolumab- at 300 mg dose, via intravenous infusion every 4 weeks for 52 weeks, neutralization (≥80%) of a type I IFN gene signature was observed from Week 4 to Week 52 in blood samples of patients with elevated levels of type I IFN inducible genes and returned to baseline levels within 8 to 12 weeks following withdrawal of anifrolumab at the end of the 52-week treatment period. However, the clinical relevance of the type I IFN gene signature neutralization is unclear. In SLE patients with positive anti-dsDNA antibodies at baseline (Trials 2 and 3), treatment with anifrolumab 300 mg led to numerical reductions in anti-dsDNA antibodies over time through Week 52. In patients with low complement levels (C3 and C4), increases in complement levels were observed in patients receiving anifrolumab through Week 52. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting multiple systems in the body. SLE may manifest as a rash on the skin, and can progress to life-threatening autoimmune reactions in the kidney or nervous system. Type 1 interferon pathway activation has been identified as a mediator of pathogenesis in SLE, and the level of type 1 interferon expression is correlated with severity of SLE. Activation of the type 1 interferon receptor (INFAR1) by interferons alpha, beta, epsilon, kappa, and omega lead to stimulation of gene transcription. Activation of INFAR1 and INFAR2 lead to phosphorylation of STAT1 and STAT2, which are translocated with interferon regulatory factor 9 (IRF9) to the cell nucleus to activate the interferon-stimulated response element (ISRE). Activation of ISRE leads to the expression of many proinflammatory and immunomodulatory proteins, as well as the activation of a positive feedback loop that produces more type 1 interferons. Interferon alpha stimulates monocytes to mature into myeloid dendritic cells that express self antigens. CD4+ and CD8+ T-cells, as well as B cells, that are autoreactive will respond to the self antigens and induce inflammmation and apoptosis in cells. This self-reactive immune response damages otherwise healthy tissue throughout the body. Anifrolumab is an immunoglobulin gamma 1 kappa (IgG1κ) monoclonal antibody that selectively binds to subunit 1 of INFAR1. This binding inhibits type I IFN signaling, thereby blocking the biological activity of type I IFNs. Anifrolumab also induces the internalization of IFNAR1, thereby reducing the levels of cell surface IFNAR1 available for receptor assembly. Blockade of receptor-mediated type I IFN signaling inhibits IFN-responsive gene expression as well as downstream inflammatory and immunological processes. Inhibition of type I IFN blocks plasma cell differentiation and normalizes peripheral T-cell subsets. The Fc region of anifrolumab carries the triple mutaion L234F/L235E/P331S to prevent binding of the Fc region of the antibody to cell surface Fc receptors. In a phase IIb clinical trial, the primary endpoint was reached by 34.3% of patients in the 300 mg treatment group, 28.8% of patients in the 1000 mg treatment group, and 17.6% of patients in the placebo group. Patients with higher interferon-stimulated gene transcription at baseline showed a greater response to treatment. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The PK of anifrolumab was studied in adult patients with SLE following intravenous doses ranging from 100 to 1000 mg once every 4 weeks, and healthy volunteers following a single intravenous dose at 300 mg. Anifrolumab exhibits non-linear PK in the dose range of 100 mg to 1000 mg with more than dose-proportional increases in the exposure as measured by AUC. Following the 300 mg every 4 weeks intravenous administrations of anifrolumab, a steady state was reached by Day 85. The accumulation ratio was approximately 1.36 for C max and 2.49 for C trough. A 300 mg intravenous dose reaches a mean C max of 82.4 µg/mL, with a T max of 0.03 days, and an AUC of 907 day*µg/mL. A 300 mg subcutaneous dose reaches a mean C max of 36.2 µg/mL, with a T max of 4.1 days, and an AUC of 785 day*µg/mL. A 600 mg subcutaneous dose reaches a mean C max of 63.9 µg/mL, with a T max of 7.0 days, and an AUC of 1828 day*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Based on population PK analysis, the estimated volume of distribution at steady state for a typical patient with SLE (69.1 kg) is 6.23 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are mainly catabolized to smaller oligopeptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The serum elimination half life anifrolumab in a phase 1 trial in patients with scleroderma was 0.84 days for a 0.1 mg/kg single dose, 1.24 days for a 0.3 mg/kg single dose, 2.96 days for a 1.0 mg/kg single dose, 4.07 days for a 3.0 mg/kg single dose, and 7.70 days for a 10.0 mg/kg single dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following the administration of anifrolumab at a dose of 300 mg via intravenous infusion every 4 weeks, the estimated systemic clearance (CL) for anifrolumab was 0.193 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdose is not readily available. In a phase 1 clinical trial, patients given a single dose of 20.0 mg/kg experienced upper respiratory tract infections, headache, diarrhea, and nausea. 2 patients in the 3.0 mg/kg single dose group experienced osteomyelitis and skin ulcer. A single patient in the 1.0 mg/kg/week group developed chronic myelogenous leukemia. The frequency and severity of adverse effects does not appear to be closely related to dose. In the event of an overdose, treat patients with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Saphnelo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Anifrolumab is a monoclonal antibody that inhibits type 1 interferon receptors, indicated in the treatment of moderate to severe systemic lupus erythematosus. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Ansuvimab interact?
•Drug A: Aducanumab •Drug B: Ansuvimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Ansuvimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Summary not found
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Ansuvimab interact? Information: •Drug A: Aducanumab •Drug B: Ansuvimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Ansuvimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Summary not found Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Anthrax immune globulin human interact?
•Drug A: Aducanumab •Drug B: Anthrax immune globulin human •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Anthrax immune globulin human is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Anthrax immune globulin is indicated for the treatment of inhalational anthrax in adult and pediatric patients in combination with appropriate antibacterial drugs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Polyclonal anthrax immune globulin is a passive immunizing agent that neutralizes anthrax toxin by binding to Protective Antigen (PA) to prevent PA-mediated cellular entry of anthrax edema factor and lethal factor. It is administered in combination with appropriate antibiotic therapy as the immunoglobulin itself is not known to have direct antibacterial activity against anthrax bacteria, which otherwise may continue to grow and produce anthrax toxins. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Peak levels were reached immediately after infusion and then declined over the duration of study (84 days). Mean activity remained above the lower limit of quantitation (5 milliunits per mL) over the entire 84-day post-dose period for the three doses studied. Cmax was found to be 83.0 mU/mL while Tmax was found to be 0.116 days. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 5714.8 mL •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 24.3 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 174.2 mL/day •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common adverse reactions to Anthrasil observed in >5% of healthy volunteers in clinical trials were headache, infusion site pain and swelling, nausea, and back pain. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Anthrasil •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Anthrax immune globulin human is an immunizing agent used for the treatment of inhalational anthrax in adult and pediatric patients in combination with antibacterial agents.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Anthrax immune globulin human interact? Information: •Drug A: Aducanumab •Drug B: Anthrax immune globulin human •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Anthrax immune globulin human is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Anthrax immune globulin is indicated for the treatment of inhalational anthrax in adult and pediatric patients in combination with appropriate antibacterial drugs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Polyclonal anthrax immune globulin is a passive immunizing agent that neutralizes anthrax toxin by binding to Protective Antigen (PA) to prevent PA-mediated cellular entry of anthrax edema factor and lethal factor. It is administered in combination with appropriate antibiotic therapy as the immunoglobulin itself is not known to have direct antibacterial activity against anthrax bacteria, which otherwise may continue to grow and produce anthrax toxins. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Peak levels were reached immediately after infusion and then declined over the duration of study (84 days). Mean activity remained above the lower limit of quantitation (5 milliunits per mL) over the entire 84-day post-dose period for the three doses studied. Cmax was found to be 83.0 mU/mL while Tmax was found to be 0.116 days. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 5714.8 mL •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 24.3 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 174.2 mL/day •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common adverse reactions to Anthrasil observed in >5% of healthy volunteers in clinical trials were headache, infusion site pain and swelling, nausea, and back pain. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Anthrasil •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Anthrax immune globulin human is an immunizing agent used for the treatment of inhalational anthrax in adult and pediatric patients in combination with antibacterial agents. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Antilymphocyte immunoglobulin (horse) interact?
•Drug A: Aducanumab •Drug B: Antilymphocyte immunoglobulin (horse) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Antilymphocyte immunoglobulin (horse) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prevention of renal transplant rejection and for the treatment of aplastic anemia. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): No mechanism of action available •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): During infusion of 10 to 15 mg/kg/day, the mean peak value (n = 27 renal transplant patients) was found to be 727 ± 310 μg/mL. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of equine immunoglobulin after ATGAM infusion was found to be 5.7 ± 3.0 days in one group of recipients. The range for half-life was 1.5 to 13 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most commonly reported adverse reactions (occurring in greater than 10% of patients) are pyrexia, chills, rash, thrombocytopenia, leukopenia and arthralgia. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Atgam •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Antilymphocyte immunoglobulin (horse) is a primarily IgG immune globulin used to manage allograft rejection in renal transplant patients.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Antilymphocyte immunoglobulin (horse) interact? Information: •Drug A: Aducanumab •Drug B: Antilymphocyte immunoglobulin (horse) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Antilymphocyte immunoglobulin (horse) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prevention of renal transplant rejection and for the treatment of aplastic anemia. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): No mechanism of action available •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): During infusion of 10 to 15 mg/kg/day, the mean peak value (n = 27 renal transplant patients) was found to be 727 ± 310 μg/mL. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of equine immunoglobulin after ATGAM infusion was found to be 5.7 ± 3.0 days in one group of recipients. The range for half-life was 1.5 to 13 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most commonly reported adverse reactions (occurring in greater than 10% of patients) are pyrexia, chills, rash, thrombocytopenia, leukopenia and arthralgia. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Atgam •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Antilymphocyte immunoglobulin (horse) is a primarily IgG immune globulin used to manage allograft rejection in renal transplant patients. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Antithymocyte immunoglobulin (rabbit) interact?
•Drug A: Aducanumab •Drug B: Antithymocyte immunoglobulin (rabbit) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Antithymocyte immunoglobulin (rabbit) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prevention of renal transplant rejection •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Antithymocyte Globulin (ATG) is a concentrated anti-human T-lymphocyte immunoglobulin preparation derived from rabbits after immunization with a T-lympoblast cell line. ATG is an immunosuppressive product for the prevention and treatment of acute rejection following organ transplantation. ATG reduces the host immune response against tissue transplants or organ allografts. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Binds to multiple, T-cell specific antigens leading to T-lymphocyte cell death via complement mediated cytotoxicity or apoptosis. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): T-cell depletion usually observed within 1 day after initiating therapy. Average 21.5 and 87 mcg/mL 4–8 hours post-infusion after first and last IV doses, respectively, when given for 7–11 days. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to T lymphocytes, or by human antimurine antibody production. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 2-3 days, may increase after multiple doses administration •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Not known whether ATG (rabbit) distributes into human milk; however, other immunoglobulins are distributed into human milk. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Antithymocyte immunoglobulin (rabbit) is a purified form of rabbit anti-thymocyte antibodies used for immunosuppression in patients receiving kidney transplants.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Antithymocyte immunoglobulin (rabbit) interact? Information: •Drug A: Aducanumab •Drug B: Antithymocyte immunoglobulin (rabbit) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Antithymocyte immunoglobulin (rabbit) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prevention of renal transplant rejection •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Antithymocyte Globulin (ATG) is a concentrated anti-human T-lymphocyte immunoglobulin preparation derived from rabbits after immunization with a T-lympoblast cell line. ATG is an immunosuppressive product for the prevention and treatment of acute rejection following organ transplantation. ATG reduces the host immune response against tissue transplants or organ allografts. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Binds to multiple, T-cell specific antigens leading to T-lymphocyte cell death via complement mediated cytotoxicity or apoptosis. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): T-cell depletion usually observed within 1 day after initiating therapy. Average 21.5 and 87 mcg/mL 4–8 hours post-infusion after first and last IV doses, respectively, when given for 7–11 days. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to T lymphocytes, or by human antimurine antibody production. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 2-3 days, may increase after multiple doses administration •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Not known whether ATG (rabbit) distributes into human milk; however, other immunoglobulins are distributed into human milk. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Antithymocyte immunoglobulin (rabbit) is a purified form of rabbit anti-thymocyte antibodies used for immunosuppression in patients receiving kidney transplants. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Asfotase alfa interact?
•Drug A: Aducanumab •Drug B: Asfotase alfa •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Asfotase alfa is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated for the treatment of patients with perinatal/infantile and juvenile onset hypophosphatasia (HPP). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Perinatal/infantile- and juvenile-onset HPP patients treated with Asfotase alfa had reductions in plasma TNSALP (tissue non-specific alkaline phosphatase) substrates, PPi and pyridoxal 5'-phosphate (PLP) within 6 to 12 weeks of treatment. Reductions in plasma PPi and PLP levels did not correlate with clinical outcomes. Bone biopsy data from perinatal/infantile-onset and juvenile-onset HPP patients treated with Asfotase alfa demonstrated decreases in osteoid volume and thickness indicating improved bone mineralization. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): HPP is caused by a deficiency in TNSALP (tissue non-specific alkaline phosphatase) enzyme activity, which leads to elevations in several TNSALP substrates, including inorganic pyrophosphate (PPi). Elevated extracellular levels of PPi block hydroxyapatite crystal growth which inhibits bone mineralization and causes an accumulation of unmineralized bone matrix which manifests as rickets and bone deformation in infants and children and as osteomalacia (softening of bones) once growth plates close, along with muscle weakness. Replacement of the TNSALP enzyme upon Asfotase alfa treatment reduces the enzyme substrate levels. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Approximately 5 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no available human data on Asfotase Alfa use in pregnant women to inform a drug associated risk. In animal reproduction studies, Asfotase Alfa administered intravenously to pregnant rats and rabbits during the period of organogenesis showed no evidence of fetotoxicity, embryolethality or teratogenicity at doses causing plasma exposures up to 21 and 24 times, respectively, the exposure at the recommended human dose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Strensiq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Asfotase alfa is an enzyme replacement therapy used for the treatment of perinatal/infantile and juvenile onset hypophosphatasia (HPP).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Asfotase alfa interact? Information: •Drug A: Aducanumab •Drug B: Asfotase alfa •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Asfotase alfa is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated for the treatment of patients with perinatal/infantile and juvenile onset hypophosphatasia (HPP). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Perinatal/infantile- and juvenile-onset HPP patients treated with Asfotase alfa had reductions in plasma TNSALP (tissue non-specific alkaline phosphatase) substrates, PPi and pyridoxal 5'-phosphate (PLP) within 6 to 12 weeks of treatment. Reductions in plasma PPi and PLP levels did not correlate with clinical outcomes. Bone biopsy data from perinatal/infantile-onset and juvenile-onset HPP patients treated with Asfotase alfa demonstrated decreases in osteoid volume and thickness indicating improved bone mineralization. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): HPP is caused by a deficiency in TNSALP (tissue non-specific alkaline phosphatase) enzyme activity, which leads to elevations in several TNSALP substrates, including inorganic pyrophosphate (PPi). Elevated extracellular levels of PPi block hydroxyapatite crystal growth which inhibits bone mineralization and causes an accumulation of unmineralized bone matrix which manifests as rickets and bone deformation in infants and children and as osteomalacia (softening of bones) once growth plates close, along with muscle weakness. Replacement of the TNSALP enzyme upon Asfotase alfa treatment reduces the enzyme substrate levels. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Approximately 5 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no available human data on Asfotase Alfa use in pregnant women to inform a drug associated risk. In animal reproduction studies, Asfotase Alfa administered intravenously to pregnant rats and rabbits during the period of organogenesis showed no evidence of fetotoxicity, embryolethality or teratogenicity at doses causing plasma exposures up to 21 and 24 times, respectively, the exposure at the recommended human dose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Strensiq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Asfotase alfa is an enzyme replacement therapy used for the treatment of perinatal/infantile and juvenile onset hypophosphatasia (HPP). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Atezolizumab interact?
•Drug A: Aducanumab •Drug B: Atezolizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Atezolizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Atezolizumab has approved indications for the following conditions: Non-Small Cell Lung Cancer (NSCLC) as adjuvant treatment following resection and platinum-based chemotherapy for adult patients with Stage II to IIIA NSCLC whose tumours have PD-L1 expression on ≥ 1% of tumour cells, as determined by an FDA-approved test. for the first-line treatment of adult patients with metastatic NSCLC whose tumours have high PD-L1 expression (PD-L1 stained ≥ 50% of tumour cells [TC ≥ 50%] or PD-L1 stained tumour-infiltrating immune cells [IC] covering ≥ 10% of the tumour area [IC ≥ 10%]), as determined by an FDAapproved test, with no EGFR or ALK genomic tumour aberrations. in combination with bevacizumab, paclitaxel, and carboplatin, for the first-line treatment of adult patients with metastatic non-squamous NSCLC with no EGFR or ALK genomic tumour aberrations. in combination with paclitaxel protein-bound and carboplatin for the firstline treatment of adult patients with metastatic non-squamous NSCLC with no EGFR or ALK genomic tumor aberrations. for the treatment of adult patients with metastatic NSCLC who have disease progression during or following platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumour aberrations should have disease progression on FDA-approved therapy for NSCLC harbouring these aberrations prior to receiving atezolizumab. Small Cell Lung Cancer (SCLC) in combination with carboplatin and etoposide, for the first-line treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC). Hepatocellular Carcinoma (HCC) in combination with bevacizumab for the treatment of patients with unresectable or metastatic HCC who have not received prior systemic therapy. Melanoma in combination with cobimetinib and vemurafenib for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. Alveolar Soft Part Sarcoma (ASPS) for the treatment of adult and pediatric patients 2 years of age and older with unresectable or metastatic ASPS. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Atezolizumab is a humanized monoclonal antibody used to prevent the interaction of PD-L1 and PD-1, removing inhibition of immune responses seen in some cancers. This drug has a long duration of action as it is usually given every 3-4 weeks. Atezolizumab should not be used in patients with immune mediated penumonitis, hepatitis, colitis, and some endocrinopathies. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Atezolizumab is a humanized IgG antibody that binds PD-L1, preventing its interaction with PD-1 and B7-1. Preventing the interaction of PD-L1 and PD-1 removes inhibition of immune responses such as the anti-tumor immune response but not antibody dependent cellular cytotoxicity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Pharmacokinetic analysis was performed in patients with metastatic urothelial carcinoma. In these patients, the AUC was 2.19-2.73day*µg/mL/mg, the C max was 0.27-0.35µg/mL/mg, and the C min was 0.004-0.008µg/mL/mg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of atezolizumab is 6.91L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are not expected to bind to proteins in plasma they are not designed to target. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are broken down into smaller polypeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Atezolizumab is not renally excreted. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half life of atezolizumab is 27 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of atezolizumab is 0.200L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Most common adverse reactions (≥ 20% of patients) included: fatigue, decreased appetite, nausea, urinary tract infection, pyrexia, and constipation. Overdose data for atezolizumab is scarce but the most common adverse reactions are fatigue, nausea, cough, dyspnea, decreased appetite, alopecia, constipation, diarrhea, peripheral neuropathies, anemia, headache, neutropenia, and vomiting. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Tecentriq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Atezolizumab is a monoclonal antibody used to treat advanced or metastatic urothelial carcinoma with disease progression during or up to 12 months after platinum-containing chemotherapy.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Atezolizumab interact? Information: •Drug A: Aducanumab •Drug B: Atezolizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Atezolizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Atezolizumab has approved indications for the following conditions: Non-Small Cell Lung Cancer (NSCLC) as adjuvant treatment following resection and platinum-based chemotherapy for adult patients with Stage II to IIIA NSCLC whose tumours have PD-L1 expression on ≥ 1% of tumour cells, as determined by an FDA-approved test. for the first-line treatment of adult patients with metastatic NSCLC whose tumours have high PD-L1 expression (PD-L1 stained ≥ 50% of tumour cells [TC ≥ 50%] or PD-L1 stained tumour-infiltrating immune cells [IC] covering ≥ 10% of the tumour area [IC ≥ 10%]), as determined by an FDAapproved test, with no EGFR or ALK genomic tumour aberrations. in combination with bevacizumab, paclitaxel, and carboplatin, for the first-line treatment of adult patients with metastatic non-squamous NSCLC with no EGFR or ALK genomic tumour aberrations. in combination with paclitaxel protein-bound and carboplatin for the firstline treatment of adult patients with metastatic non-squamous NSCLC with no EGFR or ALK genomic tumor aberrations. for the treatment of adult patients with metastatic NSCLC who have disease progression during or following platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumour aberrations should have disease progression on FDA-approved therapy for NSCLC harbouring these aberrations prior to receiving atezolizumab. Small Cell Lung Cancer (SCLC) in combination with carboplatin and etoposide, for the first-line treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC). Hepatocellular Carcinoma (HCC) in combination with bevacizumab for the treatment of patients with unresectable or metastatic HCC who have not received prior systemic therapy. Melanoma in combination with cobimetinib and vemurafenib for the treatment of patients with BRAF V600 mutation-positive unresectable or metastatic melanoma. Alveolar Soft Part Sarcoma (ASPS) for the treatment of adult and pediatric patients 2 years of age and older with unresectable or metastatic ASPS. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Atezolizumab is a humanized monoclonal antibody used to prevent the interaction of PD-L1 and PD-1, removing inhibition of immune responses seen in some cancers. This drug has a long duration of action as it is usually given every 3-4 weeks. Atezolizumab should not be used in patients with immune mediated penumonitis, hepatitis, colitis, and some endocrinopathies. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Atezolizumab is a humanized IgG antibody that binds PD-L1, preventing its interaction with PD-1 and B7-1. Preventing the interaction of PD-L1 and PD-1 removes inhibition of immune responses such as the anti-tumor immune response but not antibody dependent cellular cytotoxicity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Pharmacokinetic analysis was performed in patients with metastatic urothelial carcinoma. In these patients, the AUC was 2.19-2.73day*µg/mL/mg, the C max was 0.27-0.35µg/mL/mg, and the C min was 0.004-0.008µg/mL/mg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of atezolizumab is 6.91L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are not expected to bind to proteins in plasma they are not designed to target. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are broken down into smaller polypeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Atezolizumab is not renally excreted. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half life of atezolizumab is 27 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of atezolizumab is 0.200L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Most common adverse reactions (≥ 20% of patients) included: fatigue, decreased appetite, nausea, urinary tract infection, pyrexia, and constipation. Overdose data for atezolizumab is scarce but the most common adverse reactions are fatigue, nausea, cough, dyspnea, decreased appetite, alopecia, constipation, diarrhea, peripheral neuropathies, anemia, headache, neutropenia, and vomiting. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Tecentriq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Atezolizumab is a monoclonal antibody used to treat advanced or metastatic urothelial carcinoma with disease progression during or up to 12 months after platinum-containing chemotherapy. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Avelumab interact?
•Drug A: Aducanumab •Drug B: Avelumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Avelumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Avelumab is indicated for the treatment of adults with metastatic Merkel cell carcinoma (MCC). In the US, it is also used in patients 12 years and older. It is also indicated as the maintenance treatment in patients with locally advanced or metastatic urothelial carcinoma (UC), which has not progressed with first-line platinum-containing chemotherapy. In the US, avelumab is also indicated to treat locally advanced or metastatic UC with disease progression during or after platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. Avelumab is indicated, in combination with axitinib, for the first-line treatment of advanced renal cell carcinoma (RCC). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Avelumab is an immunotherapeutic and antineoplastic agent belonging to the immune checkpoint blockade cancer therapies group. It induces antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro; however it is unclear whether ADCC contributes to the therapeutic actions of avelumab. Avelumab decreased tumour growth in syngeneic mouse tumour models. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Programmed death ligand 1 (PD-L1) is a transmembrane protein and a co-inhibitory co-inhibitory immune checkpoint to suppress cytotoxic T-cell activity, proliferation, and cytokine production. It binds to PD receptor-1 (PD-1) and B7.1 receptors expressed on cytotoxic T cells and antigen-presenting cells to mediate its actions. PD-L1 is often expressed in tumours and surrounding tumour-infiltrating immune cells as an adaptive immune mechanism, decreasing the anti-tumour immune response in the tumour microenvironment. Avelumab binds PD-L1 and blocks its interaction with its receptors PD-1 and B7.1, disinhibiting PD-L1 effects on tumour-infiltrating lymphocytes and restoring anti-tumor immune responses. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In patients who received doses ranging from 1 to 20 mg/kg every two weeks, avelumab exposure increased dose proportionally in the dose range of 10 to 20 mg/kg. Steady-state concentrations of avelumab were reached after approximately four to six weeks (two to three cycles) of repeated dosing, and the systemic accumulation was approximately 1.25-fold. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The geometric mean volume of distribution at steady state for a subject receiving 10 mg/kg is 4.72 L. Avelumab is expected to be distributed in the systemic circulation and, to a lesser extent, in the extracellular space. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Avelumab undergoes nonspecific proteolytic degradation. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is approximately 6.1 days in patients with solid tumours receiving 10 mg/kg. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The total systemic clearance is approximately 0.59 L/day in patients with solid tumours receiving 10 mg/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information regarding the LD 50 of avelumab. Three patients who received a dose of avelumab that was 5% to 10% above the recommended dose experienced an overdose: the patients reported no symptoms and continued on avelumab therapy without requiring any treatment for the overdose. In the case of an overdose, patients should be closely monitored for signs or symptoms of adverse reactions. The treatment is directed to the management of symptoms. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Bavencio •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Avelumab is an anti-PD-L1 monoclonal antibody used to treat metastatic merkel cell carcinoma, metastatic urothelial carcinoma, or renal cell carcinoma.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Avelumab interact? Information: •Drug A: Aducanumab •Drug B: Avelumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Avelumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Avelumab is indicated for the treatment of adults with metastatic Merkel cell carcinoma (MCC). In the US, it is also used in patients 12 years and older. It is also indicated as the maintenance treatment in patients with locally advanced or metastatic urothelial carcinoma (UC), which has not progressed with first-line platinum-containing chemotherapy. In the US, avelumab is also indicated to treat locally advanced or metastatic UC with disease progression during or after platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. Avelumab is indicated, in combination with axitinib, for the first-line treatment of advanced renal cell carcinoma (RCC). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Avelumab is an immunotherapeutic and antineoplastic agent belonging to the immune checkpoint blockade cancer therapies group. It induces antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro; however it is unclear whether ADCC contributes to the therapeutic actions of avelumab. Avelumab decreased tumour growth in syngeneic mouse tumour models. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Programmed death ligand 1 (PD-L1) is a transmembrane protein and a co-inhibitory co-inhibitory immune checkpoint to suppress cytotoxic T-cell activity, proliferation, and cytokine production. It binds to PD receptor-1 (PD-1) and B7.1 receptors expressed on cytotoxic T cells and antigen-presenting cells to mediate its actions. PD-L1 is often expressed in tumours and surrounding tumour-infiltrating immune cells as an adaptive immune mechanism, decreasing the anti-tumour immune response in the tumour microenvironment. Avelumab binds PD-L1 and blocks its interaction with its receptors PD-1 and B7.1, disinhibiting PD-L1 effects on tumour-infiltrating lymphocytes and restoring anti-tumor immune responses. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In patients who received doses ranging from 1 to 20 mg/kg every two weeks, avelumab exposure increased dose proportionally in the dose range of 10 to 20 mg/kg. Steady-state concentrations of avelumab were reached after approximately four to six weeks (two to three cycles) of repeated dosing, and the systemic accumulation was approximately 1.25-fold. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The geometric mean volume of distribution at steady state for a subject receiving 10 mg/kg is 4.72 L. Avelumab is expected to be distributed in the systemic circulation and, to a lesser extent, in the extracellular space. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Avelumab undergoes nonspecific proteolytic degradation. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is approximately 6.1 days in patients with solid tumours receiving 10 mg/kg. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The total systemic clearance is approximately 0.59 L/day in patients with solid tumours receiving 10 mg/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information regarding the LD 50 of avelumab. Three patients who received a dose of avelumab that was 5% to 10% above the recommended dose experienced an overdose: the patients reported no symptoms and continued on avelumab therapy without requiring any treatment for the overdose. In the case of an overdose, patients should be closely monitored for signs or symptoms of adverse reactions. The treatment is directed to the management of symptoms. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Bavencio •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Avelumab is an anti-PD-L1 monoclonal antibody used to treat metastatic merkel cell carcinoma, metastatic urothelial carcinoma, or renal cell carcinoma. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Bamlanivimab interact?
•Drug A: Aducanumab •Drug B: Bamlanivimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bamlanivimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bamlanivimab is not currently approved for any indication by the FDA. Bamlanivimab is authorized under an Emergency Use Authorization (EUA) for the treatment of mild to moderate COVID-19 in patients aged 12 years and older weighing at least 40 kg who are at high risk for progressing to severe COVID-19 and/or hospitalization due to COVID-19. Patients should have confirmed COVID-19, with identification of SARS-CoV-2 viral load by an approved test. Under this EUA, bamlanivimab is not authorized in patients who are hospitalized due to COVID-19, who require oxygen due to COVID-19, or in patients on oxygen therapy for non-COVID-19-related comorbidity who require an increased oxygen flow rate due to COVID-19. Bamlanivimab in combination with etesevimab is used to treat mild to moderate coronavirus disease 2019 (COVID-19) in adults and pediatric patients, including neonates, with positive results of direct SARS-CoV-2 viral testing, and who are at high risk for progression to severe COVID-19, including hospitalization or death. This combination regimen is also used for post-exposure prophylaxis of COVID-19 in unvaccinated or immunocompromised adults and pediatric individuals, including neonates, who are at high risk of progression to severe COVID-19, including hospitalization or death. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bamlanivimab is a recombinant human IgG1κ monoclonal antibody directed against the spike (S) surface protein of SARS-CoV-2. Patients in a phase 2 trial were administered up to 7000 mg (ten times the authorized dose) with no increase in treatment-related adverse effects and a flat exposure-response relationship over ranges of 700-7000 mg. Despite generally mild adverse effects noted in the phase 2 trial, there is a risk of serious infusion-related hypersensitivity reactions with bamlanivimab, including anaphylaxis, which may necessitate slowing the infusion rate or discontinuing treatment entirely. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Bamlanivimab is a neutralizing recombinant human IgG1κ monoclonal antibody directed against the spike (S) surface protein of SARS-CoV-2 derived from screening antigen-specific B-cells from a convalescent COVID-19 patient. X-ray crystallography and cryo-EM structural determination suggest that bamlanivimab binds the receptor-binding domain (RBD) of the S protein at a position overlapping the ACE2 binding site and which is accessible in both the up and down conformations of the RBD. Specifically, bamlanivimab binds to the S protein with a K D of 0.071 nM and blocks S protein-ACE2 interactions with an IC 50 value of 0.025 μg/mL. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As a monoclonal antibody, it is expected that bamlanivimab will be degraded by proteases in various locations throughout the body. Bamlanivimab is not metabolized by cytochrome P450 enzymes, making drug interactions unlikely. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Bamlanivimab has been administered at doses of 7000 mg (ten times the authorized dose) during phase 2 clinical trials without any observed dose-limiting toxicity. In the event of an overdose, the recommended treatment is symptomatic and supportive measures; there is no antidote for bamlanivimab overdose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bamlanivimab is a neutralizing human IgG1κ monoclonal antibody against the SARS-CoV-2 spike (S) protein for use in patients aged 12 and over at high risk of developing severe COVID-19.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Bamlanivimab interact? Information: •Drug A: Aducanumab •Drug B: Bamlanivimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bamlanivimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bamlanivimab is not currently approved for any indication by the FDA. Bamlanivimab is authorized under an Emergency Use Authorization (EUA) for the treatment of mild to moderate COVID-19 in patients aged 12 years and older weighing at least 40 kg who are at high risk for progressing to severe COVID-19 and/or hospitalization due to COVID-19. Patients should have confirmed COVID-19, with identification of SARS-CoV-2 viral load by an approved test. Under this EUA, bamlanivimab is not authorized in patients who are hospitalized due to COVID-19, who require oxygen due to COVID-19, or in patients on oxygen therapy for non-COVID-19-related comorbidity who require an increased oxygen flow rate due to COVID-19. Bamlanivimab in combination with etesevimab is used to treat mild to moderate coronavirus disease 2019 (COVID-19) in adults and pediatric patients, including neonates, with positive results of direct SARS-CoV-2 viral testing, and who are at high risk for progression to severe COVID-19, including hospitalization or death. This combination regimen is also used for post-exposure prophylaxis of COVID-19 in unvaccinated or immunocompromised adults and pediatric individuals, including neonates, who are at high risk of progression to severe COVID-19, including hospitalization or death. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bamlanivimab is a recombinant human IgG1κ monoclonal antibody directed against the spike (S) surface protein of SARS-CoV-2. Patients in a phase 2 trial were administered up to 7000 mg (ten times the authorized dose) with no increase in treatment-related adverse effects and a flat exposure-response relationship over ranges of 700-7000 mg. Despite generally mild adverse effects noted in the phase 2 trial, there is a risk of serious infusion-related hypersensitivity reactions with bamlanivimab, including anaphylaxis, which may necessitate slowing the infusion rate or discontinuing treatment entirely. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Bamlanivimab is a neutralizing recombinant human IgG1κ monoclonal antibody directed against the spike (S) surface protein of SARS-CoV-2 derived from screening antigen-specific B-cells from a convalescent COVID-19 patient. X-ray crystallography and cryo-EM structural determination suggest that bamlanivimab binds the receptor-binding domain (RBD) of the S protein at a position overlapping the ACE2 binding site and which is accessible in both the up and down conformations of the RBD. Specifically, bamlanivimab binds to the S protein with a K D of 0.071 nM and blocks S protein-ACE2 interactions with an IC 50 value of 0.025 μg/mL. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As a monoclonal antibody, it is expected that bamlanivimab will be degraded by proteases in various locations throughout the body. Bamlanivimab is not metabolized by cytochrome P450 enzymes, making drug interactions unlikely. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Bamlanivimab has been administered at doses of 7000 mg (ten times the authorized dose) during phase 2 clinical trials without any observed dose-limiting toxicity. In the event of an overdose, the recommended treatment is symptomatic and supportive measures; there is no antidote for bamlanivimab overdose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bamlanivimab is a neutralizing human IgG1κ monoclonal antibody against the SARS-CoV-2 spike (S) protein for use in patients aged 12 and over at high risk of developing severe COVID-19. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Basiliximab interact?
•Drug A: Aducanumab •Drug B: Basiliximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Basiliximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prophylactic treatment of kidney transplant rejection •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Basiliximab functions as an IL-2 receptor antagonist. Specifically it inhibits IL-2-mediated activation of lymphocytes, a critical pathway in the cellular immune response involved in allograft rejection. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Basiliximab binds with high-affinity to the alpha-subunit (CD25) of the high-affinity IL-2 receptor. This inhibits IL-2 binding, which inhibits T-cell activation and prevents the body from mounting an immune response against the foreign kidney. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 7.8 ± 5.1 L [Pediatric] 4.8 ± 2.1 L [Adult] •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to lymphocytes, or by human antimurine antibody production •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 7.2 +/- 3.2 days (adults) •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 41 +/- 19 mL/h [Adult patients undergoing first kidney transplantation] 17 +/- 6 mL/h [pediatric patients undergoing renal transplantation] 31 +/- 19 mL/h [adolescent patients undergoing renal transplantation] •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Simulect •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Basiliximab is a monoclonal anti-C25 antibody (interleukin-2 receptor alpha subunit) used as immunosuppressive therapy in kidney transplant patients.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Basiliximab interact? Information: •Drug A: Aducanumab •Drug B: Basiliximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Basiliximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For prophylactic treatment of kidney transplant rejection •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Basiliximab functions as an IL-2 receptor antagonist. Specifically it inhibits IL-2-mediated activation of lymphocytes, a critical pathway in the cellular immune response involved in allograft rejection. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Basiliximab binds with high-affinity to the alpha-subunit (CD25) of the high-affinity IL-2 receptor. This inhibits IL-2 binding, which inhibits T-cell activation and prevents the body from mounting an immune response against the foreign kidney. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 7.8 ± 5.1 L [Pediatric] 4.8 ± 2.1 L [Adult] •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Most likely removed by opsonization via the reticuloendothelial system when bound to lymphocytes, or by human antimurine antibody production •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 7.2 +/- 3.2 days (adults) •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 41 +/- 19 mL/h [Adult patients undergoing first kidney transplantation] 17 +/- 6 mL/h [pediatric patients undergoing renal transplantation] 31 +/- 19 mL/h [adolescent patients undergoing renal transplantation] •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Simulect •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Basiliximab is a monoclonal anti-C25 antibody (interleukin-2 receptor alpha subunit) used as immunosuppressive therapy in kidney transplant patients. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Belantamab mafodotin interact?
•Drug A: Aducanumab •Drug B: Belantamab mafodotin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Belantamab mafodotin. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Belantamab mafodotin is indicated in the treatment of adults with relapsed or refractory multiple myeloma who have received at least 4 prior therapies including an anti-CD38 monoclonal antibody, a proteasome inhibitor, and an immunomodulatory agent. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Belantamab mafodotin treats multiple myeloma through antibody dependant cell mediated cytotoxicity as well as G2/M cell cycle arrest. It has a narrow therapeutic index due to the incidence of adverse effects, and a long duration of action as it is given every 3 weeks. Patients should be counselled regarding the risk of keratopathy. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Belantamab mafodotin, or GSK2857916, is an afucosylated monoclonal antibody that targets B cell maturation antigen (BCMA) conjugated to the microtubule distrupter monomethyl auristatin-F (MMAF). Afucosylation of the Fc region of monoclonal antibodies enhances binding to the Fc region, which enhances antibody dependant cell mediated cytoxicity. BCMA is uniquely expressed on CD138-positive myeloma cells. Targeting BCMA allows belantamab mafodotin to be highly selective in its delivery of MMAF to multiple myeloma cells. Belantamab mafodotin binds to BCMA, is internalised into cells, and releases MMAF. The MMAF payload binds to tubulin, stopping the cell cycle at the DNA damage checkpoint between the G2 and M phases, resulting in apoptosis. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Belantamab mafodotin at a dose of 2.5mg/kg reaches a C max of 42 µg/mL, with a T max of 0.78 hours, and an AUC of 4666 µg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean steady state volume of distribution of belantamab mafodotin was 11 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are generally not protein bound. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to be metabolized to smaller peptides and amino acids. MMAF is expected to be metabolized by oxidation and demethylation, however further data is not readily available. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are eventually phagocytosed and broken down to smaller peptides and amino acids which are eliminated in a similar fashion to other proteins. Monoclonal antibodies are generally not eliminated in the urine, and only a small amount is excreted in bile. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half life of belantamab mafodotin was 12 days after the first dose and 14 days at steady state. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of belantamab mafodotin was 0.9 L/day after the first dose and 0.7 L/day at steady state. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdose is not readily available. However, keratopathy was seen in 71% of patients. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): BLENREP •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Belantamab mafodotin is an anti B-cell maturation antigen antibody conjugated to a microtubule inhibitor to treat relapsed or refractory multiple myeloma.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Belantamab mafodotin interact? Information: •Drug A: Aducanumab •Drug B: Belantamab mafodotin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Belantamab mafodotin. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Belantamab mafodotin is indicated in the treatment of adults with relapsed or refractory multiple myeloma who have received at least 4 prior therapies including an anti-CD38 monoclonal antibody, a proteasome inhibitor, and an immunomodulatory agent. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Belantamab mafodotin treats multiple myeloma through antibody dependant cell mediated cytotoxicity as well as G2/M cell cycle arrest. It has a narrow therapeutic index due to the incidence of adverse effects, and a long duration of action as it is given every 3 weeks. Patients should be counselled regarding the risk of keratopathy. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Belantamab mafodotin, or GSK2857916, is an afucosylated monoclonal antibody that targets B cell maturation antigen (BCMA) conjugated to the microtubule distrupter monomethyl auristatin-F (MMAF). Afucosylation of the Fc region of monoclonal antibodies enhances binding to the Fc region, which enhances antibody dependant cell mediated cytoxicity. BCMA is uniquely expressed on CD138-positive myeloma cells. Targeting BCMA allows belantamab mafodotin to be highly selective in its delivery of MMAF to multiple myeloma cells. Belantamab mafodotin binds to BCMA, is internalised into cells, and releases MMAF. The MMAF payload binds to tubulin, stopping the cell cycle at the DNA damage checkpoint between the G2 and M phases, resulting in apoptosis. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Belantamab mafodotin at a dose of 2.5mg/kg reaches a C max of 42 µg/mL, with a T max of 0.78 hours, and an AUC of 4666 µg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean steady state volume of distribution of belantamab mafodotin was 11 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are generally not protein bound. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to be metabolized to smaller peptides and amino acids. MMAF is expected to be metabolized by oxidation and demethylation, however further data is not readily available. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are eventually phagocytosed and broken down to smaller peptides and amino acids which are eliminated in a similar fashion to other proteins. Monoclonal antibodies are generally not eliminated in the urine, and only a small amount is excreted in bile. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half life of belantamab mafodotin was 12 days after the first dose and 14 days at steady state. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of belantamab mafodotin was 0.9 L/day after the first dose and 0.7 L/day at steady state. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdose is not readily available. However, keratopathy was seen in 71% of patients. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): BLENREP •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Belantamab mafodotin is an anti B-cell maturation antigen antibody conjugated to a microtubule inhibitor to treat relapsed or refractory multiple myeloma. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Belimumab interact?
•Drug A: Aducanumab •Drug B: Belimumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Belimumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): In the US, belimumab is indicated to treat active systemic lupus erythematosus (SLE) and active lupus nephritis in patients aged five years and older who are receiving standard therapy. In Europe, belimumab is also used to treat SLE and lupus nephritis but only in adults. The efficacy of belimumab has not been evaluated in patients with severe active central nervous system lupus. Use of belimumab is not recommended in this situation. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Belimumab works to inhibit the actions of autoreactive, pro-inflammatory B cells that cause chronic inflammation and tissue damage. In patients with SLE, belimumab significantly reduced levels of circulating B (CD20+) cells. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Systemic lupus erythematosus (SLE) and lupus nephritis, a common and serious manifestation of SLE, are autoimmune disorders characterized by the presence of autoreactive B lymphocytes (B cells), which promotes the production of autoantibodies that cause inflammation and progressive and irreversible tissue damage. One of the key cytokines involved in B cell homeostasis and survival is B lymphocyte stimulator protein (BLyS), which is a member of tumour necrosis factor (TNF) superfamily of cytokines. While the contribution of BLyS to the pathophysiology of autoimmune diseases is not fully understood, BLyS has been identified as a key therapeutic target for the treatment of SLE as BLyS levels are elevated in patients with SLE along with other autoimmune diseases. Belimumab is an antibody directed against BLyS: it selectively binds BLyS with high affinity, neutralizes it, and blocks its interaction with B cell receptors - transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and BLyS receptor 3 (BR3). Belimumab ultimately inhibits the survival of B cells, promotes apoptosis, and reduces the differentiation and maturation of B cells into immunoglobulin-producing plasma cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absolute bioavailability was 74-82% following single belimumab SC doses in healthy adults. Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, the C max was 313 mcg/mL and the AUC 0-∞ was 3,083 day x mcg/mL. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, the C max was 108 mcg/mL and the AUC 0-∞ was 726 day x mcg/mL. In healthy Japanese volunteers, the T max was 6.5 days after administration of a single subcutaneous dose of 200 mg/mL belimumab. Steady-state exposure was reached after approximately 11 weeks of subcutaneous administration in healthy subjects of patients with SLE. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion or 200 mg belimumab once-weekly in adults with SLE, the volume of distribution (V ss ) was 5 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no information available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No formal metabolism studies have been conducted. As belimumab is an antibody, it is expected to undergo degradation mediated by proteolytic enzymes to form small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): There is no information available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, the distribution and terminal half-lives were 1.8 days and 19.4 days, respectively. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, the distribution and terminal half-lives were 1.1 days and 18.3 days, respectively. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, systemic clearance was 215 mL/day. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, systemic clearance was 204 mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is no LD 50 data available for belimumab. There is limited experience with overdosage of belimumab. Two doses of up to 20 mg/kg have been given intravenously to humans with no increase in incidence or severity of adverse reactions compared with doses of 1, 4, or 10 mg/kg. In the case of inadvertent overdose, patients should be carefully observed and supportive care administered, as appropriate •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Benlysta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Belimumab is a B-lymphocyte stimulator (BLyS)-specific inhibitor used to treat systemic lupus erythematosus and active lupus nephritis as an add-on therapy.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Belimumab interact? Information: •Drug A: Aducanumab •Drug B: Belimumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Belimumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): In the US, belimumab is indicated to treat active systemic lupus erythematosus (SLE) and active lupus nephritis in patients aged five years and older who are receiving standard therapy. In Europe, belimumab is also used to treat SLE and lupus nephritis but only in adults. The efficacy of belimumab has not been evaluated in patients with severe active central nervous system lupus. Use of belimumab is not recommended in this situation. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Belimumab works to inhibit the actions of autoreactive, pro-inflammatory B cells that cause chronic inflammation and tissue damage. In patients with SLE, belimumab significantly reduced levels of circulating B (CD20+) cells. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Systemic lupus erythematosus (SLE) and lupus nephritis, a common and serious manifestation of SLE, are autoimmune disorders characterized by the presence of autoreactive B lymphocytes (B cells), which promotes the production of autoantibodies that cause inflammation and progressive and irreversible tissue damage. One of the key cytokines involved in B cell homeostasis and survival is B lymphocyte stimulator protein (BLyS), which is a member of tumour necrosis factor (TNF) superfamily of cytokines. While the contribution of BLyS to the pathophysiology of autoimmune diseases is not fully understood, BLyS has been identified as a key therapeutic target for the treatment of SLE as BLyS levels are elevated in patients with SLE along with other autoimmune diseases. Belimumab is an antibody directed against BLyS: it selectively binds BLyS with high affinity, neutralizes it, and blocks its interaction with B cell receptors - transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and BLyS receptor 3 (BR3). Belimumab ultimately inhibits the survival of B cells, promotes apoptosis, and reduces the differentiation and maturation of B cells into immunoglobulin-producing plasma cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absolute bioavailability was 74-82% following single belimumab SC doses in healthy adults. Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, the C max was 313 mcg/mL and the AUC 0-∞ was 3,083 day x mcg/mL. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, the C max was 108 mcg/mL and the AUC 0-∞ was 726 day x mcg/mL. In healthy Japanese volunteers, the T max was 6.5 days after administration of a single subcutaneous dose of 200 mg/mL belimumab. Steady-state exposure was reached after approximately 11 weeks of subcutaneous administration in healthy subjects of patients with SLE. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion or 200 mg belimumab once-weekly in adults with SLE, the volume of distribution (V ss ) was 5 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no information available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No formal metabolism studies have been conducted. As belimumab is an antibody, it is expected to undergo degradation mediated by proteolytic enzymes to form small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): There is no information available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, the distribution and terminal half-lives were 1.8 days and 19.4 days, respectively. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, the distribution and terminal half-lives were 1.1 days and 18.3 days, respectively. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following administration of 10 mg/kg belimumab via intravenous infusion in adults with SLE, systemic clearance was 215 mL/day. Following subcutaneous administration of 200 mg belimumab once-weekly in adults with SLE, systemic clearance was 204 mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is no LD 50 data available for belimumab. There is limited experience with overdosage of belimumab. Two doses of up to 20 mg/kg have been given intravenously to humans with no increase in incidence or severity of adverse reactions compared with doses of 1, 4, or 10 mg/kg. In the case of inadvertent overdose, patients should be carefully observed and supportive care administered, as appropriate •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Benlysta •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Belimumab is a B-lymphocyte stimulator (BLyS)-specific inhibitor used to treat systemic lupus erythematosus and active lupus nephritis as an add-on therapy. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Benralizumab interact?
•Drug A: Aducanumab •Drug B: Benralizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Benralizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Benralizumab is indicated as a maintenance treatment of patients 12 years or older with severe asthma and an eosinophilic phenotype. The pathology of severe asthma with eosinophilic phenotype is also denotated as TH2-high phenotype. The patients with this phenotype are characterized by the expression of IL-5 and IL-13, airway hyperresponsiveness, responsiveness to inhaled corticosteroids, high serum IgE and eosinophilia in blood and airway. In the TH2-high phenotype, IL-5 presents a central role as it is responsible for eosinophil differentiation, survival, activation and migration to the lungs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eosinophils are the key target of inflammatory respiratory diseases and they undergo apoptosis in absence of IL-5. Therefore, benralizumab action on the IL-5 receptor in basophils and eosinophils produces the apoptosis and its significant reduction in the blood. On the other hand, Benralizumab binding to natural killer cells FcγRIIIα receptor produces a direct antibody-dependent cell-mediated cytotoxicity. All these effects produce a reduction in eosinophil count in airway mucosa, submucosa, sputum, blood and bone marrow. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Interleukin-5 (IL-5) induces an eosinophil-mediated inflammatory response by binding to the IL-5 receptor (IL-5R) expressed in eosinophils, basophils and some mast cells. Benralizumab, unlike IL-5 low-affinity binding, binds with high affinity to the domain I of the α-chain of IL-5R and blocks its signaling and the proliferation of IL-5-dependent cell lines. On the other hand, Benralizumab is an afucosylated antibody in the CH2 region which gives it a high affinity for the FcγRIIIa on natural killer cells, macrophages and neutrophils. This binding triggers a magnified apoptosis response in eosinophils via antibody-dependent cell-mediated cytotoxicity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous administration of Benralizumab presented a dose-proportional pharmacokinetic profile. The administration of 20-200 mg presented an absorption half-life of 3.6 days with a bioavailability of 58%. It is also reported for Benralizumab a Cmax of 82 mcg/ml and AUC of 775 mcg day/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Pharmacokinetic reports of Benralizumab showed a volume of distribution in a range of 52-93ml/kg. For a 70kg individual, the central volume of distribution of Benralizumab is 3.2 L while the peripheral volume of distribution is reported to be 2.5 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no reports indicating that Benralizumab binds to plasma proteins. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As any monoclonal IgG antibody, Beralizumab is degraded by proteases widely spread in the body. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Benraluzimab presents a linear pharmacokinetic without target-receptor mediated clearance. The presence of a dose-proportional pharmacokinetics suggests a rapid depletion of the target and an elimination mainly mediated through the reticuloendothelial system. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of Benralizumab is estimated to be 15-18 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): For a subject weighting 70kg, the typical systemic clearance is 0.29L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are not reports of long-term studies regarding tumorgenesis or carcinogenesis. Fertility studies performed in aminal trials showed no adverse histopathological findings. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Fasenra •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Benralizumab is a monoclonal antibody used to treat eosinophilic asthma.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Benralizumab interact? Information: •Drug A: Aducanumab •Drug B: Benralizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Benralizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Benralizumab is indicated as a maintenance treatment of patients 12 years or older with severe asthma and an eosinophilic phenotype. The pathology of severe asthma with eosinophilic phenotype is also denotated as TH2-high phenotype. The patients with this phenotype are characterized by the expression of IL-5 and IL-13, airway hyperresponsiveness, responsiveness to inhaled corticosteroids, high serum IgE and eosinophilia in blood and airway. In the TH2-high phenotype, IL-5 presents a central role as it is responsible for eosinophil differentiation, survival, activation and migration to the lungs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eosinophils are the key target of inflammatory respiratory diseases and they undergo apoptosis in absence of IL-5. Therefore, benralizumab action on the IL-5 receptor in basophils and eosinophils produces the apoptosis and its significant reduction in the blood. On the other hand, Benralizumab binding to natural killer cells FcγRIIIα receptor produces a direct antibody-dependent cell-mediated cytotoxicity. All these effects produce a reduction in eosinophil count in airway mucosa, submucosa, sputum, blood and bone marrow. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Interleukin-5 (IL-5) induces an eosinophil-mediated inflammatory response by binding to the IL-5 receptor (IL-5R) expressed in eosinophils, basophils and some mast cells. Benralizumab, unlike IL-5 low-affinity binding, binds with high affinity to the domain I of the α-chain of IL-5R and blocks its signaling and the proliferation of IL-5-dependent cell lines. On the other hand, Benralizumab is an afucosylated antibody in the CH2 region which gives it a high affinity for the FcγRIIIa on natural killer cells, macrophages and neutrophils. This binding triggers a magnified apoptosis response in eosinophils via antibody-dependent cell-mediated cytotoxicity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous administration of Benralizumab presented a dose-proportional pharmacokinetic profile. The administration of 20-200 mg presented an absorption half-life of 3.6 days with a bioavailability of 58%. It is also reported for Benralizumab a Cmax of 82 mcg/ml and AUC of 775 mcg day/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Pharmacokinetic reports of Benralizumab showed a volume of distribution in a range of 52-93ml/kg. For a 70kg individual, the central volume of distribution of Benralizumab is 3.2 L while the peripheral volume of distribution is reported to be 2.5 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no reports indicating that Benralizumab binds to plasma proteins. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As any monoclonal IgG antibody, Beralizumab is degraded by proteases widely spread in the body. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Benraluzimab presents a linear pharmacokinetic without target-receptor mediated clearance. The presence of a dose-proportional pharmacokinetics suggests a rapid depletion of the target and an elimination mainly mediated through the reticuloendothelial system. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of Benralizumab is estimated to be 15-18 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): For a subject weighting 70kg, the typical systemic clearance is 0.29L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are not reports of long-term studies regarding tumorgenesis or carcinogenesis. Fertility studies performed in aminal trials showed no adverse histopathological findings. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Fasenra •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Benralizumab is a monoclonal antibody used to treat eosinophilic asthma. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Besilesomab interact?
•Drug A: Aducanumab •Drug B: Besilesomab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Besilesomab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Besilesomab is radiolabelled with sodium pertechnetate (Tc99m) solution to develop technetium (Tc99m) besilesomab solution. This solution is indicated in adults for scintigraphic imaging - in conjunction with other appropriate imaging modalities, when possible - in determining the location of inflammation/infection in peripheral bone in adults with suspected osteomyelitis. When utilized as such, this medicinal product is for diagnostic use only. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In a study employing cryo-preserved human tissues using an indirect alkaline phosphatase anti-alkaline phosphatase technique, besilesomab antibody from hybridoma supernatants demonstrated staining to cytoplasmic, membranous, and interstitial areas of primary colon carcinoma tissue, to single granulocytic cells in normal human liver and lung and to a large proportion of granulocytic cells in normal human bone marrow but not to blood vessels or connective tissue. Additionally, the antibody also shows binding to the granulocytic cells of breast, kidney, parotid gland, pituitary, lymph nodes, and spleen tissues, as well as colonic, pancreatic, and some lung and breast carcinomas. The purified besilesomab antibody and the prepared kit subsequently bound similarly to granulocytes in normal bone marrow, lung, liver, spleen, and colorectal carcinomas. Furthermore, the prepared kit also produced some staining in some connective tissue fibres in normal lung, some muscle fibres in normal colon, and in liver parenchymal cells. In general however, besilesomab does not bind significantly to blood vessels and connective tissue. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Nonspecific cross-reacting antigens (NCA) is the name of a collection of highly glycosylated bacterial binding receptors expressed on human granulocytes and other tissues. In particular, these glycoprotein receptors are members of the immunoglobulin supergene family and are related structurally to carcinoembryonic antigen (CEA). CEA is found naturally in the human body and its expression may be increased in both cancer and non-cancerous (benign) circumstances. Besilesomab is subsequently a murine immunoglobulin monoclonal antibody of IgG1 isotype designed to recognise and bind specifically to NCA-95, or nonspecific cross-reacting antigen 95, an epitope found expressed on the cell membranes of granulocytes and granulocyte precursors. When radiolabelled with sodium pertechnetate (Tc99m) solution to develop technetium (Tc99m) besilesomab solution, this radiolabelled medicine is injected into patients where the monoclonal antibody carries it to target CEA on target granulocytes. When large numbers of CEA expressing granulocytes gather to the site of an infection, the radioactive monoclonal antibodies will also accumulate at such sites, where it can be detected by diagnostic scanning. The resultant images show where the radioactive besilesomab has accumulated, locating areas affected by osteomyelitis, infection, or inflammation. Furthermore, it is believed that the besilesomab accumulation is predominantly passive (via increased vascular permeability) and only partially active (via migration of human granulocytes carrying besilesomab to the infection/inflammation location) since only 10% to 20% of the injected radio-diagnostic agent binds in vivo to human circulating granulocytes. Specific binding of besilesomab to activated granulocytes that have already migrated to sites of infection/inflammation might be the primary part of the detection signal. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): As the diagnostic agent is administered intravenously, it is expected that the bioavailability is 100%. Approximately six hours after injection, about 1.5% of the whole body radioactivity is detected in the liver while about 3.0% is found in the spleen. Observations twenty-four hours after injection demonstrate percentages of radioactivity of 1.6% in the liver and 2.3% in the spleen. However, non pathological, unusual accumulations of the radioactive agent can be detected in the spleen (up to 6% of patients), in the bowel (up to 4% of patients), in the liver and bone marrow (up to 3% of patients), and in the thyroid and kidneys (up to 2% of patients). •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In the besilesomab clinical trial Study 7D-101SZ-A, volumes of distribution were determined as approximately 4L - which was close to the plasma volume - in the central compartment, whether calculated from plasma radioactivity or from intact monoclonal antibody concentrations; the peripheral compartment was somewhat greater, at about 6L for both methods. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Studies demonstrate that prepared kit besilesomab binds up to 97.45% and 96.58% of peripheral blood granulocytes in males and females respectively and less than 5% of other peripheral blood cells. Moreover, no significant binding of the antibody to other human peripheral blood cells like erythrocytes, platelets, lymphocytes, and monocytes was observed. As well, besilesomab demonstrates no cross-reactivity with human platelets. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The besilesomab antibody is mainly metabolized via hepatic clearance into amino acids. Nevertheless, liver uptake of radioactivity was observed to be minimal under trial conditions and liver impairment is considered unlikely to affect besilesomab metabolism and elimination in any clinically significant manner. The total blood radioactivity occurring from the administration of besilesomab is generally the result of the contribution of radioactive intact labelled antibody and other radioactive moieties like metabolized antibody fragments, smaller radiometabolites, and free technetium (Tc99m). •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Measurement of radioactivity levels in urine shows that up to 14% of the administered activity is excreted via the bladder during the 24 h post-injection period. Low renal clearance activity (of 0.2 L/h for a glomerular filtration rate of approximately 7 L/h) also suggests that the kidney is not the primary route of besilesomab elimination. Additionally, over 30 hours rat pharmacokinetic studies also similarly demonstrated that 31-34% of the radioactivity was excreted in the urine and only 7-13% in the faeces. The faecal elimination was observed primarily from the 17h time period onward. Furthermore, while radioactivity associated with intact antibody tends to stay in the vascular compartment for a long time, metabolized radioactive fragments, small radio-metabolites, and free pertechnetate (Tc99m) clears quickly from blood and will accumulate in the kidneys and further in the urine. In all besilesomab studies to date, approximately 14% of the injected radioactivity was recovered in the urine, which was only collected for 24 hours after administration. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Whole blood concentration-time radioactivity curves show a two-phase course, which can be subdivided into an early phase (0-2 h) and a late phase (5-24 h). After correcting for the decay of radionuclide, the calculated half-life of the early phase is approximately 0.5 h while the late phase demonstrates a calculated half-life of 16 h. The terminal half-life in man is estimated to be approximately 23 h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Once administered into the body, prepared technetium (Tc99m) besilesomab can be metabolized into free amino acids, smaller radioactive fragments, or even free pertechnetate (Tc99m). The besilesomab clinical study 7D-101SZ-A consequently reports separate estimated clearance rates of 0.322 L/h and 0.242 L/h that were calculated using monitored plasma radioactivity and from monitored intact monoclonal antibody concentrations, respectively. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most commonly reported adverse reaction associated with the use of besilesomab is the development of Human Anti-Mouse Antibodies (HAMA) after a single administration. Patients who have developed HAMA may potentially have a higher risk for hypersensitivity reactions. Screening for possible previous exposure to murine monoclonal antibodies and tests for the presence of HAMA in prospective patients should be made prior to administrating besilesomab. Moreover, because the incidence of developing HAMA appears to be dose related with besilesomab, the recommended dosage is restricted to no more than 250 micrograms of antibody per injection. Patients who are HAMA positive are consequently contraindicated from using besilesomab. Hypersensitivity to besilesomab or to any other murine antibodies or to any of the excipients associated with the active besilesomab radio-diagnostic agent is subsequently a contraindication. Some patients have also reported hypotension as a common adverse reaction. As exposure to ionizing radiation is linked with cancer induction and a potential for developing hereditary defects, the use of radio-diagnostic besilesomab in pregnant women is considered a formal contraindication. If in doubt about a woman's potential pregnancy, alternative techniques to not using ionizing radiation should be considered and/or offered instead to the patient. Moreover, although it is not known if besilesomab is excreted in human milk, the potential risk to a breast-fed child cannot be excluded. Furthermore, while consideration should be given to the possibility of perhaps delaying the administration of radionuclide agents until the mother has ceased breastfeeding or perhaps certainly choosing alternative radoopharmaceuticals with more appropriate secretion activity, if the use of besilesomab is absolutely necessary then the mother's breastfeeding should be stopped for three days and any expressed feeds during that time discarded. The time period of three days corresponds to 10 half-lives of technetium (Tc99m)(60 hours). At that time, the remaining activity represents about 1/1000 of the initial activity in the body. In general, close contact with infants and pregnant women should be restricted for patients who have been administered besilesomab during the first 12 hours after the injection. Since besilesomab contains sorbitol, patients having any rare hereditary conditions of fructose intolerance should not be administered this medicine. Because no sufficient data regarding the safety and efficacy of using besilesomab in children below the age of 18 years exists, the use of besilesomab in this patient population is not recommended. Even though data regarding the repeated dosing of besilesomab is extremely limited, the use of besilesomab should only be used once in a patient's lifetime. Other medicines that can inhibit inflammation or affect the hematopoietic system (like antibiotics and corticosteroids) can lead to false negative results. Such agents should therefore not be administered together with, or a short time before the injection of besilesomab. Preclinical data obtained with the non-radioactive compound revealed no special hazard for humans based on conventional studies of safety pharmacology, single-dose and repeated dose toxicity, although antimurine antibodies were found in all dose groups (including controls) in a repeated-dose study in monkeys. Genotoxicity studies conducted to test for potentially genotoxic impurities were also negative. Long-term carcinogenicity studies and toxicity to reproduction have not yet been carried out. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Besilesomab is a monoclonal antibody bound to technetium-99 used to find infection and inflammation in patients with suspected osteomyelitis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Besilesomab interact? Information: •Drug A: Aducanumab •Drug B: Besilesomab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Besilesomab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Besilesomab is radiolabelled with sodium pertechnetate (Tc99m) solution to develop technetium (Tc99m) besilesomab solution. This solution is indicated in adults for scintigraphic imaging - in conjunction with other appropriate imaging modalities, when possible - in determining the location of inflammation/infection in peripheral bone in adults with suspected osteomyelitis. When utilized as such, this medicinal product is for diagnostic use only. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In a study employing cryo-preserved human tissues using an indirect alkaline phosphatase anti-alkaline phosphatase technique, besilesomab antibody from hybridoma supernatants demonstrated staining to cytoplasmic, membranous, and interstitial areas of primary colon carcinoma tissue, to single granulocytic cells in normal human liver and lung and to a large proportion of granulocytic cells in normal human bone marrow but not to blood vessels or connective tissue. Additionally, the antibody also shows binding to the granulocytic cells of breast, kidney, parotid gland, pituitary, lymph nodes, and spleen tissues, as well as colonic, pancreatic, and some lung and breast carcinomas. The purified besilesomab antibody and the prepared kit subsequently bound similarly to granulocytes in normal bone marrow, lung, liver, spleen, and colorectal carcinomas. Furthermore, the prepared kit also produced some staining in some connective tissue fibres in normal lung, some muscle fibres in normal colon, and in liver parenchymal cells. In general however, besilesomab does not bind significantly to blood vessels and connective tissue. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Nonspecific cross-reacting antigens (NCA) is the name of a collection of highly glycosylated bacterial binding receptors expressed on human granulocytes and other tissues. In particular, these glycoprotein receptors are members of the immunoglobulin supergene family and are related structurally to carcinoembryonic antigen (CEA). CEA is found naturally in the human body and its expression may be increased in both cancer and non-cancerous (benign) circumstances. Besilesomab is subsequently a murine immunoglobulin monoclonal antibody of IgG1 isotype designed to recognise and bind specifically to NCA-95, or nonspecific cross-reacting antigen 95, an epitope found expressed on the cell membranes of granulocytes and granulocyte precursors. When radiolabelled with sodium pertechnetate (Tc99m) solution to develop technetium (Tc99m) besilesomab solution, this radiolabelled medicine is injected into patients where the monoclonal antibody carries it to target CEA on target granulocytes. When large numbers of CEA expressing granulocytes gather to the site of an infection, the radioactive monoclonal antibodies will also accumulate at such sites, where it can be detected by diagnostic scanning. The resultant images show where the radioactive besilesomab has accumulated, locating areas affected by osteomyelitis, infection, or inflammation. Furthermore, it is believed that the besilesomab accumulation is predominantly passive (via increased vascular permeability) and only partially active (via migration of human granulocytes carrying besilesomab to the infection/inflammation location) since only 10% to 20% of the injected radio-diagnostic agent binds in vivo to human circulating granulocytes. Specific binding of besilesomab to activated granulocytes that have already migrated to sites of infection/inflammation might be the primary part of the detection signal. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): As the diagnostic agent is administered intravenously, it is expected that the bioavailability is 100%. Approximately six hours after injection, about 1.5% of the whole body radioactivity is detected in the liver while about 3.0% is found in the spleen. Observations twenty-four hours after injection demonstrate percentages of radioactivity of 1.6% in the liver and 2.3% in the spleen. However, non pathological, unusual accumulations of the radioactive agent can be detected in the spleen (up to 6% of patients), in the bowel (up to 4% of patients), in the liver and bone marrow (up to 3% of patients), and in the thyroid and kidneys (up to 2% of patients). •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In the besilesomab clinical trial Study 7D-101SZ-A, volumes of distribution were determined as approximately 4L - which was close to the plasma volume - in the central compartment, whether calculated from plasma radioactivity or from intact monoclonal antibody concentrations; the peripheral compartment was somewhat greater, at about 6L for both methods. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Studies demonstrate that prepared kit besilesomab binds up to 97.45% and 96.58% of peripheral blood granulocytes in males and females respectively and less than 5% of other peripheral blood cells. Moreover, no significant binding of the antibody to other human peripheral blood cells like erythrocytes, platelets, lymphocytes, and monocytes was observed. As well, besilesomab demonstrates no cross-reactivity with human platelets. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The besilesomab antibody is mainly metabolized via hepatic clearance into amino acids. Nevertheless, liver uptake of radioactivity was observed to be minimal under trial conditions and liver impairment is considered unlikely to affect besilesomab metabolism and elimination in any clinically significant manner. The total blood radioactivity occurring from the administration of besilesomab is generally the result of the contribution of radioactive intact labelled antibody and other radioactive moieties like metabolized antibody fragments, smaller radiometabolites, and free technetium (Tc99m). •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Measurement of radioactivity levels in urine shows that up to 14% of the administered activity is excreted via the bladder during the 24 h post-injection period. Low renal clearance activity (of 0.2 L/h for a glomerular filtration rate of approximately 7 L/h) also suggests that the kidney is not the primary route of besilesomab elimination. Additionally, over 30 hours rat pharmacokinetic studies also similarly demonstrated that 31-34% of the radioactivity was excreted in the urine and only 7-13% in the faeces. The faecal elimination was observed primarily from the 17h time period onward. Furthermore, while radioactivity associated with intact antibody tends to stay in the vascular compartment for a long time, metabolized radioactive fragments, small radio-metabolites, and free pertechnetate (Tc99m) clears quickly from blood and will accumulate in the kidneys and further in the urine. In all besilesomab studies to date, approximately 14% of the injected radioactivity was recovered in the urine, which was only collected for 24 hours after administration. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Whole blood concentration-time radioactivity curves show a two-phase course, which can be subdivided into an early phase (0-2 h) and a late phase (5-24 h). After correcting for the decay of radionuclide, the calculated half-life of the early phase is approximately 0.5 h while the late phase demonstrates a calculated half-life of 16 h. The terminal half-life in man is estimated to be approximately 23 h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Once administered into the body, prepared technetium (Tc99m) besilesomab can be metabolized into free amino acids, smaller radioactive fragments, or even free pertechnetate (Tc99m). The besilesomab clinical study 7D-101SZ-A consequently reports separate estimated clearance rates of 0.322 L/h and 0.242 L/h that were calculated using monitored plasma radioactivity and from monitored intact monoclonal antibody concentrations, respectively. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most commonly reported adverse reaction associated with the use of besilesomab is the development of Human Anti-Mouse Antibodies (HAMA) after a single administration. Patients who have developed HAMA may potentially have a higher risk for hypersensitivity reactions. Screening for possible previous exposure to murine monoclonal antibodies and tests for the presence of HAMA in prospective patients should be made prior to administrating besilesomab. Moreover, because the incidence of developing HAMA appears to be dose related with besilesomab, the recommended dosage is restricted to no more than 250 micrograms of antibody per injection. Patients who are HAMA positive are consequently contraindicated from using besilesomab. Hypersensitivity to besilesomab or to any other murine antibodies or to any of the excipients associated with the active besilesomab radio-diagnostic agent is subsequently a contraindication. Some patients have also reported hypotension as a common adverse reaction. As exposure to ionizing radiation is linked with cancer induction and a potential for developing hereditary defects, the use of radio-diagnostic besilesomab in pregnant women is considered a formal contraindication. If in doubt about a woman's potential pregnancy, alternative techniques to not using ionizing radiation should be considered and/or offered instead to the patient. Moreover, although it is not known if besilesomab is excreted in human milk, the potential risk to a breast-fed child cannot be excluded. Furthermore, while consideration should be given to the possibility of perhaps delaying the administration of radionuclide agents until the mother has ceased breastfeeding or perhaps certainly choosing alternative radoopharmaceuticals with more appropriate secretion activity, if the use of besilesomab is absolutely necessary then the mother's breastfeeding should be stopped for three days and any expressed feeds during that time discarded. The time period of three days corresponds to 10 half-lives of technetium (Tc99m)(60 hours). At that time, the remaining activity represents about 1/1000 of the initial activity in the body. In general, close contact with infants and pregnant women should be restricted for patients who have been administered besilesomab during the first 12 hours after the injection. Since besilesomab contains sorbitol, patients having any rare hereditary conditions of fructose intolerance should not be administered this medicine. Because no sufficient data regarding the safety and efficacy of using besilesomab in children below the age of 18 years exists, the use of besilesomab in this patient population is not recommended. Even though data regarding the repeated dosing of besilesomab is extremely limited, the use of besilesomab should only be used once in a patient's lifetime. Other medicines that can inhibit inflammation or affect the hematopoietic system (like antibiotics and corticosteroids) can lead to false negative results. Such agents should therefore not be administered together with, or a short time before the injection of besilesomab. Preclinical data obtained with the non-radioactive compound revealed no special hazard for humans based on conventional studies of safety pharmacology, single-dose and repeated dose toxicity, although antimurine antibodies were found in all dose groups (including controls) in a repeated-dose study in monkeys. Genotoxicity studies conducted to test for potentially genotoxic impurities were also negative. Long-term carcinogenicity studies and toxicity to reproduction have not yet been carried out. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Besilesomab is a monoclonal antibody bound to technetium-99 used to find infection and inflammation in patients with suspected osteomyelitis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Bevacizumab interact?
•Drug A: Aducanumab •Drug B: Bevacizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Bevacizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): As a vascular endothelial growth factor (VEGF) inhibitor, bevacizumab is used in several chemotherapy regimens to treat metastatic colorectal cancer; metastatic, unresectable, locally advanced or recurrent non-squamous non-small cell lung cancer; metastatic renal cell carcinoma; metastatic, persistent, or recurrent cervical cancer; primary peritoneal cancer; epithelial ovarian cancer; fallopian tube cancer; breast cancer; and recurrent glioblastoma. Interestingly, bevacizumab is currently under investigation for the treatment of COVID-19 complications including acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bevacizumab binds circulating vascular endothelial-derived growth factor (VEGF) and blocks it from binding to its associated receptors, effectively blunting downstream signaling. The effects of bevacizumab have been shown to re-establish normal vasculature at the tumor site resulting in increased nutrient and oxygen supply, while also improving the delivery of chemotherapeutic drugs to the target area. On the other hand, VEGF signaling is a vital component of several processes including angiogenesis, lymphangiogenesis, blood pressure regulation, wound healing, coagulation, and renal filtration. Although blocking VEGF may inhibit metastatic disease progression, it may also result in unintended effects due to the role of VEGF in several other physiologic processes. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Transcription of the VEGF protein is induced by 'hypoxia inducible factor' (HIF) in a hypoxic environment. When circulating VEGF binds to VEGF receptors (VEGFR-1 and VEGFR-2) located on endothelial cells, various downstream effects are initiated. It should be noted that VEGF also binds to the neuropilin co-receptors (NRP-1 and NRP-1), leading to enhanced signaling. Cancer cells promote tumor angiogenesis by releasing VEGF, resulting in the creation of an immature and disorganized vascular network. The hypoxic microenvironment promoted by cancer cells favors the survival of more aggressive tumor cells, and gives rise to a challenging environment for immune cells to respond appropriately. As a result, VEGF has become a well-known target for anti-cancer drugs like bevacizumab. Bevacizumab is a mAb that exerts its effects by binding and inactivating serum VEGF. When bound to the mAb, VEGF is unable to interact with its cell surface receptors, and proangiogenic signalling is inhibited. This prevents formation of new blood vessels, decreases tumor vasculature, and reduces tumor blood supply. There is also evidence to suggest that VEGF is upregulated in COVID-19 patients, hence, bevacizumab is being investigated for the treatment of associated complications. Higher levels of VEGF may contribute to pulmonary edema, leading to acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Researchers are hopeful that by inhibiting VEGF, bevacizumab may effectively treat ARDS and ALI - both common features of severe COVID-19 cases. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Monoclonal antibodies (mAbs) are large in size, do not readily cross cell membranes, and are unable to withstand proteolysis in the gastrointestinal tract. Given these characteristics, mAbs are poorly absorbed via the oral route and are instead administered intravenously, intramuscularly or subcutaneously. In a single dose (1mg/kg) pharmacokinetic study assessing the bioequivalence of bevacizumab and TAB008 (a biosimilar product), the pharmacokinetic parameters of Avastin (bevacizumab) were as follows: Geometric mean Cmax = 17.38 ug/mL Geometric mean AUCinf = 5,358 ugxh/mL Geometric mean Tmax = 2.50 hrs •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of bevacizumab is approximately 3.29 L and 2.39 L for the average male and female, respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): >97% of serum VEGF is bound to bevacizumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): There are several pathways through which monoclonal antibodies (mAbs) may be cleared. Non-specific clearance of mAbs refers to target independent pinocytosis, and proteolysis of the protein into small amino acids and peptides in the reticuloendothelial system (RES) and the liver. Target-mediated clearance is a result of specific interactions between the mAb and its target antigen. Once bound, the antibody-antigen complex may be cleared via lysosomal degradation. Additionally, the production of anti-drug antibodies (ADA), which are a result of an immunogenic response to mAb-based treatment, can form complexes with mAb’s and may impact the rate of mAb clearance. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Due to their size, monoclonal antibodies are not renally eliminated under normal physiological conditions. Catabolism or excretion are the primary processes of elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of bevacizumab is estimated to be 20 days (range of 11-50 days). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance (CL) of bevacizumab is approximately 0.207 L/day. The CL of bevacizumab can increase or decrease by 30% in patients who weigh >114 kg or <49 kg respectively. Males tend to clear bevacizumab at a faster rate than females (26% faster on average). Other factors including alkaline phosphatase (ALP), serum aspartate aminotransferase (AST), serum albumin, and tumor burden may cause the CL to fluctuate. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Bevacizumab toxicities are distinct from the effects of cytotoxic agents used in chemotherapy, and are normally linked to impaired VEGF function. Common toxicities associated with bevacizumab include hypertension, gastrointestinal perforation, arterial thromboembolism, reversible posterior leukoencephalopathy syndrome (RPLS), venous thromboembolism, proteinuria, bleeding/hemorrhage, and wound-healing complications. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Avastin, Mvasi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bevacizumab is a monoclonal anti-vascular endothelial growth factor antibody used in combination with antineoplastic agents for the treatment of many types of cancer.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Bevacizumab interact? Information: •Drug A: Aducanumab •Drug B: Bevacizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Bevacizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): As a vascular endothelial growth factor (VEGF) inhibitor, bevacizumab is used in several chemotherapy regimens to treat metastatic colorectal cancer; metastatic, unresectable, locally advanced or recurrent non-squamous non-small cell lung cancer; metastatic renal cell carcinoma; metastatic, persistent, or recurrent cervical cancer; primary peritoneal cancer; epithelial ovarian cancer; fallopian tube cancer; breast cancer; and recurrent glioblastoma. Interestingly, bevacizumab is currently under investigation for the treatment of COVID-19 complications including acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bevacizumab binds circulating vascular endothelial-derived growth factor (VEGF) and blocks it from binding to its associated receptors, effectively blunting downstream signaling. The effects of bevacizumab have been shown to re-establish normal vasculature at the tumor site resulting in increased nutrient and oxygen supply, while also improving the delivery of chemotherapeutic drugs to the target area. On the other hand, VEGF signaling is a vital component of several processes including angiogenesis, lymphangiogenesis, blood pressure regulation, wound healing, coagulation, and renal filtration. Although blocking VEGF may inhibit metastatic disease progression, it may also result in unintended effects due to the role of VEGF in several other physiologic processes. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Transcription of the VEGF protein is induced by 'hypoxia inducible factor' (HIF) in a hypoxic environment. When circulating VEGF binds to VEGF receptors (VEGFR-1 and VEGFR-2) located on endothelial cells, various downstream effects are initiated. It should be noted that VEGF also binds to the neuropilin co-receptors (NRP-1 and NRP-1), leading to enhanced signaling. Cancer cells promote tumor angiogenesis by releasing VEGF, resulting in the creation of an immature and disorganized vascular network. The hypoxic microenvironment promoted by cancer cells favors the survival of more aggressive tumor cells, and gives rise to a challenging environment for immune cells to respond appropriately. As a result, VEGF has become a well-known target for anti-cancer drugs like bevacizumab. Bevacizumab is a mAb that exerts its effects by binding and inactivating serum VEGF. When bound to the mAb, VEGF is unable to interact with its cell surface receptors, and proangiogenic signalling is inhibited. This prevents formation of new blood vessels, decreases tumor vasculature, and reduces tumor blood supply. There is also evidence to suggest that VEGF is upregulated in COVID-19 patients, hence, bevacizumab is being investigated for the treatment of associated complications. Higher levels of VEGF may contribute to pulmonary edema, leading to acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Researchers are hopeful that by inhibiting VEGF, bevacizumab may effectively treat ARDS and ALI - both common features of severe COVID-19 cases. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Monoclonal antibodies (mAbs) are large in size, do not readily cross cell membranes, and are unable to withstand proteolysis in the gastrointestinal tract. Given these characteristics, mAbs are poorly absorbed via the oral route and are instead administered intravenously, intramuscularly or subcutaneously. In a single dose (1mg/kg) pharmacokinetic study assessing the bioequivalence of bevacizumab and TAB008 (a biosimilar product), the pharmacokinetic parameters of Avastin (bevacizumab) were as follows: Geometric mean Cmax = 17.38 ug/mL Geometric mean AUCinf = 5,358 ugxh/mL Geometric mean Tmax = 2.50 hrs •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of bevacizumab is approximately 3.29 L and 2.39 L for the average male and female, respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): >97% of serum VEGF is bound to bevacizumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): There are several pathways through which monoclonal antibodies (mAbs) may be cleared. Non-specific clearance of mAbs refers to target independent pinocytosis, and proteolysis of the protein into small amino acids and peptides in the reticuloendothelial system (RES) and the liver. Target-mediated clearance is a result of specific interactions between the mAb and its target antigen. Once bound, the antibody-antigen complex may be cleared via lysosomal degradation. Additionally, the production of anti-drug antibodies (ADA), which are a result of an immunogenic response to mAb-based treatment, can form complexes with mAb’s and may impact the rate of mAb clearance. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Due to their size, monoclonal antibodies are not renally eliminated under normal physiological conditions. Catabolism or excretion are the primary processes of elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half-life of bevacizumab is estimated to be 20 days (range of 11-50 days). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance (CL) of bevacizumab is approximately 0.207 L/day. The CL of bevacizumab can increase or decrease by 30% in patients who weigh >114 kg or <49 kg respectively. Males tend to clear bevacizumab at a faster rate than females (26% faster on average). Other factors including alkaline phosphatase (ALP), serum aspartate aminotransferase (AST), serum albumin, and tumor burden may cause the CL to fluctuate. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Bevacizumab toxicities are distinct from the effects of cytotoxic agents used in chemotherapy, and are normally linked to impaired VEGF function. Common toxicities associated with bevacizumab include hypertension, gastrointestinal perforation, arterial thromboembolism, reversible posterior leukoencephalopathy syndrome (RPLS), venous thromboembolism, proteinuria, bleeding/hemorrhage, and wound-healing complications. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Avastin, Mvasi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bevacizumab is a monoclonal anti-vascular endothelial growth factor antibody used in combination with antineoplastic agents for the treatment of many types of cancer. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Bezlotoxumab interact?
•Drug A: Aducanumab •Drug B: Bezlotoxumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bezlotoxumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bezlotoxumab is indicated to reduce the recurrence of Clostridioides difficile infection (CDI) in patients who are receiving antibacterial drug treatment for CDI and are at high risk for CDI recurrence. In the US, the drug is approved for use in patients one year of age and older. In Europe, it is approved in adults only. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bezlotoxumab directly neutralizes the toxic effects of C. difficile by binding to the toxin with high affinity. In vitro, bezlotoxumab inhibited C. difficile toxin B-mediated expression of tumour necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) in human peripheral blood monocyte cells and human colonic and explants. In clinical trials, the rate of recurrent C. difficile infection was lower in patients at risk for recurrent C. difficile infection receiving bezlotoxumab compared to placebo. The administration of bezlotoxumab plus actoxumab, another antibody directed against the C. difficile toxin resulted in dose-dependent protection against C. difficile toxin-induced damage and inflammation, as well as a reduced recurrence of C. difficile infection in mice. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): C. difficile infections are caused by two exotoxins, toxin A and toxin B. Exotoxins are believed to bind to cell surface receptors expressed on colonocytes and are internalized via endocytosis. This process is followed by the acidification of the endosome, leading to a conformation change of the toxin, allowing for the transport of the endosome, autocleavage of the toxin via a cysteine protease domain, and the release of glucosyltransferase domain (GTD) from the endosome to the host cell cytoplasm. GTD glucosylates and inactivates small GTPases, such as Rac and Rho, critical for maintaining the actin cytoskeleton, cell adhesion, epithelial permeability, and other cellular function and homeostasis processes. Exotoxins eventually induce apoptosis and cell loss. Endotoxins also promote the release of proinflammatory mediators that recruit neutrophils and macrophages to the injury site, further aggravating the gut injury and damage. C. difficile infections are associated with a high risk of recurrence. Bezlotoxumab binds to C. difficile toxin B and neutralizes it. According to the findings of surface plasmon resonance analysis, bezlotoxumab binds to the toxin via two epitopes in the C-terminal CROP domain of the toxin, partially blocking the putative receptor binding pockets and preventing it from binding to host cell receptors. Bezlotoxumab does not bind to C. difficile toxin A. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After a single intravenous dose of 10 mg/kg bezlotoxumab, geometric mean AUC 0-∞ and C max were 53000 mcg x h/mL and 185 mcg/mL, respectively, in patients with CDI. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) volume of distribution was 7.33 L (16%). •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Bezlotoxumab undergoes protein catabolism. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Bezlotoxumab is mainly eliminated by catabolism. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) elimination half-life is approximately 19 days (28%). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) clearance of bezlotoxumab was 0.317 L/day (41%). The clearance of bezlotoxumab increased with increasing body weight: the resulting exposure differences are adequately addressed by the administration of a weight-based dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The intravenous LD 50 was >125 mg/kg in mice. There is no clinical experience with the overdosage of bezlotoxumab. In clinical trials, healthy subjects received up to 20 mg/kg, which was generally well tolerated. In case of overdose, patients should be closely monitored for signs or symptoms of adverse reactions, and appropriate symptomatic treatment should be instituted. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Zinplava •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bezlotoxumab is a monoclonal antibody used to reduce the recurrence of Clostridium difficile infections.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Bezlotoxumab interact? Information: •Drug A: Aducanumab •Drug B: Bezlotoxumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bezlotoxumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bezlotoxumab is indicated to reduce the recurrence of Clostridioides difficile infection (CDI) in patients who are receiving antibacterial drug treatment for CDI and are at high risk for CDI recurrence. In the US, the drug is approved for use in patients one year of age and older. In Europe, it is approved in adults only. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bezlotoxumab directly neutralizes the toxic effects of C. difficile by binding to the toxin with high affinity. In vitro, bezlotoxumab inhibited C. difficile toxin B-mediated expression of tumour necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) in human peripheral blood monocyte cells and human colonic and explants. In clinical trials, the rate of recurrent C. difficile infection was lower in patients at risk for recurrent C. difficile infection receiving bezlotoxumab compared to placebo. The administration of bezlotoxumab plus actoxumab, another antibody directed against the C. difficile toxin resulted in dose-dependent protection against C. difficile toxin-induced damage and inflammation, as well as a reduced recurrence of C. difficile infection in mice. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): C. difficile infections are caused by two exotoxins, toxin A and toxin B. Exotoxins are believed to bind to cell surface receptors expressed on colonocytes and are internalized via endocytosis. This process is followed by the acidification of the endosome, leading to a conformation change of the toxin, allowing for the transport of the endosome, autocleavage of the toxin via a cysteine protease domain, and the release of glucosyltransferase domain (GTD) from the endosome to the host cell cytoplasm. GTD glucosylates and inactivates small GTPases, such as Rac and Rho, critical for maintaining the actin cytoskeleton, cell adhesion, epithelial permeability, and other cellular function and homeostasis processes. Exotoxins eventually induce apoptosis and cell loss. Endotoxins also promote the release of proinflammatory mediators that recruit neutrophils and macrophages to the injury site, further aggravating the gut injury and damage. C. difficile infections are associated with a high risk of recurrence. Bezlotoxumab binds to C. difficile toxin B and neutralizes it. According to the findings of surface plasmon resonance analysis, bezlotoxumab binds to the toxin via two epitopes in the C-terminal CROP domain of the toxin, partially blocking the putative receptor binding pockets and preventing it from binding to host cell receptors. Bezlotoxumab does not bind to C. difficile toxin A. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After a single intravenous dose of 10 mg/kg bezlotoxumab, geometric mean AUC 0-∞ and C max were 53000 mcg x h/mL and 185 mcg/mL, respectively, in patients with CDI. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) volume of distribution was 7.33 L (16%). •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Bezlotoxumab undergoes protein catabolism. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Bezlotoxumab is mainly eliminated by catabolism. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) elimination half-life is approximately 19 days (28%). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Based on a population pharmacokinetic analysis, the geometric mean (%CV) clearance of bezlotoxumab was 0.317 L/day (41%). The clearance of bezlotoxumab increased with increasing body weight: the resulting exposure differences are adequately addressed by the administration of a weight-based dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The intravenous LD 50 was >125 mg/kg in mice. There is no clinical experience with the overdosage of bezlotoxumab. In clinical trials, healthy subjects received up to 20 mg/kg, which was generally well tolerated. In case of overdose, patients should be closely monitored for signs or symptoms of adverse reactions, and appropriate symptomatic treatment should be instituted. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Zinplava •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bezlotoxumab is a monoclonal antibody used to reduce the recurrence of Clostridium difficile infections. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Bimekizumab interact?
•Drug A: Aducanumab •Drug B: Bimekizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bimekizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bimekizumab is indicated for the treatment of moderate-to-severe plaque psoriasis in adults who are candidates for systemic therapy or phototherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bimekizumab exerts its pharmacologic effects by binding to and inhibiting one of the pro-inflammatory cytokines involved in psoriasis pathogenesis. It is administered once-monthly as a subcutaneous injection. Bimekizumab may increased the risk of infection, including upper respiratory tract infections and oral candidiasis. Any clinically important active infections should be resolved prior to therapy. In addition, the use of live vaccines during bimekizumab therapy is not recommended - ensure patients beginning therapy have completed all age appropriate immunizations prior to initiation. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The pathophysiology of psoriasis involves a dysregulation of the immune system and is facilitated by a variety of cytokines released by dendritic cells and T-helper cells. Plaque psoriasis, the most common subtype of psoriasis, is driven primarily by tumor necrosis factor-alpha (TNF-α) and interleukins 17 and 23 (IL-17 and IL-23), with the axis between these three cytokines integral to the maintenance phase of psoriasis. IL-17 acts through two separate mechanisms: the first, dependent on the cytoplasmic adaptor protein ACT1, involves the activation of NF-κB and the transcription of inflammatory genes. The second, independent of ACT1, involves the activation of the JAK/STAT signaling cascade, which leads to further transcription of pro-inflammatory proteins and continued psoriasis pathogenicity. Bimekizumab is a monoclonal antibody targeted against IL-17A, IL-17F, and a heterodimer of the two called IL-17AF. It blocks the interaction of these interleukins with their respective receptors, thus reducing psoriatic inflammation. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In healthy volunteers, the absolute bioavailability of bimekizumab following subcutaneous injection was 70.1%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In patients with plaque psoriasis, the median volume of distribution at steady-state was 11.2 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As a monoclonal antibody, bimekizumab is likely degraded into smaller peptides and amino acids via catabolic processes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal elimination half-life of bimekizumab in patients with plaque psoriasis was 23 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The median apparent clearance of bimekuzmab in patients with plaque psoriasis was 0.337 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Single doses of up to 640mg given both intravenously and subcutaneously have been administered in clinical studies without evidence of dose-limiting toxicities. If overdosage of bimekizumab is suspected, monitor the patient for adverse reactions and institute symptomatic treatment as clinically indicated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bimekizumab is an anti-IL-17A, IL-17F, and IL-17AF monoclonal antibody used in the treatment plaque psoriasis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Bimekizumab interact? Information: •Drug A: Aducanumab •Drug B: Bimekizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Bimekizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Bimekizumab is indicated for the treatment of moderate-to-severe plaque psoriasis in adults who are candidates for systemic therapy or phototherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Bimekizumab exerts its pharmacologic effects by binding to and inhibiting one of the pro-inflammatory cytokines involved in psoriasis pathogenesis. It is administered once-monthly as a subcutaneous injection. Bimekizumab may increased the risk of infection, including upper respiratory tract infections and oral candidiasis. Any clinically important active infections should be resolved prior to therapy. In addition, the use of live vaccines during bimekizumab therapy is not recommended - ensure patients beginning therapy have completed all age appropriate immunizations prior to initiation. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The pathophysiology of psoriasis involves a dysregulation of the immune system and is facilitated by a variety of cytokines released by dendritic cells and T-helper cells. Plaque psoriasis, the most common subtype of psoriasis, is driven primarily by tumor necrosis factor-alpha (TNF-α) and interleukins 17 and 23 (IL-17 and IL-23), with the axis between these three cytokines integral to the maintenance phase of psoriasis. IL-17 acts through two separate mechanisms: the first, dependent on the cytoplasmic adaptor protein ACT1, involves the activation of NF-κB and the transcription of inflammatory genes. The second, independent of ACT1, involves the activation of the JAK/STAT signaling cascade, which leads to further transcription of pro-inflammatory proteins and continued psoriasis pathogenicity. Bimekizumab is a monoclonal antibody targeted against IL-17A, IL-17F, and a heterodimer of the two called IL-17AF. It blocks the interaction of these interleukins with their respective receptors, thus reducing psoriatic inflammation. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In healthy volunteers, the absolute bioavailability of bimekizumab following subcutaneous injection was 70.1%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In patients with plaque psoriasis, the median volume of distribution at steady-state was 11.2 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As a monoclonal antibody, bimekizumab is likely degraded into smaller peptides and amino acids via catabolic processes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal elimination half-life of bimekizumab in patients with plaque psoriasis was 23 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The median apparent clearance of bimekuzmab in patients with plaque psoriasis was 0.337 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Single doses of up to 640mg given both intravenously and subcutaneously have been administered in clinical studies without evidence of dose-limiting toxicities. If overdosage of bimekizumab is suspected, monitor the patient for adverse reactions and institute symptomatic treatment as clinically indicated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Bimekizumab is an anti-IL-17A, IL-17F, and IL-17AF monoclonal antibody used in the treatment plaque psoriasis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Blinatumomab interact?
•Drug A: Aducanumab •Drug B: Blinatumomab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Blinatumomab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Blinatumomab is indicated for the treatment of adults and children with relapsed or refractory CD19-positive B-cell precursor acute lymphoblastic leukemia (ALL). It is also indicated in adults and children for the treatment of CD19-positive B-cell precursor ALL in first or second complete remission with minimal residual disease (MRD) greater than or equal to 0.1%. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Blinatumomab promoted peripheral T-cell redistribution at the start of infusion or dose escalation. In most patients, T-cell counts were lower in the first 1-2 days of treatment and returned to baseline levels within 7-14 days. An increase in T-cell levels, also known as T-cell expansion, was observed in a few patients. In the first treatment cycle, blinatumomab doses higher than ≥ 5 mcg/m2/day or ≥ 9 mcg/day decreased peripheral B-cell counts to 10 cells/microliter or less. During the blinatumomab-free period between treatment cycles (2 weeks), peripheral B-cell counts did not recover. The use of blinatumomab may lead to an elevation of IL-6, IL-10, and IFN-γ; however, cytokine levels return to baseline within 24 to 48 hours. Blinatumomab may lead to the development of cytokine release syndrome, neurological toxicities, infections, tumor lysis syndrome, neutropenia and febrile neutropenia, pancreatitis, leukoencephalopathy and transient elevations in liver enzymes. The use of blinatumomab can also affect a patient’s ability to drive and use machines. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Blinatumomab is a bispecific T-cell engager (BiTE) that targets CD19, an antigen expressed on the surface of B-cells, and CD3, an antigen expressed on the surface of T-cells. B-cell malignancies, such as acute lymphoblastic leukemia (ALL), express high levels of CD19, making it a therapeutic target for the treatment of these conditions. Blinatumomab recruits and activates endogenous T-cells by connecting CD3 in the T-cell receptor (TCR) complex with CD19 on both benign and malignant B cells. By bringing T-cells and tumor cells together, blinatumomab induces an immune response that leads to T-cell activation and proliferation. It promotes the release of cytokines such as TNF-α, IFN-γ, IL-6, and IL-10 by T-cells, the induction of activation markers, such as CD69 and CD25, and the expression of adhesion molecules on the T-cell surface. Altogether, blinatumomab promotes the lysis of CD19+ tumor cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In adult patients, the pharmacokinetic profile of blinatumomab appears to be linear between 5 to 90 mcg/m /day (equivalent to 9 to 162 mcg/day). The steady-state serum concentration (C ss ) of blinatumomab was achieved within a day of continuous intravenous infusion, and in the range tested, the mean C ss was approximately dose-proportional. At the clinical doses for the treatment of relapsed or refractory acute lymphoblastic leukemia (9 mcg/day and 28 mcg/day), the C ss was 228 (356) pg/mL and 616 (537) pg/mL, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Blinatumomab has a volume of distribution based on terminal phase of 4.35 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The metabolic pathway of blinatumomab has not been characterized. As a monoclonal antibody, blinatumomab is expected to be metabolized into small peptides and amino acids via catabolic pathways. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): At clinical doses, negligible amounts of blinatumomab were excreted in the urine. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Blinatumomab has a half-life of 2.10 hours. In pediatric patients, the half-life was 2.19 hours in the first cycle of blinatumomab at the recommended dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Blinatumomab has an estimated systemic clearance of 3.11 L/hour in patients receiving blinatumomab with continuous intravenous infusion. There is a 2-fold difference in clearance values between patients with normal renal function and those with moderate renal impairment. Pediatric patients had an estimated clearance of 1.88 L/hour/m in the first cycle of blinatumomab at the recommended dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Blinatumomab overdose cases have been reported, including a patient that received 133-fold the recommended therapeutic dose over a short period of time. In a study that included pediatric and adolescent patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL), a patient receiving 30 mcg/m2/day of blinatumomab (higher than the maximum tolerated dose) experienced a fatal cardiac failure event in the setting of life-threatening cytokine release syndrome (CRS). The adverse reactions observed during blinatumomab overdoses included fever, tremors, and headache, consistent with those observed at the recommended dose. If a patient is experiencing an overdose, the blinatumomab product label recommends to interrupt the infusion, monitor the patient for signs of adverse reactions, and provide supportive care. Re-initiating blinatumomab at the recommended dose should be considered after all adverse reactions have been resolved and no earlier than 12 hours after the infusion is interrupted. The carcinogenic, genotoxic, and fertility effects of blinatumomab have not been evaluated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Blincyto •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Blinatumomab is an antineoplastic antibody used to treat CD19-positive B-cell precursor acute lymphoblastic leukemia (ALL) in relapsed and refractory patients, as well as those in first or second complete remission with minimal residual disease (MRD).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Blinatumomab interact? Information: •Drug A: Aducanumab •Drug B: Blinatumomab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Blinatumomab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Blinatumomab is indicated for the treatment of adults and children with relapsed or refractory CD19-positive B-cell precursor acute lymphoblastic leukemia (ALL). It is also indicated in adults and children for the treatment of CD19-positive B-cell precursor ALL in first or second complete remission with minimal residual disease (MRD) greater than or equal to 0.1%. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Blinatumomab promoted peripheral T-cell redistribution at the start of infusion or dose escalation. In most patients, T-cell counts were lower in the first 1-2 days of treatment and returned to baseline levels within 7-14 days. An increase in T-cell levels, also known as T-cell expansion, was observed in a few patients. In the first treatment cycle, blinatumomab doses higher than ≥ 5 mcg/m2/day or ≥ 9 mcg/day decreased peripheral B-cell counts to 10 cells/microliter or less. During the blinatumomab-free period between treatment cycles (2 weeks), peripheral B-cell counts did not recover. The use of blinatumomab may lead to an elevation of IL-6, IL-10, and IFN-γ; however, cytokine levels return to baseline within 24 to 48 hours. Blinatumomab may lead to the development of cytokine release syndrome, neurological toxicities, infections, tumor lysis syndrome, neutropenia and febrile neutropenia, pancreatitis, leukoencephalopathy and transient elevations in liver enzymes. The use of blinatumomab can also affect a patient’s ability to drive and use machines. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Blinatumomab is a bispecific T-cell engager (BiTE) that targets CD19, an antigen expressed on the surface of B-cells, and CD3, an antigen expressed on the surface of T-cells. B-cell malignancies, such as acute lymphoblastic leukemia (ALL), express high levels of CD19, making it a therapeutic target for the treatment of these conditions. Blinatumomab recruits and activates endogenous T-cells by connecting CD3 in the T-cell receptor (TCR) complex with CD19 on both benign and malignant B cells. By bringing T-cells and tumor cells together, blinatumomab induces an immune response that leads to T-cell activation and proliferation. It promotes the release of cytokines such as TNF-α, IFN-γ, IL-6, and IL-10 by T-cells, the induction of activation markers, such as CD69 and CD25, and the expression of adhesion molecules on the T-cell surface. Altogether, blinatumomab promotes the lysis of CD19+ tumor cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In adult patients, the pharmacokinetic profile of blinatumomab appears to be linear between 5 to 90 mcg/m /day (equivalent to 9 to 162 mcg/day). The steady-state serum concentration (C ss ) of blinatumomab was achieved within a day of continuous intravenous infusion, and in the range tested, the mean C ss was approximately dose-proportional. At the clinical doses for the treatment of relapsed or refractory acute lymphoblastic leukemia (9 mcg/day and 28 mcg/day), the C ss was 228 (356) pg/mL and 616 (537) pg/mL, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Blinatumomab has a volume of distribution based on terminal phase of 4.35 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The metabolic pathway of blinatumomab has not been characterized. As a monoclonal antibody, blinatumomab is expected to be metabolized into small peptides and amino acids via catabolic pathways. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): At clinical doses, negligible amounts of blinatumomab were excreted in the urine. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Blinatumomab has a half-life of 2.10 hours. In pediatric patients, the half-life was 2.19 hours in the first cycle of blinatumomab at the recommended dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Blinatumomab has an estimated systemic clearance of 3.11 L/hour in patients receiving blinatumomab with continuous intravenous infusion. There is a 2-fold difference in clearance values between patients with normal renal function and those with moderate renal impairment. Pediatric patients had an estimated clearance of 1.88 L/hour/m in the first cycle of blinatumomab at the recommended dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Blinatumomab overdose cases have been reported, including a patient that received 133-fold the recommended therapeutic dose over a short period of time. In a study that included pediatric and adolescent patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL), a patient receiving 30 mcg/m2/day of blinatumomab (higher than the maximum tolerated dose) experienced a fatal cardiac failure event in the setting of life-threatening cytokine release syndrome (CRS). The adverse reactions observed during blinatumomab overdoses included fever, tremors, and headache, consistent with those observed at the recommended dose. If a patient is experiencing an overdose, the blinatumomab product label recommends to interrupt the infusion, monitor the patient for signs of adverse reactions, and provide supportive care. Re-initiating blinatumomab at the recommended dose should be considered after all adverse reactions have been resolved and no earlier than 12 hours after the infusion is interrupted. The carcinogenic, genotoxic, and fertility effects of blinatumomab have not been evaluated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Blincyto •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Blinatumomab is an antineoplastic antibody used to treat CD19-positive B-cell precursor acute lymphoblastic leukemia (ALL) in relapsed and refractory patients, as well as those in first or second complete remission with minimal residual disease (MRD). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Brentuximab vedotin interact?
•Drug A: Aducanumab •Drug B: Brentuximab vedotin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Brentuximab vedotin is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brentuximab vedotin is indicated in adult patients for the treatment of previously untreated stage III or IV classical Hodgkin's lymphoma (cHL) in combination with doxorubicin, vinblastine, and dacarbazine. It is also indicated for the treatment of cHL post-autologous hematopoietic stem cell transplantation (auto-HSCT) in patients at high risk of relapse or progression. Finally, it may be used in the treatment of adult patients with cHL who have previously failed either auto-HSCT or at least two prior multi-agent chemotherapy regimens if they are not candidates for auto-HSCT. Brentuximab vedotin is additionally indicated in the treatment of previously untreated systemic anaplastic large cell lymphoma (sALCL), or other CD30-expressing peripheral T-cell lymphomas (PTCL), in combination with cyclophosphamide, doxorubicin, and prednisone. It may also be used as monotherapy in sALCL after therapeutic failure of a least one prior multi-agent chemotherapy regimen. Brentuximab vedotin is also indicated in the treatment of primary cutaneous large anaplastic large cell lymphoma, or CD30-expressing mycosis fungoides, who have received prior systemic therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Brentuximab vedotin causes apoptosis of tumor cells by preventing cell cycle progression of the G2 to M phase through disruption of the cytosolic microtuble network, thus preventing tumor growth and proliferation. Hodgkin lymphoma (HL) is characterized by malignant Reed-Sternberg cells which express CD30, a marker of large cell lymphoma. Until March 2018, USA National Comprehensive Cancer Network guidelines for patients with advanced HL (stage III/IV disease) recommend treatment with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), or escalated bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPP) as first-line regimens. ABVD appears to be as effective, with fewer side effects, as escalated BEACOPP. Escalated BEACOPP leads to a greater progression-free survival but no difference in overall survival. Recent progress in technology has enabled a new shift to cancer therapy targeting specific molecules. Brentuximab vedotin, a CD30-directed antibody conjugate, selectively targets malignant HL cells. The effect of Brentuximab vedotin (1.8 mg/kg) on the QTc interval was studied in an open-label, single-group study in 46 patients diagnosed with CD30-expressing hematologic malignancies. Ingestion of brentuximab vedotin did not prolong the mean cardiac QTc interval >10 ms from baseline levels. Smaller increases in the mean QTc interval (<10 ms) cannot be ruled out because this study did not include a placebo arm and a positive control arm. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brentuximab vedotin is composed of 3 parts: a chimeric human-murine IgG1 that selectively targets CD30, monomethyl auristatin E (MMAE), which is a microtubule-disrupting agent, and a protease-susceptible linker that links the antibody and MMAE. The IgG1 antibody enables Brentuximab vedotin to target tumor cells expressing CD30 on their surface. Following this Brentuximab vedotin enters the cell. Once inside, the linker is cleaved releasing MMAE which binds disrupts the microtubule network. The antibody component of this drug is a chimeric IgG1 directed against CD30. The small molecule, MMAE, is a microtubule-disrupting particle. MMAE is covalently attached to the antibody by a linker. Data suggest that the anticancer activity of Adcertris is due to the binding of the ADC to CD30-expressing cells, followed by internalization of the ADC-CD30 complex, and the subsequent release of MMAE by proteolytic cleavage. Binding of MMAE to tubulin disrupts the microtubule network within the cell, inducing cell cycle arrest and apoptotis of the malignant cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Steady-state of the ADC is achieved within 21 days with every 3-week dosing of Adcetris. Minimal to no accumulation of ADC is observed with multiple doses at the every 3-week schedule. The time to maximum concentration for MMAE ranges from approximately 1 to 3 days. Similar to the ADC, steady-state of MMAE is achieved within 21 days with every 3-week dosing of Adcetris. MMAE exposures decrease with continued administration of Adcetris with about 50% to 80% of the exposure of the first dose being observed at future doses. The AUC of MMAE was measured to be approximately 2.2-fold higher in patients with hepatic impairment in comparison with patients with normal hepatic function. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): MMAE is unlikely to displace or to be displaced by highly protein-bound drugs. In vitro studies show that MMAE is a substrate of P-gp and was not a potent inhibitor of P-gp. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In vitro, the binding of MMAE to human plasma proteins is in the range of 68–82%. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Data in both animals and humans suggest that only a small fraction of MMAE released from brentuximab vedotin is metabolized. In vitro data indicate that the MMAE metabolism that occurs is primarily via oxidation by CYP3A4/5. In vitro studies using human liver microsomes indicate that MMAE inhibits CYP3A4/5 but not other CYP isoforms. MMAE did not induce any major CYP450 enzymes in primary cultures of human hepatocytes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): This drug appears follow metabolite kinetics, with the elimination of appearing to be limited by its rate of release from the antibody-drug conjugate (ADC). An excretion study was done in patients receiving a dose of 1.8 mg/kg of Adcetris. About 24% of the total MMAE ingested as part of the ADC during an ADCETRIS infusion was recovered in both urine and feces over a 7-day time frame. Of the recovered MMAE, approximately 72% was found in the feces and the majority of the excreted MMAE was excreted as unchanged drug. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is approximately 4-6 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The liver is the primary route of clearance for MMAE. The pharmacokinetics and safety of Brentuximab vedotin and MMAE were examined after the administration of 1.2 mg/kg of Adcetris to patients with mild, moderate, and severe hepatic impairment. In patients with moderate and severe hepatic impairment, the rate of ≥Grade 3 adverse reactions was 6/6 (100%) compared to 3/8 (38%) in patients with normal hepatic function. It is recommended to avoid use in patients with severe renal impairment (CrCl <30mL/min). •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most severe toxic reaction seen in patients is progressive multifocal leukoencephalopathy. Progressive multifocal leukoencephalopathy (PML) follows infection by the JC virus (which is not related to Creutzfeldt-Jakob disease). Symptoms of this condition begin insidiously and usually worsen progressively. The symptoms vary depending on which region of the brain is infected. In about two out of three patients, mental function deteriorates rapidly, leading to dementia. Speaking and walking may become increasingly difficult. Vision may be impaired, and total blindness may occur. Rarely, headaches and seizures can occur, mainly in immunocompromised patients. The most serious sequela of this condition is death. Common adverse effects of Adcetris may include: neutropenia, anemia, peripheral neuropathy, nausea, fatigue, constipation, diarrhea, vomiting, and fever. In one trial, neutropenia occurred in 91 percent of patients treated with Adcetris plus chemotherapy, which was associated with a 19 percent rate of febrile neutropenia (neutropenia and fever). Preventive treatment with G-CSF, a growth factor for the bone marrow to produce white blood cells, is recommended with Adcetris plus chemotherapy for the first-line treatment of Stage III or IV cHL. Adcetris has a boxed warning that emphasizes the risk of John Cunningham virus infection leading to progressive multifocal leukoencephalopathy, or PML, a rare but serious brain infection that may be lethal. Serious risks of Adcetris include peripheral neuropathy; severe allergic (anaphylaxis) or infusion-site reactions; damage to the blood, lungs and liver (hematologic, pulmonary and hepato-toxicities); severe/opportunistic infections; metabolic abnormalities (tumor lysis syndrome); dermatologic reactions and gastrointestinal complications. Adcetris may cause harm to the fetus and newborn baby; women should be warned of the potential risk to the fetus and to use effective contraception, and to avoid breastfeeding while taking Adcetris. MMAE was found to be genotoxic in the rat bone marrow micronucleus study through an aneugenic mechanism. This effect is consistent with the pharmacological effect of MMAE as a microtubule-disrupting drug. Fertility studies with Brentuximab vedotin or MMAE have not been conducted. Despite this, results of repeat-dose toxicity studies in rats suggest the potential for Brentuximab vedotin to have a negative effect on male reproductive function and fertility. In a 4-week repeated-dose toxicity study in rats with weekly dosing at 0.5, 5 or 10 mg/kg brentuximab vedotin, seminiferous tubule degeneration, Sertoli cell vacuolation, reduced spermatogenesis, and aspermia were observed. Effects in animals were seen mostly at 5 and 10 mg/kg doses of brentuximab vedotin. These dosages are approximately 3 and 6-fold the human recommended dose of 1.8 mg/kg, respectively, based on individual body weight. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Adcetris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brentuximab vedotin is a CD30-directed antibody-drug conjugate used to treat various types of lymphoma.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Brentuximab vedotin interact? Information: •Drug A: Aducanumab •Drug B: Brentuximab vedotin •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Brentuximab vedotin is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brentuximab vedotin is indicated in adult patients for the treatment of previously untreated stage III or IV classical Hodgkin's lymphoma (cHL) in combination with doxorubicin, vinblastine, and dacarbazine. It is also indicated for the treatment of cHL post-autologous hematopoietic stem cell transplantation (auto-HSCT) in patients at high risk of relapse or progression. Finally, it may be used in the treatment of adult patients with cHL who have previously failed either auto-HSCT or at least two prior multi-agent chemotherapy regimens if they are not candidates for auto-HSCT. Brentuximab vedotin is additionally indicated in the treatment of previously untreated systemic anaplastic large cell lymphoma (sALCL), or other CD30-expressing peripheral T-cell lymphomas (PTCL), in combination with cyclophosphamide, doxorubicin, and prednisone. It may also be used as monotherapy in sALCL after therapeutic failure of a least one prior multi-agent chemotherapy regimen. Brentuximab vedotin is also indicated in the treatment of primary cutaneous large anaplastic large cell lymphoma, or CD30-expressing mycosis fungoides, who have received prior systemic therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Brentuximab vedotin causes apoptosis of tumor cells by preventing cell cycle progression of the G2 to M phase through disruption of the cytosolic microtuble network, thus preventing tumor growth and proliferation. Hodgkin lymphoma (HL) is characterized by malignant Reed-Sternberg cells which express CD30, a marker of large cell lymphoma. Until March 2018, USA National Comprehensive Cancer Network guidelines for patients with advanced HL (stage III/IV disease) recommend treatment with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), or escalated bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPP) as first-line regimens. ABVD appears to be as effective, with fewer side effects, as escalated BEACOPP. Escalated BEACOPP leads to a greater progression-free survival but no difference in overall survival. Recent progress in technology has enabled a new shift to cancer therapy targeting specific molecules. Brentuximab vedotin, a CD30-directed antibody conjugate, selectively targets malignant HL cells. The effect of Brentuximab vedotin (1.8 mg/kg) on the QTc interval was studied in an open-label, single-group study in 46 patients diagnosed with CD30-expressing hematologic malignancies. Ingestion of brentuximab vedotin did not prolong the mean cardiac QTc interval >10 ms from baseline levels. Smaller increases in the mean QTc interval (<10 ms) cannot be ruled out because this study did not include a placebo arm and a positive control arm. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brentuximab vedotin is composed of 3 parts: a chimeric human-murine IgG1 that selectively targets CD30, monomethyl auristatin E (MMAE), which is a microtubule-disrupting agent, and a protease-susceptible linker that links the antibody and MMAE. The IgG1 antibody enables Brentuximab vedotin to target tumor cells expressing CD30 on their surface. Following this Brentuximab vedotin enters the cell. Once inside, the linker is cleaved releasing MMAE which binds disrupts the microtubule network. The antibody component of this drug is a chimeric IgG1 directed against CD30. The small molecule, MMAE, is a microtubule-disrupting particle. MMAE is covalently attached to the antibody by a linker. Data suggest that the anticancer activity of Adcertris is due to the binding of the ADC to CD30-expressing cells, followed by internalization of the ADC-CD30 complex, and the subsequent release of MMAE by proteolytic cleavage. Binding of MMAE to tubulin disrupts the microtubule network within the cell, inducing cell cycle arrest and apoptotis of the malignant cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Steady-state of the ADC is achieved within 21 days with every 3-week dosing of Adcetris. Minimal to no accumulation of ADC is observed with multiple doses at the every 3-week schedule. The time to maximum concentration for MMAE ranges from approximately 1 to 3 days. Similar to the ADC, steady-state of MMAE is achieved within 21 days with every 3-week dosing of Adcetris. MMAE exposures decrease with continued administration of Adcetris with about 50% to 80% of the exposure of the first dose being observed at future doses. The AUC of MMAE was measured to be approximately 2.2-fold higher in patients with hepatic impairment in comparison with patients with normal hepatic function. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): MMAE is unlikely to displace or to be displaced by highly protein-bound drugs. In vitro studies show that MMAE is a substrate of P-gp and was not a potent inhibitor of P-gp. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): In vitro, the binding of MMAE to human plasma proteins is in the range of 68–82%. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Data in both animals and humans suggest that only a small fraction of MMAE released from brentuximab vedotin is metabolized. In vitro data indicate that the MMAE metabolism that occurs is primarily via oxidation by CYP3A4/5. In vitro studies using human liver microsomes indicate that MMAE inhibits CYP3A4/5 but not other CYP isoforms. MMAE did not induce any major CYP450 enzymes in primary cultures of human hepatocytes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): This drug appears follow metabolite kinetics, with the elimination of appearing to be limited by its rate of release from the antibody-drug conjugate (ADC). An excretion study was done in patients receiving a dose of 1.8 mg/kg of Adcetris. About 24% of the total MMAE ingested as part of the ADC during an ADCETRIS infusion was recovered in both urine and feces over a 7-day time frame. Of the recovered MMAE, approximately 72% was found in the feces and the majority of the excreted MMAE was excreted as unchanged drug. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is approximately 4-6 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The liver is the primary route of clearance for MMAE. The pharmacokinetics and safety of Brentuximab vedotin and MMAE were examined after the administration of 1.2 mg/kg of Adcetris to patients with mild, moderate, and severe hepatic impairment. In patients with moderate and severe hepatic impairment, the rate of ≥Grade 3 adverse reactions was 6/6 (100%) compared to 3/8 (38%) in patients with normal hepatic function. It is recommended to avoid use in patients with severe renal impairment (CrCl <30mL/min). •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most severe toxic reaction seen in patients is progressive multifocal leukoencephalopathy. Progressive multifocal leukoencephalopathy (PML) follows infection by the JC virus (which is not related to Creutzfeldt-Jakob disease). Symptoms of this condition begin insidiously and usually worsen progressively. The symptoms vary depending on which region of the brain is infected. In about two out of three patients, mental function deteriorates rapidly, leading to dementia. Speaking and walking may become increasingly difficult. Vision may be impaired, and total blindness may occur. Rarely, headaches and seizures can occur, mainly in immunocompromised patients. The most serious sequela of this condition is death. Common adverse effects of Adcetris may include: neutropenia, anemia, peripheral neuropathy, nausea, fatigue, constipation, diarrhea, vomiting, and fever. In one trial, neutropenia occurred in 91 percent of patients treated with Adcetris plus chemotherapy, which was associated with a 19 percent rate of febrile neutropenia (neutropenia and fever). Preventive treatment with G-CSF, a growth factor for the bone marrow to produce white blood cells, is recommended with Adcetris plus chemotherapy for the first-line treatment of Stage III or IV cHL. Adcetris has a boxed warning that emphasizes the risk of John Cunningham virus infection leading to progressive multifocal leukoencephalopathy, or PML, a rare but serious brain infection that may be lethal. Serious risks of Adcetris include peripheral neuropathy; severe allergic (anaphylaxis) or infusion-site reactions; damage to the blood, lungs and liver (hematologic, pulmonary and hepato-toxicities); severe/opportunistic infections; metabolic abnormalities (tumor lysis syndrome); dermatologic reactions and gastrointestinal complications. Adcetris may cause harm to the fetus and newborn baby; women should be warned of the potential risk to the fetus and to use effective contraception, and to avoid breastfeeding while taking Adcetris. MMAE was found to be genotoxic in the rat bone marrow micronucleus study through an aneugenic mechanism. This effect is consistent with the pharmacological effect of MMAE as a microtubule-disrupting drug. Fertility studies with Brentuximab vedotin or MMAE have not been conducted. Despite this, results of repeat-dose toxicity studies in rats suggest the potential for Brentuximab vedotin to have a negative effect on male reproductive function and fertility. In a 4-week repeated-dose toxicity study in rats with weekly dosing at 0.5, 5 or 10 mg/kg brentuximab vedotin, seminiferous tubule degeneration, Sertoli cell vacuolation, reduced spermatogenesis, and aspermia were observed. Effects in animals were seen mostly at 5 and 10 mg/kg doses of brentuximab vedotin. These dosages are approximately 3 and 6-fold the human recommended dose of 1.8 mg/kg, respectively, based on individual body weight. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Adcetris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brentuximab vedotin is a CD30-directed antibody-drug conjugate used to treat various types of lymphoma. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Brodalumab interact?
•Drug A: Aducanumab •Drug B: Brodalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Brodalumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brodalumab has been approved for the treatment of psoriasis vulgaris, psoriatic arthritis, pustular psoriasis and psoriatic erythroderma. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Increase in the level of IL-17 due to blocking of its receptors. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brodalumab binds with high affinity to interleukin (IL)-17 receptor A, thereby inhibiting several pro-inflammatory cytokines from the IL-17 family. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 4.62 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 0.223 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Siliq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brodalumab is a monoclonal antibody used to treat moderate to severe plaque psoriasis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Brodalumab interact? Information: •Drug A: Aducanumab •Drug B: Brodalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Brodalumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brodalumab has been approved for the treatment of psoriasis vulgaris, psoriatic arthritis, pustular psoriasis and psoriatic erythroderma. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Increase in the level of IL-17 due to blocking of its receptors. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brodalumab binds with high affinity to interleukin (IL)-17 receptor A, thereby inhibiting several pro-inflammatory cytokines from the IL-17 family. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 4.62 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): 0.223 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Siliq •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brodalumab is a monoclonal antibody used to treat moderate to severe plaque psoriasis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Brolucizumab interact?
•Drug A: Aducanumab •Drug B: Brolucizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Brolucizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brolucizumab is a monoclonal antibody indicated to treat neovascular age related macular degeneration. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Brolucizumab is a vascular endothelial growth factor (VEGF) inhibitor which reduces proliferation of endothelial cells, vascularization of the tissue, and permeability of the vasculature. It has a long duration of action as it is given monthly. Patients should be counselled regarding the risk of endophthalmitis, retinal detachment, and arterial thromboembolic events following administration of this medication. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brolucizumab is a vascular endothelial growth factor (VEGF) inhibitor which targets the major VEGF-A isoforms: VEGF 110, VEGF 121, and VEGF 165. Inhibition of these VEGF-A isoforms reduce proliferation of endothelial cells, vascularization of the tissue, and permeability of the vasculature. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): A 3mg dose of brolucizumab reaches a C max of 20.7ng/mL with a T max of 20.3h and an AUC of 2480ng*h/mL. A 6mg dose of brolucizumab reaches a C max of 77.6ng/mL with a T max of 17.4h and an AUC of 9169ng*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Data regarding the volume of distribution is not readily available. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are generally not protein bound in serum. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to undergo proteolysis to smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Data regarding the route of elimination is not readily available. Monoclonal antibodies are generally not eliminated in the urine, and only a small amount is excreted in bile. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The systemic half life of bolucizumab is 4.4±2.0 days. The elimination half life is 108h for a 3mg dose and 103h for a 6mg dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Data regarding the clearance of brolucizumab is not readily available. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding the toxicity of brolucizumab is not readily available. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Beovu •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brolucizumab is an anti VEGF-A monoclonal antibody indicated to treat neovascular age related macular degeneration.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Brolucizumab interact? Information: •Drug A: Aducanumab •Drug B: Brolucizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Brolucizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Brolucizumab is a monoclonal antibody indicated to treat neovascular age related macular degeneration. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Brolucizumab is a vascular endothelial growth factor (VEGF) inhibitor which reduces proliferation of endothelial cells, vascularization of the tissue, and permeability of the vasculature. It has a long duration of action as it is given monthly. Patients should be counselled regarding the risk of endophthalmitis, retinal detachment, and arterial thromboembolic events following administration of this medication. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Brolucizumab is a vascular endothelial growth factor (VEGF) inhibitor which targets the major VEGF-A isoforms: VEGF 110, VEGF 121, and VEGF 165. Inhibition of these VEGF-A isoforms reduce proliferation of endothelial cells, vascularization of the tissue, and permeability of the vasculature. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): A 3mg dose of brolucizumab reaches a C max of 20.7ng/mL with a T max of 20.3h and an AUC of 2480ng*h/mL. A 6mg dose of brolucizumab reaches a C max of 77.6ng/mL with a T max of 17.4h and an AUC of 9169ng*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Data regarding the volume of distribution is not readily available. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are generally not protein bound in serum. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to undergo proteolysis to smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Data regarding the route of elimination is not readily available. Monoclonal antibodies are generally not eliminated in the urine, and only a small amount is excreted in bile. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The systemic half life of bolucizumab is 4.4±2.0 days. The elimination half life is 108h for a 3mg dose and 103h for a 6mg dose. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Data regarding the clearance of brolucizumab is not readily available. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding the toxicity of brolucizumab is not readily available. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Beovu •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Brolucizumab is an anti VEGF-A monoclonal antibody indicated to treat neovascular age related macular degeneration. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Burosumab interact?
•Drug A: Aducanumab •Drug B: Burosumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Burosumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): This drug is indicated for the treatment of X-linked hypophosphatemia with radiological evidence of bone disease in children of 1 year of age and older and adolescents with growing skeletons. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): This drug has the ability to reduce the loss of phosphate, to improve pathologically low serum phosphate concentrations and other metabolic changes, as well as to reduce the severity of rickets as seen radiographically. In summary, this drug works to support of bone mineralization. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Burosumab is a recombinant human monoclonal antibody (IgG1) that both binds to and inhibits the actions of fibroblast growth factor 23 (FGF23). By inhibiting this growth factor, burosumab increases the tubular reabsorption of phosphate from the kidney and thus increases serum concentration of 1, 25 dihydroxy-Vitamin D. This form of vitamin D enhances intestinal absorption of phosphate and calcium, supporting bone mineralization. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Burosumab absorption after subcutaneous injection sites into to the blood circulation is nearly complete. Following the subcutaneous route of administration, the time to reach maximum serum concentrations (Tmax) of burosumab is estimated at 5-10 days. The peak serum concentration (Cmax) and area under the concentration-time curve (AUC) of serum burosumab is proportional to the dose, over the dose range of 0.1-2.0 mg/kg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Burosumab is comprised solely of amino acids and carbohydrates as a native immunoglobulin and is not likeluy to be eliminated by hepatic metabolic mechanisms. The metabolism of burosumab and elimination are expected to follow the immunoglobulin clearance pathways, which results in its degradation to smaller peptides and amino acids. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Burosumab is composed solely of amino acids and carbohydrates as a native immunoglobulin and is unlikely to be eliminated via hepatic metabolic mechanisms. Its metabolism and elimination are expected to follow the immunoglobulin clearance pathways, resulting in degradation to small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Because of its molecular size, burosumab is not likely to be directly excreted. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): About 19 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of burosumab depends on weight and is estimated to be 0.290 L/day and 0.136 L/day in a typical adult (70 kg) and pediatric (30 kg) XLH patient, respectively. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The toxicity of Crysvita can be classified into several categories: Ectopic mineralisation: Clinically manifested by nephrocalcinosis, has been seen in patients with XLH treated with oral phosphorous and vitamin D analogues. These drugs should be stopped at least 1 week before starting burosumab treatment. Monitoring for signs and symptoms of nephrocalcinosis, e.g. by renal ultrasonography, is recommended at the beginning of treatment and at intervals of every 6 months for the first 12 months of treatment, and yearly thereafter. Regular monitoring of plasma alkaline phosphatases, Calcium, PTH, and creatinine is advised at 6 months intervals(every 3 months for children 1- 2 years) or as indicated. Monitoring of urine calcium and phosphate is suggested every 3 months. Hyperphosphatemia Fasting serum phosphate level must be followed due to the risk of hyperphosphatemia while taking this drug. To decrease the risk for ectopic mineralization, it is advised that fasting serum phosphate is aimed to be in the lower end of the normal reference range for any given age. Dose interruption and/or dose reduction may be required. Regular measurement of postprandial serum phosphate is advised. Serum parathyroid hormone increases Increases in serum parathyroid hormone have been measured in some XLH patients while undergoing treatment with burosumab. Regular measurement of serum parathyroid hormone is recommended. Injection site reactions Administration of burosumab, like other injections, can lead to local injection site reactions. Administration of this drug should cease in any patient experiencing severe injection site reactions and appropriate medical therapy administered. Hypersensitivity Burosumab should be discontinued if serious hypersensitivity reactions occur and appropriate medical treatment should be provided. Reproductive toxicity/pregnancy There are no or limited amount of data available from the use of burosumab in pregnant women. Studies in animals have demonstrated reproductive toxicity. Burosumab use is not advised during pregnancy and in women of childbearing potential/age currently not using contraception. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Crysvita •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Burosumab is a fibroblast growth factor 23 blocking antibody used to treat X-linked hypophosphatemia.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Burosumab interact? Information: •Drug A: Aducanumab •Drug B: Burosumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Burosumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): This drug is indicated for the treatment of X-linked hypophosphatemia with radiological evidence of bone disease in children of 1 year of age and older and adolescents with growing skeletons. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): This drug has the ability to reduce the loss of phosphate, to improve pathologically low serum phosphate concentrations and other metabolic changes, as well as to reduce the severity of rickets as seen radiographically. In summary, this drug works to support of bone mineralization. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Burosumab is a recombinant human monoclonal antibody (IgG1) that both binds to and inhibits the actions of fibroblast growth factor 23 (FGF23). By inhibiting this growth factor, burosumab increases the tubular reabsorption of phosphate from the kidney and thus increases serum concentration of 1, 25 dihydroxy-Vitamin D. This form of vitamin D enhances intestinal absorption of phosphate and calcium, supporting bone mineralization. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Burosumab absorption after subcutaneous injection sites into to the blood circulation is nearly complete. Following the subcutaneous route of administration, the time to reach maximum serum concentrations (Tmax) of burosumab is estimated at 5-10 days. The peak serum concentration (Cmax) and area under the concentration-time curve (AUC) of serum burosumab is proportional to the dose, over the dose range of 0.1-2.0 mg/kg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Burosumab is comprised solely of amino acids and carbohydrates as a native immunoglobulin and is not likeluy to be eliminated by hepatic metabolic mechanisms. The metabolism of burosumab and elimination are expected to follow the immunoglobulin clearance pathways, which results in its degradation to smaller peptides and amino acids. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Burosumab is composed solely of amino acids and carbohydrates as a native immunoglobulin and is unlikely to be eliminated via hepatic metabolic mechanisms. Its metabolism and elimination are expected to follow the immunoglobulin clearance pathways, resulting in degradation to small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Because of its molecular size, burosumab is not likely to be directly excreted. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): About 19 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of burosumab depends on weight and is estimated to be 0.290 L/day and 0.136 L/day in a typical adult (70 kg) and pediatric (30 kg) XLH patient, respectively. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The toxicity of Crysvita can be classified into several categories: Ectopic mineralisation: Clinically manifested by nephrocalcinosis, has been seen in patients with XLH treated with oral phosphorous and vitamin D analogues. These drugs should be stopped at least 1 week before starting burosumab treatment. Monitoring for signs and symptoms of nephrocalcinosis, e.g. by renal ultrasonography, is recommended at the beginning of treatment and at intervals of every 6 months for the first 12 months of treatment, and yearly thereafter. Regular monitoring of plasma alkaline phosphatases, Calcium, PTH, and creatinine is advised at 6 months intervals(every 3 months for children 1- 2 years) or as indicated. Monitoring of urine calcium and phosphate is suggested every 3 months. Hyperphosphatemia Fasting serum phosphate level must be followed due to the risk of hyperphosphatemia while taking this drug. To decrease the risk for ectopic mineralization, it is advised that fasting serum phosphate is aimed to be in the lower end of the normal reference range for any given age. Dose interruption and/or dose reduction may be required. Regular measurement of postprandial serum phosphate is advised. Serum parathyroid hormone increases Increases in serum parathyroid hormone have been measured in some XLH patients while undergoing treatment with burosumab. Regular measurement of serum parathyroid hormone is recommended. Injection site reactions Administration of burosumab, like other injections, can lead to local injection site reactions. Administration of this drug should cease in any patient experiencing severe injection site reactions and appropriate medical therapy administered. Hypersensitivity Burosumab should be discontinued if serious hypersensitivity reactions occur and appropriate medical treatment should be provided. Reproductive toxicity/pregnancy There are no or limited amount of data available from the use of burosumab in pregnant women. Studies in animals have demonstrated reproductive toxicity. Burosumab use is not advised during pregnancy and in women of childbearing potential/age currently not using contraception. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Crysvita •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Burosumab is a fibroblast growth factor 23 blocking antibody used to treat X-linked hypophosphatemia. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Canakinumab interact?
•Drug A: Aducanumab •Drug B: Canakinumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Canakinumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Canakinumab is indicated for the treatment of periodic fever syndromes in specific patient populations. In patients ≥4 years of age, canakinumab is indicated for the treatment of Cryopyrin-Associated Periodic Syndromes (CAPS), including Familial Cold Auto-inflammatory Syndrome (FCAS) and Muckle-Wells Syndrome (MWS). In adult and pediatric patients, canakinumab is also indicated for the treatment of Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS), Hyperimmunoglobulin D Syndrome (HIDS)/Mevalonate Kinase Deficiency (MKD), and Familial Mediterranean Fever (FMF). Canakinumab is additionally indicated in patients ≥2 years of age for the treatment of active Still's disease, including Adult-Onset Still's Disease (AOSD) and Systemic Juvenile Idiopathic Arthritis (SJIA). Canakinumab is also indicated for the treatment of gout flares in adult patients in whom standard therapies (e.g. NSAIDs, colchicine) are contraindicated, not tolerated, or ineffective, and in whom repeated courses of corticosteroids are not appropriate. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Canakinumab neutralizes the activity of human IL-1β, which is involved in several inflammatory disorders. Canakinumab has promising clinical safety and pharmacokinetic properties, and demonstrated potential for the treatment of cryopyrin-associated periodic syndromes (CAPS), systemic juvenile idiopathic arthritis (SJIA), and possibly for other complex inflammatory diseases, such as rheumatoid arthritis, COPD disease and ocular diseases. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): In inflammatory diseases involving Cryopyrin-Associated Periodic Syndromes (CAPS), interleukin-1 beta (IL-1β) is excessively activated and drives inflammation. The protein cryopyrin controls the activation of IL-1β, and mutations in cryopyrin's gene, NLRP-3, up-regulate IL-1β activation. Canakinumab binds to human IL-1β and neutralizes its inflammatory activity by blocking its interaction with IL-1 receptors, but it does not bind IL-1α or IL-1 receptor antagonist (IL-1ra). •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absolute bioavailability of subcutaneously administered canakinumab is estimated to be 66%. Peak serum concentration is 16 ± 3.5 mcg/mL and occurs approximately 7 days following a single subcutaneous dose of 150mg. Exposure to canakinumab increases proportionately to the administered dose. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The steady-state volume of distribution of canakinumab is variable based on weight - it was estimated to be 6.01 liters in a typical CAPS patient weighing 70 kg, 3.2 liters in a SJIA patient weighing 33 kg, 6.34 liters for a Periodic Fever Syndrome (TRAPS, HIDS/MKD, FMF) patient weighing 70 kg and 7.9 liters in a typical patient with gout flares weighing 93 kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Canakinumab binds to plasma IL-1β, but plasma protein binding has not been quantified. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Canakinumab, like other therapeutic proteins, is likely degraded via non-specific catabolic processes to smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The route of elimination for canakinumab has not yet been determined. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 26 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of canakinumab is variable based on weight - it was estimated to be 0.174 L/day in a typical CAPS patient weighing 70 kg, 0.11 L/day in an SJIA patient weighing 33 kg, 0.17 L/day in a Periodic Fever Syndrome (TRAPS, HIDS/MKD, FMF) patient weighing 70 kg and 0.23 L/day in a typical patient with gout flares of body weight 93 kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no confirmed cases of overdosage with canakinumab. In the event of an overdose, the patient should be monitored closely and appropriate symptomatic treatment should be administered immediately as clinically indicated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Ilaris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Canakinumab is an interleukin-1β blocker used to treat Periodic Fever Syndromes such as Cryopyrin-Associated Periodic Syndromes (CAPS) and Familial Mediterranean Fever (FMF), and also to treat active Systemic Juvenile Idiopathic Arthritis (SJIA).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Canakinumab interact? Information: •Drug A: Aducanumab •Drug B: Canakinumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Canakinumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Canakinumab is indicated for the treatment of periodic fever syndromes in specific patient populations. In patients ≥4 years of age, canakinumab is indicated for the treatment of Cryopyrin-Associated Periodic Syndromes (CAPS), including Familial Cold Auto-inflammatory Syndrome (FCAS) and Muckle-Wells Syndrome (MWS). In adult and pediatric patients, canakinumab is also indicated for the treatment of Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS), Hyperimmunoglobulin D Syndrome (HIDS)/Mevalonate Kinase Deficiency (MKD), and Familial Mediterranean Fever (FMF). Canakinumab is additionally indicated in patients ≥2 years of age for the treatment of active Still's disease, including Adult-Onset Still's Disease (AOSD) and Systemic Juvenile Idiopathic Arthritis (SJIA). Canakinumab is also indicated for the treatment of gout flares in adult patients in whom standard therapies (e.g. NSAIDs, colchicine) are contraindicated, not tolerated, or ineffective, and in whom repeated courses of corticosteroids are not appropriate. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Canakinumab neutralizes the activity of human IL-1β, which is involved in several inflammatory disorders. Canakinumab has promising clinical safety and pharmacokinetic properties, and demonstrated potential for the treatment of cryopyrin-associated periodic syndromes (CAPS), systemic juvenile idiopathic arthritis (SJIA), and possibly for other complex inflammatory diseases, such as rheumatoid arthritis, COPD disease and ocular diseases. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): In inflammatory diseases involving Cryopyrin-Associated Periodic Syndromes (CAPS), interleukin-1 beta (IL-1β) is excessively activated and drives inflammation. The protein cryopyrin controls the activation of IL-1β, and mutations in cryopyrin's gene, NLRP-3, up-regulate IL-1β activation. Canakinumab binds to human IL-1β and neutralizes its inflammatory activity by blocking its interaction with IL-1 receptors, but it does not bind IL-1α or IL-1 receptor antagonist (IL-1ra). •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absolute bioavailability of subcutaneously administered canakinumab is estimated to be 66%. Peak serum concentration is 16 ± 3.5 mcg/mL and occurs approximately 7 days following a single subcutaneous dose of 150mg. Exposure to canakinumab increases proportionately to the administered dose. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The steady-state volume of distribution of canakinumab is variable based on weight - it was estimated to be 6.01 liters in a typical CAPS patient weighing 70 kg, 3.2 liters in a SJIA patient weighing 33 kg, 6.34 liters for a Periodic Fever Syndrome (TRAPS, HIDS/MKD, FMF) patient weighing 70 kg and 7.9 liters in a typical patient with gout flares weighing 93 kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Canakinumab binds to plasma IL-1β, but plasma protein binding has not been quantified. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Canakinumab, like other therapeutic proteins, is likely degraded via non-specific catabolic processes to smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The route of elimination for canakinumab has not yet been determined. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 26 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of canakinumab is variable based on weight - it was estimated to be 0.174 L/day in a typical CAPS patient weighing 70 kg, 0.11 L/day in an SJIA patient weighing 33 kg, 0.17 L/day in a Periodic Fever Syndrome (TRAPS, HIDS/MKD, FMF) patient weighing 70 kg and 0.23 L/day in a typical patient with gout flares of body weight 93 kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no confirmed cases of overdosage with canakinumab. In the event of an overdose, the patient should be monitored closely and appropriate symptomatic treatment should be administered immediately as clinically indicated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Ilaris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Canakinumab is an interleukin-1β blocker used to treat Periodic Fever Syndromes such as Cryopyrin-Associated Periodic Syndromes (CAPS) and Familial Mediterranean Fever (FMF), and also to treat active Systemic Juvenile Idiopathic Arthritis (SJIA). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Caplacizumab interact?
•Drug A: Aducanumab •Drug B: Caplacizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Caplacizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Capacizumab is approved for the treatment of adults experiencing an episode of acquired thrombotic thrombocytopenic purpura (aTTP) in conjunction with plasma exchange and immunosuppression in patients 18 years or older. aTTP is a rare autoimmune condition presented by a disruption of blood clotting order which is translated into systemic microvascular thrombosis leading to profound thrombocytopenia, hemolytic anemia and organ ischemia. It is caused by the production of autoantibodies against ADAMTS-13 which is the protein in charge of cleaving the von-Wilebrand factor. The lack of this process produces the generation of ultra large von Wilebrand multimers that bind to platelets and form microthrombi and causing thromboembolic complications. Previously, capacizumab was under review for the prevention of thrombosis in high-risk patients with acute coronary syndrome undergoing percutaneous coronary intervention but this indication was withdrawn. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In vitro studies have shown a caplacizumab-driven complete inhibition of platelet aggregation and in phase II clinical trials, it was shown to reduce the activity of the von Willebrand factor by 20% from treatment day 1 until treatment day 30. The level of von Willebrand factor in the plasma was also significantly reduced due to the clearance of the von Willebrand-caplacizumab complex. In phase III clinical trials, more than 50% of the tested individuals reached a platelet normal count. In these trials, it was observed as well a significant reduction in the incidence of aTTP as well as a significant reduction in the median time to response of about 39%. However, as caplacizumab does not target autoimmune response, relapses were observed after treatment discontinuation. The last clinical trial prior approval showed production of a platelet count of more than 150,000 per mcl after the cessation of plasma exchange therapy for 5 days as well as a reduction of patient recurrent thrombotic thrombocytopenic purpura and of disease-related death during treatment. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Caplacizumab acts by targetting the A1 domain of the ultra-large von Willebrand factor which in order inhibits the interaction with the glycoprotein Ib-IX-V receptor in the platelets. Caplacizumab binds to von Willebrand factor with an affinity of 8.5 nM, thus it is very target specific.[5305] The blockage of the von Willebrand factor prevents the interaction between the von Willebrand factor and the platelets, hence, preventing platelet aggregation. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After intravenous administration of caplacizumab, the pharmacokinetic profile is non-linear and to follow a non-compartmental model as the pharmacokinetic profile of this drug is dependent on the expression of von Willebrand factor. After administration, caplacizumab is rapidly absorbed with a dose-dependent behavior. The peak concentration was reached after 6-7 hours and it presents a very high bioavailability reaching approximately 90%. The subcutaneous administration of a dose of 10 mg of caplacizumab produced a peak concentration of 528 ng/ml and an AUC of 7951 ng.h/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The reported volume of distribution of caplacizumab is 6.33 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): This antibody acts directly on plasma proteins and thus, this parameter is not significant for drug description. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Caplacizumab is degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The elimination of caplacizumab is divided between target-driven disposition which is driven by the binding to the von Willebrand factor and non-target disposition driven by the combination of catabolism and renal elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The reported half-life is reported to be in the range of 16-27 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): As the elimination is highly divided among hepatic, target-driven and renal elimination, the calculation of the clearance rate is not significant for drug description. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Cases of overdose are represented by an increased risk of bleeding and in these cases, external administration of von Willebrand factor concentrate should be done. To this point, there have not been performed studies regarding the effect on fertility, genotoxicity, or carcinogenicity •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Cablivi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Caplacizumab is a von Willebrand factor (vWF)-directed antibody fragment used to treat acquired thrombotic thrombocytopenic purpura (aTTP).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Caplacizumab interact? Information: •Drug A: Aducanumab •Drug B: Caplacizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Caplacizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Capacizumab is approved for the treatment of adults experiencing an episode of acquired thrombotic thrombocytopenic purpura (aTTP) in conjunction with plasma exchange and immunosuppression in patients 18 years or older. aTTP is a rare autoimmune condition presented by a disruption of blood clotting order which is translated into systemic microvascular thrombosis leading to profound thrombocytopenia, hemolytic anemia and organ ischemia. It is caused by the production of autoantibodies against ADAMTS-13 which is the protein in charge of cleaving the von-Wilebrand factor. The lack of this process produces the generation of ultra large von Wilebrand multimers that bind to platelets and form microthrombi and causing thromboembolic complications. Previously, capacizumab was under review for the prevention of thrombosis in high-risk patients with acute coronary syndrome undergoing percutaneous coronary intervention but this indication was withdrawn. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In vitro studies have shown a caplacizumab-driven complete inhibition of platelet aggregation and in phase II clinical trials, it was shown to reduce the activity of the von Willebrand factor by 20% from treatment day 1 until treatment day 30. The level of von Willebrand factor in the plasma was also significantly reduced due to the clearance of the von Willebrand-caplacizumab complex. In phase III clinical trials, more than 50% of the tested individuals reached a platelet normal count. In these trials, it was observed as well a significant reduction in the incidence of aTTP as well as a significant reduction in the median time to response of about 39%. However, as caplacizumab does not target autoimmune response, relapses were observed after treatment discontinuation. The last clinical trial prior approval showed production of a platelet count of more than 150,000 per mcl after the cessation of plasma exchange therapy for 5 days as well as a reduction of patient recurrent thrombotic thrombocytopenic purpura and of disease-related death during treatment. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Caplacizumab acts by targetting the A1 domain of the ultra-large von Willebrand factor which in order inhibits the interaction with the glycoprotein Ib-IX-V receptor in the platelets. Caplacizumab binds to von Willebrand factor with an affinity of 8.5 nM, thus it is very target specific.[5305] The blockage of the von Willebrand factor prevents the interaction between the von Willebrand factor and the platelets, hence, preventing platelet aggregation. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After intravenous administration of caplacizumab, the pharmacokinetic profile is non-linear and to follow a non-compartmental model as the pharmacokinetic profile of this drug is dependent on the expression of von Willebrand factor. After administration, caplacizumab is rapidly absorbed with a dose-dependent behavior. The peak concentration was reached after 6-7 hours and it presents a very high bioavailability reaching approximately 90%. The subcutaneous administration of a dose of 10 mg of caplacizumab produced a peak concentration of 528 ng/ml and an AUC of 7951 ng.h/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The reported volume of distribution of caplacizumab is 6.33 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): This antibody acts directly on plasma proteins and thus, this parameter is not significant for drug description. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Caplacizumab is degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The elimination of caplacizumab is divided between target-driven disposition which is driven by the binding to the von Willebrand factor and non-target disposition driven by the combination of catabolism and renal elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The reported half-life is reported to be in the range of 16-27 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): As the elimination is highly divided among hepatic, target-driven and renal elimination, the calculation of the clearance rate is not significant for drug description. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Cases of overdose are represented by an increased risk of bleeding and in these cases, external administration of von Willebrand factor concentrate should be done. To this point, there have not been performed studies regarding the effect on fertility, genotoxicity, or carcinogenicity •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Cablivi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Caplacizumab is a von Willebrand factor (vWF)-directed antibody fragment used to treat acquired thrombotic thrombocytopenic purpura (aTTP). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Casirivimab interact?
•Drug A: Aducanumab •Drug B: Casirivimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Casirivimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): According to the Emergency Use Authorization (EUA) by the FDA and EMA, indevimab is used only with casirivimab to prevent COVID-19 and treat mild to moderate COVID-19 from laboratory-confirmed SARS-CoV-2 infection in patients aged 12 years of age and older who weigh at least 40 kg. Treatment is reserved for patients who are at high risk for progressing to require hospitalization or severe COVID-19. This combination may only be administered by intravenous infusion in healthcare settings with immediate access to treatment for infusion reactions and anaphylaxis, and the ability to activate the emergency medical system (EMS), as required. Limitations of use Imdevimab and casirivimab are not for use in patients currently hospitalized due to COVID-19, patients requiring oxygen therapy due to COVID-19, patients requiring increases in baseline oxygen flow rate from COVID-19, or patients on oxygen therapy for non-COVID-19 related morbidity. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Casirivimab and imdevimab work to neutralize the spike protein of SARS-CoV-2. In a clinical trial, casirivimab and imdevimab, when given together, reduced COVID-19-related hospitalization or emergency room visits in patients diagnosed with COVID-19 who were at high risk for disease progression within 28 days after treatment. No benefit has been shown in patients already hospitalized due to COVID-19 receiving this combination. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Casirivimab is a recombinant human IgG1 monoclonal antibody targeting the receptor binding domain of the spike protein of SARS-CoV-2; a protein playing an important role in viral attachment, fusion, and entry into the cell. Together with imdevimab, casirivimab neutralizes the spike protein of SARS-CoV-2. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information on overdose. Up to 4000 mg, which is approximately seven times the recommended dose of the drug, was administered in clinical trials. There is no known specific antidote for casirivimab overdose so treatment of overdose should involve general supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Casirivimab is part of an investigational recombinant monoclonal antibody cocktail used to treat mild to moderate COVID-19.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Casirivimab interact? Information: •Drug A: Aducanumab •Drug B: Casirivimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Casirivimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): According to the Emergency Use Authorization (EUA) by the FDA and EMA, indevimab is used only with casirivimab to prevent COVID-19 and treat mild to moderate COVID-19 from laboratory-confirmed SARS-CoV-2 infection in patients aged 12 years of age and older who weigh at least 40 kg. Treatment is reserved for patients who are at high risk for progressing to require hospitalization or severe COVID-19. This combination may only be administered by intravenous infusion in healthcare settings with immediate access to treatment for infusion reactions and anaphylaxis, and the ability to activate the emergency medical system (EMS), as required. Limitations of use Imdevimab and casirivimab are not for use in patients currently hospitalized due to COVID-19, patients requiring oxygen therapy due to COVID-19, patients requiring increases in baseline oxygen flow rate from COVID-19, or patients on oxygen therapy for non-COVID-19 related morbidity. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Casirivimab and imdevimab work to neutralize the spike protein of SARS-CoV-2. In a clinical trial, casirivimab and imdevimab, when given together, reduced COVID-19-related hospitalization or emergency room visits in patients diagnosed with COVID-19 who were at high risk for disease progression within 28 days after treatment. No benefit has been shown in patients already hospitalized due to COVID-19 receiving this combination. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Casirivimab is a recombinant human IgG1 monoclonal antibody targeting the receptor binding domain of the spike protein of SARS-CoV-2; a protein playing an important role in viral attachment, fusion, and entry into the cell. Together with imdevimab, casirivimab neutralizes the spike protein of SARS-CoV-2. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information on overdose. Up to 4000 mg, which is approximately seven times the recommended dose of the drug, was administered in clinical trials. There is no known specific antidote for casirivimab overdose so treatment of overdose should involve general supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Casirivimab is part of an investigational recombinant monoclonal antibody cocktail used to treat mild to moderate COVID-19. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Cemiplimab interact?
•Drug A: Aducanumab •Drug B: Cemiplimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Cemiplimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Cemiplimab is indicated to treat: Locally advanced or metastatic cutaneous squamous cell carcinoma (mCSCC) in patients who are not candidates for curative surgery or curative radiation. Locally advanced basal cell carcinoma (laBCC) in previously treated patients with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. Metastatic basal cell carcinoma (mBCC) in patients who were previously treated with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. This indication is approved under accelerated approval based on tumour response rate and durability of response. Continued approval for mBCC may be contingent upon verification and description of clinical benefit. Locally advanced non-small cell lung cancer (NSCLC) in combination with platinum‐based chemotherapy for the first‐line treatment of adults with no EGFR, ALK or ROS1 aberrations, who are not candidates for surgical resection or definitive chemoradiation. It is also indicated to treat metastatic NSCLC in combination with platinum‐based chemotherapy as first-line treatment in adults. Locally advanced or metastatic NSCLC as monotherapy for the first-line treatment of adults whose tumours have high PD-L1 expression [Tumor Proportion Score (TPS) ≥ 50%] as determined by an FDA-approved test, with no EGFR, ALK or ROS1 aberrations. Patients with locally advanced NSCLC must not be candidates for surgical resection or definitive chemoradiation. Recurrent or metastatic cervical cancer in adults with disease progression on or after platinum-based chemotherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Cemiplimab inhibits tumour growth via an immune-mediated mechanism. Cemiplimab works to promote T cell-mediated immune response against tumours by blocking programmed death-1 (PD-1), a negative regulator of T cells. Cemiplimab targets PD-1 with high affinity and potency. In syngeneic mouse tumour models, blocking PD-1 activity by cemiplimab resulted in decreased tumour growth. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): T cells mediate antitumour activity following activation by antigen receptor signalling and CD28 costimulatory signalling. T cell proliferation and activation are regulated by a number of T cell immune regulatory checkpoints, including programmed death-1 (PD-1). PD-1 is an inhibitory co-receptor that is predominantly expressed on the surface of T cells to block T cell activation. Its ligands, PD-L1 and PD-L2, bind to PD-1 to activate downstream signalling cascades that ultimately result in the inhibition of T cell function such as T cell proliferation, cytokine production, and cytotoxicity. PD-1 receptor signalling pathway serves to maintain tolerance and regulate any ineffective or harmful immune responses; however, PD-1 signalling can also attenuate immune responses in cases where such protection is needed, such as autoimmune disorders and malignancy. PD-L1 and PD-L2 are expressed on antigen-presenting cells (APCs) as well as on some types of tumour cells as part of an adaptive immune response by tumours. PD-1 is also upregulated in some cancers, impeding T cell-mediated antitumour activity. Cemiplimab is a human PD-1-blocking antibody that binds to PD-1 and blocks its interaction with its ligands. By disinhibiting PD-1 mediated suppression of T cell activity, cemiplimab works to potentiate T cell cytotoxicity against tumours. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In a pharmacokinetic study involving patients with various solid tumours, the pharmacokinetics of cemiplimab was linear and dose-proportional in the dose range of 1 mg/kg to 10 mg/kg cemiplimab administered intravenously every two weeks. When cemiplimab was administered at a dose of 350 mg every three weeks, the median steady-state concentrations (coefficient of variation, CV%) of cemiplimab ranged between 61 mg/L (45%) and 171 mg/L (28%). Steady-state exposure is achieved after four months of treatment. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution (coefficient of variation, CV%) of cemiplimab at steady-state is 5.3 L (26%). •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As with other monoclonal antibodies, cemiplimab is expected to undergo nonspecific degradation into small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No information is available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The elimination half-life (CV%) at steady state is 20.3 days (29%). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Cemiplimab clearance (CV%) after the first dose is 0.29 L/day (33%) and decreases over time by 29%, resulting in a steady-state clearance (CL ss ) (CV%) of 0.2 L/day (40%). •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information regarding acute toxicity and overdose of cemiplimab. In case of overdose, patients should be closely monitored for signs or symptoms of adverse reactions, and appropriate symptomatic treatment should be initiated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Libtayo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Cemiplimab is a programmed death receptor-1 blocking antibody used to treat cutaneous squamous cell carcinoma, basal cell carcinoma, and non-small cell lung cancer.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Cemiplimab interact? Information: •Drug A: Aducanumab •Drug B: Cemiplimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Cemiplimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Cemiplimab is indicated to treat: Locally advanced or metastatic cutaneous squamous cell carcinoma (mCSCC) in patients who are not candidates for curative surgery or curative radiation. Locally advanced basal cell carcinoma (laBCC) in previously treated patients with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. Metastatic basal cell carcinoma (mBCC) in patients who were previously treated with a hedgehog pathway inhibitor or for whom a hedgehog pathway inhibitor is not appropriate. This indication is approved under accelerated approval based on tumour response rate and durability of response. Continued approval for mBCC may be contingent upon verification and description of clinical benefit. Locally advanced non-small cell lung cancer (NSCLC) in combination with platinum‐based chemotherapy for the first‐line treatment of adults with no EGFR, ALK or ROS1 aberrations, who are not candidates for surgical resection or definitive chemoradiation. It is also indicated to treat metastatic NSCLC in combination with platinum‐based chemotherapy as first-line treatment in adults. Locally advanced or metastatic NSCLC as monotherapy for the first-line treatment of adults whose tumours have high PD-L1 expression [Tumor Proportion Score (TPS) ≥ 50%] as determined by an FDA-approved test, with no EGFR, ALK or ROS1 aberrations. Patients with locally advanced NSCLC must not be candidates for surgical resection or definitive chemoradiation. Recurrent or metastatic cervical cancer in adults with disease progression on or after platinum-based chemotherapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Cemiplimab inhibits tumour growth via an immune-mediated mechanism. Cemiplimab works to promote T cell-mediated immune response against tumours by blocking programmed death-1 (PD-1), a negative regulator of T cells. Cemiplimab targets PD-1 with high affinity and potency. In syngeneic mouse tumour models, blocking PD-1 activity by cemiplimab resulted in decreased tumour growth. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): T cells mediate antitumour activity following activation by antigen receptor signalling and CD28 costimulatory signalling. T cell proliferation and activation are regulated by a number of T cell immune regulatory checkpoints, including programmed death-1 (PD-1). PD-1 is an inhibitory co-receptor that is predominantly expressed on the surface of T cells to block T cell activation. Its ligands, PD-L1 and PD-L2, bind to PD-1 to activate downstream signalling cascades that ultimately result in the inhibition of T cell function such as T cell proliferation, cytokine production, and cytotoxicity. PD-1 receptor signalling pathway serves to maintain tolerance and regulate any ineffective or harmful immune responses; however, PD-1 signalling can also attenuate immune responses in cases where such protection is needed, such as autoimmune disorders and malignancy. PD-L1 and PD-L2 are expressed on antigen-presenting cells (APCs) as well as on some types of tumour cells as part of an adaptive immune response by tumours. PD-1 is also upregulated in some cancers, impeding T cell-mediated antitumour activity. Cemiplimab is a human PD-1-blocking antibody that binds to PD-1 and blocks its interaction with its ligands. By disinhibiting PD-1 mediated suppression of T cell activity, cemiplimab works to potentiate T cell cytotoxicity against tumours. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In a pharmacokinetic study involving patients with various solid tumours, the pharmacokinetics of cemiplimab was linear and dose-proportional in the dose range of 1 mg/kg to 10 mg/kg cemiplimab administered intravenously every two weeks. When cemiplimab was administered at a dose of 350 mg every three weeks, the median steady-state concentrations (coefficient of variation, CV%) of cemiplimab ranged between 61 mg/L (45%) and 171 mg/L (28%). Steady-state exposure is achieved after four months of treatment. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution (coefficient of variation, CV%) of cemiplimab at steady-state is 5.3 L (26%). •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): As with other monoclonal antibodies, cemiplimab is expected to undergo nonspecific degradation into small peptides and individual amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No information is available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The elimination half-life (CV%) at steady state is 20.3 days (29%). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Cemiplimab clearance (CV%) after the first dose is 0.29 L/day (33%) and decreases over time by 29%, resulting in a steady-state clearance (CL ss ) (CV%) of 0.2 L/day (40%). •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information regarding acute toxicity and overdose of cemiplimab. In case of overdose, patients should be closely monitored for signs or symptoms of adverse reactions, and appropriate symptomatic treatment should be initiated. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Libtayo •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Cemiplimab is a programmed death receptor-1 blocking antibody used to treat cutaneous squamous cell carcinoma, basal cell carcinoma, and non-small cell lung cancer. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Certolizumab pegol interact?
•Drug A: Aducanumab •Drug B: Certolizumab pegol •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Certolizumab pegol is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Certolizumab pegol has been approved for several different conditions listed below: Symptomatic management of Chron's disease patients and for the maintenance of clinical response in patients with moderate to severe disease with inadequate response to conventional therapy. Treatment of adult patients with moderate to severely active rheumatoid arthritis. Treatment of adult patients with active psoriatic arthritis. Treatment of adult patients with active ankylosing spondylitis. Treatment of adult patients with moderate-to-severe plaque psoriasis that are candidates for systemic therapy or phototherapy. Treatment of adult patients with active non-radiographic axial spondyloarthritis with objective signs of inflammation. In Canada, certolizumab pegol is additionally approved in combination with methotrexate for the symptomatic treatment, including major clinical response, and for the reduction of joint damage in adult patients with moderately to severely active rheumatoid arthritis and psoriatic arthritis. Inflammation is a biological response against a potential threat. This response can be normal but in certain conditions, the immune system can attack the body's normal cells or tissues which causes an abnormal inflammation. TNF-alpha has been identified as a key regulator of the inflammatory response. The signaling cascades of this inflammatory mediator can produce a wide range of reactions including cell death, survival, differentiation, proliferation and migration. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): As part of the mechanism of action and nature of the drug, certolizumab does not induce apoptosis in cultured lymphocytes and monocytes. However, as a piece of the inhibition of inflammation, certolizumab pegol inhibits lipopolysaccharide-induced production of IL-1 beta and it induces nonapoptotic cell death via signaling transmembrane TNF-alpha. In vitro studies with certolizumab pegol in human tissue did not show any unexpected binding at 3 mcg/ml nor at 10 mcg/ml. Due to the drug class, certolizumab pegol is not expected to present adverse effects on the major vital systems. In phase III clinical trials in psoriatic arthritis patients, certolizumab pegol was reported to generate improvements in skin disease, joint involvement, dactylitis, enthesitis and general life quality. The clinical effect of certolizumab was paired to a comparable safety profile to other TNF-alpha inhibitors. The clinical effectiveness of certolizumab pegol was mainly studied in six randomized controlled trials that compared its effect versus placebo. In a comparative study, the efficacy for certolizumab pegol registered ranged from 30-65% while in placebo ranged from 4-25%. However, in other additional trials, certolizumab was proven to present a similar clinical efficacy to other disease-modifying antirheumatic drugs in patients with inadequate response to TNF inhibitors. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Certolizumab targets the activation of TNF-alpha with high affinity (KD 90 pM and IC90 0.004 mcg/ml) which inhibits the downstream inflammatory process. It acts by binding and neutralizing the soluble and membrane portions of TNF-alpha without inducing complement or antibody-dependent cytotoxicity due to the lack of the Fc region. The inhibition of TNF-alpha is achieved in a dose-dependent manner and it does not present activity against lymphotoxin alpha (TNF-beta). One additional feature od certolizumab pegol is that, due to the presence of the PEGylation, it is more significantly distributed into inflamed tissues when compared to other TNF-alpha inhibitors such as infliximab and adalimumab. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After subcutaneous administration, the peak plasma concentration is reached between 54 and 171 hours with a bioavailability of 80%. Certolizumab presents a linear pharmacokinetic profile with a peak plasma concentration of 43-49 mcg/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Certolizumab pegol volume of distribution is reported to be in the range of 4-8 L. It is known to have a very good distribution in the joints when compared to other TNF-alpha inhibitors. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are usually not required to have protein binding studies. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The presence of PEG group in certolizumab pegol delays the metabolism and elimination of this drug. However, once under metabolism, the PEG group gets cleaved from the parent compound and the antibody section is thought to be internalized cells and rescued from metabolism by recycling. Later, it is degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. On the other hand, the PEG section is processed normally by the action of the alcohol dehydrogenase to the formation of carboxylic acid. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): As certolizumab is a monoclonal antibody, the elimination route is not widely studied. However, it is known that the elimination of the PEG moiety is dependent on the renal function which links it directly with a high portion of renal elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The circulatory half-life of certolizumab is of 14 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance rate of certolizumab pegol ranged between 9-14 ml/h when administered intravenously. However, when administered subcutaneously, the clearance rate is estimated to range between 14-21 ml/h depending on the patient condition. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The oral ld50 observed in mice is determined to be of 300 mg/kg. To this date, there have not been reports of overdosage, however, in case of accidental overexposure close monitoring is recommended. Certolizumab pegol does not present mutagenic potential nor presents effects in fertility and reproductive performance. On the other hand, carcinogenicity studies have not been performed. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Cimzia •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Certolizumab pegol is a tumor necrosis factor (TNF) blocker used to treat a variety of autoimmune and autoinflammatory conditions like Crohn's disease, rheumatoid arthritis, active psoriatic arthritis, ankylosing spondylitis, axial spondyloarthritis, and plaque psoriasis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Certolizumab pegol interact? Information: •Drug A: Aducanumab •Drug B: Certolizumab pegol •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Certolizumab pegol is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Certolizumab pegol has been approved for several different conditions listed below: Symptomatic management of Chron's disease patients and for the maintenance of clinical response in patients with moderate to severe disease with inadequate response to conventional therapy. Treatment of adult patients with moderate to severely active rheumatoid arthritis. Treatment of adult patients with active psoriatic arthritis. Treatment of adult patients with active ankylosing spondylitis. Treatment of adult patients with moderate-to-severe plaque psoriasis that are candidates for systemic therapy or phototherapy. Treatment of adult patients with active non-radiographic axial spondyloarthritis with objective signs of inflammation. In Canada, certolizumab pegol is additionally approved in combination with methotrexate for the symptomatic treatment, including major clinical response, and for the reduction of joint damage in adult patients with moderately to severely active rheumatoid arthritis and psoriatic arthritis. Inflammation is a biological response against a potential threat. This response can be normal but in certain conditions, the immune system can attack the body's normal cells or tissues which causes an abnormal inflammation. TNF-alpha has been identified as a key regulator of the inflammatory response. The signaling cascades of this inflammatory mediator can produce a wide range of reactions including cell death, survival, differentiation, proliferation and migration. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): As part of the mechanism of action and nature of the drug, certolizumab does not induce apoptosis in cultured lymphocytes and monocytes. However, as a piece of the inhibition of inflammation, certolizumab pegol inhibits lipopolysaccharide-induced production of IL-1 beta and it induces nonapoptotic cell death via signaling transmembrane TNF-alpha. In vitro studies with certolizumab pegol in human tissue did not show any unexpected binding at 3 mcg/ml nor at 10 mcg/ml. Due to the drug class, certolizumab pegol is not expected to present adverse effects on the major vital systems. In phase III clinical trials in psoriatic arthritis patients, certolizumab pegol was reported to generate improvements in skin disease, joint involvement, dactylitis, enthesitis and general life quality. The clinical effect of certolizumab was paired to a comparable safety profile to other TNF-alpha inhibitors. The clinical effectiveness of certolizumab pegol was mainly studied in six randomized controlled trials that compared its effect versus placebo. In a comparative study, the efficacy for certolizumab pegol registered ranged from 30-65% while in placebo ranged from 4-25%. However, in other additional trials, certolizumab was proven to present a similar clinical efficacy to other disease-modifying antirheumatic drugs in patients with inadequate response to TNF inhibitors. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Certolizumab targets the activation of TNF-alpha with high affinity (KD 90 pM and IC90 0.004 mcg/ml) which inhibits the downstream inflammatory process. It acts by binding and neutralizing the soluble and membrane portions of TNF-alpha without inducing complement or antibody-dependent cytotoxicity due to the lack of the Fc region. The inhibition of TNF-alpha is achieved in a dose-dependent manner and it does not present activity against lymphotoxin alpha (TNF-beta). One additional feature od certolizumab pegol is that, due to the presence of the PEGylation, it is more significantly distributed into inflamed tissues when compared to other TNF-alpha inhibitors such as infliximab and adalimumab. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After subcutaneous administration, the peak plasma concentration is reached between 54 and 171 hours with a bioavailability of 80%. Certolizumab presents a linear pharmacokinetic profile with a peak plasma concentration of 43-49 mcg/ml. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Certolizumab pegol volume of distribution is reported to be in the range of 4-8 L. It is known to have a very good distribution in the joints when compared to other TNF-alpha inhibitors. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are usually not required to have protein binding studies. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The presence of PEG group in certolizumab pegol delays the metabolism and elimination of this drug. However, once under metabolism, the PEG group gets cleaved from the parent compound and the antibody section is thought to be internalized cells and rescued from metabolism by recycling. Later, it is degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. On the other hand, the PEG section is processed normally by the action of the alcohol dehydrogenase to the formation of carboxylic acid. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): As certolizumab is a monoclonal antibody, the elimination route is not widely studied. However, it is known that the elimination of the PEG moiety is dependent on the renal function which links it directly with a high portion of renal elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The circulatory half-life of certolizumab is of 14 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance rate of certolizumab pegol ranged between 9-14 ml/h when administered intravenously. However, when administered subcutaneously, the clearance rate is estimated to range between 14-21 ml/h depending on the patient condition. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The oral ld50 observed in mice is determined to be of 300 mg/kg. To this date, there have not been reports of overdosage, however, in case of accidental overexposure close monitoring is recommended. Certolizumab pegol does not present mutagenic potential nor presents effects in fertility and reproductive performance. On the other hand, carcinogenicity studies have not been performed. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Cimzia •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Certolizumab pegol is a tumor necrosis factor (TNF) blocker used to treat a variety of autoimmune and autoinflammatory conditions like Crohn's disease, rheumatoid arthritis, active psoriatic arthritis, ankylosing spondylitis, axial spondyloarthritis, and plaque psoriasis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Cetuximab interact?
•Drug A: Aducanumab •Drug B: Cetuximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Cetuximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Cetuximab indicated for the treatment of locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy. It is indicated for treating a recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-based therapy with fluorouracil. It is indicated for recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy. Cetuximab is also indicated for K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by an FDA-approved test in combination with FOLFIRI, a chemotherapy combination that includes leucovorin, fluorouracil, and irinotecan; in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy; or as monotherapy in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan. Additionally, cetuximab is also indicated for metastatic colorectal cancer that is BRAF V600E mutation-positive (as determined by an FDA-approved test) in combination with encorafenib but only after prior therapy. Cetuximab is not indicated for the treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Cetuximab is an anticancer agent that works by inhibiting the growth and survival of epidermal growth factor receptor (EGFR)-expressing tumour cells with high specificity and higher affinity than epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α), which are natural ligands of EGFR. Cetuximab works by inhibiting the growth and survival of EGFR-positive tumours. In vitro, it promotes antibody-dependent cellular cytotoxicity (ADCC) against certain human tumour types. On the contrary, cetuximab does not exert its anti-tumour effects on human tumour xenografts lacking EGFR expression. Cetuximab potentiates the cytotoxic effects of chemotherapeutics and radiation therapy when used in combination. In human tumour xenograft models in mice, cetuximab and irinotecan synergistically inhibited the growth of orthotopic anaplastic thyroid carcinoma xenografts in vitro and in vivo. Cetuximab potentiated the in vitro anti-proliferative and pro-apoptotic effect of irinotecan and achieved 93% in vivo inhibition of tumour growth when combined with irinotecan, compared to 77% and 79% inhibition when cetuximab and irinotecan were used alone, respectively. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a type I receptor tyrosine kinase expressed on both normal and malignant cells. It has been investigated as a therapeutic target for anticancer treatment, as it is often upregulated in cancer types, including head and neck, colon, and rectal cancers. When activated by its ligand, EGFR undergoes a conformational change and dimerization to form homodimers or heterodimers with another member of the ErbB family of receptors. Dimerization of EGFR activates the intracellular tyrosine kinase region of EGFR and promotes autophosphorylation, initiating a series of downstream signalling cascades, including cell differentiation, proliferation, migration, angiogenesis, and apoptosis. This EGFR signalling pathway is often dysregulated in cancer cells, leading to aberrant cell growth and enhanced cell survival. Cetuximab is a monoclonal antibody that binds specifically to the EGFR on both normal and tumour cells to competitively inhibit the binding of epidermal growth factor (EGF) and other ligands that are produced by normal and tumour tissue epithelial cells. Upon binding to domain III of EGFR - which is the binding site for its growth factor ligands - cetuximab prevents the receptor from adopting an extended conformation and thereby inhibits EGFR activation, as well as phosphorylation and activation of receptor-associated kinases (MAPK, PI3K/Akt, Jak/Stat). Inhibition of the EGFR signalling pathway ultimately leads to inhibition of cell cycle progression, cell survival pathways, and tumour cell motility and invasion. Cetuximab also induces cell apoptosis and decreases matrix metalloproteinase and vascular endothelial growth factor (VEGF) production. In vitro, cetuximab was shown to inhibit tumour angiogenesis. Binding of cetuximab to EGFR also results in internalization of the antibody-receptor complex, leading to an overall downregulation of EGFR expression. K-ras is a small G-protein downstream of EGFR that plays an important role in promoting the EGFR signalling cascade: in some malignant cells, K-ras can acquire activating mutations in exon 2 and thus be continuously active regardless of EGFR regulation. Since mutant Ras proteins can isolate the pathway from the effect of EGFR, K-Ras mutations can render EGFR inhibitors like cetuximab ineffective in exerting anti-tumour effects. Cetuximab is thus only limited in its use for K-Ras wild-type, EGFR-expressing cancers. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After administration of a 400 mg/m initial dose followed by a 250 mg/m weekly dose, the steady-state levels of cetuximab was reached by the third weekly infusion with mean peak and trough concentrations across studies ranging from 168 µg/mL to 235 µg/mL and 41 µg/mL to 85 µg/mL, respectively. T max is about 3 hours. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of the distribution is about 2-3 L/m and is independent of dose. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no information available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Like other monoclonal antibodies, cetuximab is expected to undergo lysosomal degradation by the reticuloendothelial system and protein catabolism by a target‐mediated disposition pathway. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): There is limited information available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): After administration of a 400 mg/m initial dose followed by a 250 mg/m weekly dose, the mean half-life for cetuximab was approximately 112 hours, with a range of 63 to 230 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): In patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck, the estimated clearance rate was 0.103 L/h. At doses ranging from 200 to 400 mg/m, complete saturation of systemic clearance was observed. In a population pharmacokinetic study, female patients had a 25% lower intrinsic cetuximab clearance than male patients, although there was no evidence of the need for dose modification based on sex. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The intravenous LD 50 is > 300 mg/kg in mice and > 200 mg/kg in rats. There is limited information on the overdose from cetuximab. In clinical trials, cetuximab was associated with serious and fatal infusion reactions, cardiopulmonary arrest or sudden death, and serious dermatologic toxicities. Pulmonary toxicities, such as interstitial lung disease, interstitial pneumonitis with non-cardiogenic pulmonary edema, and exacerbation of pre-existing fibrotic lung disease have been reported. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Erbitux •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Cetuximab is an endothelial growth factor receptor binding fragment used to treat colorectal cancer as well as squamous cell carcinoma of the head and neck.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Cetuximab interact? Information: •Drug A: Aducanumab •Drug B: Cetuximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Cetuximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Cetuximab indicated for the treatment of locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy. It is indicated for treating a recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinum-based therapy with fluorouracil. It is indicated for recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy. Cetuximab is also indicated for K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by an FDA-approved test in combination with FOLFIRI, a chemotherapy combination that includes leucovorin, fluorouracil, and irinotecan; in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy; or as monotherapy in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan. Additionally, cetuximab is also indicated for metastatic colorectal cancer that is BRAF V600E mutation-positive (as determined by an FDA-approved test) in combination with encorafenib but only after prior therapy. Cetuximab is not indicated for the treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Cetuximab is an anticancer agent that works by inhibiting the growth and survival of epidermal growth factor receptor (EGFR)-expressing tumour cells with high specificity and higher affinity than epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α), which are natural ligands of EGFR. Cetuximab works by inhibiting the growth and survival of EGFR-positive tumours. In vitro, it promotes antibody-dependent cellular cytotoxicity (ADCC) against certain human tumour types. On the contrary, cetuximab does not exert its anti-tumour effects on human tumour xenografts lacking EGFR expression. Cetuximab potentiates the cytotoxic effects of chemotherapeutics and radiation therapy when used in combination. In human tumour xenograft models in mice, cetuximab and irinotecan synergistically inhibited the growth of orthotopic anaplastic thyroid carcinoma xenografts in vitro and in vivo. Cetuximab potentiated the in vitro anti-proliferative and pro-apoptotic effect of irinotecan and achieved 93% in vivo inhibition of tumour growth when combined with irinotecan, compared to 77% and 79% inhibition when cetuximab and irinotecan were used alone, respectively. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a type I receptor tyrosine kinase expressed on both normal and malignant cells. It has been investigated as a therapeutic target for anticancer treatment, as it is often upregulated in cancer types, including head and neck, colon, and rectal cancers. When activated by its ligand, EGFR undergoes a conformational change and dimerization to form homodimers or heterodimers with another member of the ErbB family of receptors. Dimerization of EGFR activates the intracellular tyrosine kinase region of EGFR and promotes autophosphorylation, initiating a series of downstream signalling cascades, including cell differentiation, proliferation, migration, angiogenesis, and apoptosis. This EGFR signalling pathway is often dysregulated in cancer cells, leading to aberrant cell growth and enhanced cell survival. Cetuximab is a monoclonal antibody that binds specifically to the EGFR on both normal and tumour cells to competitively inhibit the binding of epidermal growth factor (EGF) and other ligands that are produced by normal and tumour tissue epithelial cells. Upon binding to domain III of EGFR - which is the binding site for its growth factor ligands - cetuximab prevents the receptor from adopting an extended conformation and thereby inhibits EGFR activation, as well as phosphorylation and activation of receptor-associated kinases (MAPK, PI3K/Akt, Jak/Stat). Inhibition of the EGFR signalling pathway ultimately leads to inhibition of cell cycle progression, cell survival pathways, and tumour cell motility and invasion. Cetuximab also induces cell apoptosis and decreases matrix metalloproteinase and vascular endothelial growth factor (VEGF) production. In vitro, cetuximab was shown to inhibit tumour angiogenesis. Binding of cetuximab to EGFR also results in internalization of the antibody-receptor complex, leading to an overall downregulation of EGFR expression. K-ras is a small G-protein downstream of EGFR that plays an important role in promoting the EGFR signalling cascade: in some malignant cells, K-ras can acquire activating mutations in exon 2 and thus be continuously active regardless of EGFR regulation. Since mutant Ras proteins can isolate the pathway from the effect of EGFR, K-Ras mutations can render EGFR inhibitors like cetuximab ineffective in exerting anti-tumour effects. Cetuximab is thus only limited in its use for K-Ras wild-type, EGFR-expressing cancers. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): After administration of a 400 mg/m initial dose followed by a 250 mg/m weekly dose, the steady-state levels of cetuximab was reached by the third weekly infusion with mean peak and trough concentrations across studies ranging from 168 µg/mL to 235 µg/mL and 41 µg/mL to 85 µg/mL, respectively. T max is about 3 hours. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of the distribution is about 2-3 L/m and is independent of dose. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is no information available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Like other monoclonal antibodies, cetuximab is expected to undergo lysosomal degradation by the reticuloendothelial system and protein catabolism by a target‐mediated disposition pathway. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): There is limited information available. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): After administration of a 400 mg/m initial dose followed by a 250 mg/m weekly dose, the mean half-life for cetuximab was approximately 112 hours, with a range of 63 to 230 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): In patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck, the estimated clearance rate was 0.103 L/h. At doses ranging from 200 to 400 mg/m, complete saturation of systemic clearance was observed. In a population pharmacokinetic study, female patients had a 25% lower intrinsic cetuximab clearance than male patients, although there was no evidence of the need for dose modification based on sex. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The intravenous LD 50 is > 300 mg/kg in mice and > 200 mg/kg in rats. There is limited information on the overdose from cetuximab. In clinical trials, cetuximab was associated with serious and fatal infusion reactions, cardiopulmonary arrest or sudden death, and serious dermatologic toxicities. Pulmonary toxicities, such as interstitial lung disease, interstitial pneumonitis with non-cardiogenic pulmonary edema, and exacerbation of pre-existing fibrotic lung disease have been reported. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Erbitux •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Cetuximab is an endothelial growth factor receptor binding fragment used to treat colorectal cancer as well as squamous cell carcinoma of the head and neck. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Conjugated estrogens interact?
•Drug A: Aducanumab •Drug B: Conjugated estrogens •Severity: MINOR •Description: Conjugated estrogens may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): The conjugated estrogens are indicated for several different conditions including: Treatment of moderate to severe vasomotor symptoms due to menopause. Treatment of moderate to severe symptoms of vulvar and vaginal atrophy due to menopause. Treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure. Palliative treatment of breast cancer in appropriately selected patients with metastatic disease. Palliative treatment of androgen-dependent carcinoma of the prostate. Preventive therapy of postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): The binding of estrogens to the estrogen receptor produces the activation of nuclear receptors in order to bind to estrogen response elements in certain target genes. This mechanistic cascade results in histone acetylation, alteration of chromatin conformation and the initiation of transcription of certain specific drugs. In preclinical studies, the conjugated estrogens are known to have a similar estrogenic potency than estrone and the equilin components of the conjugated estrogens have similar potency in the liver when compared to bioidentical estradiol. It has also been tested and confirmed that conjugated estrogens present a selective estrogen receptor modulator profile which allows it to have a large beneficial effect on the bone and cardiovascular system. Clinically, the administration of conjugated estrogens is known to promote vasomotor stability, maintain genitourinary function, and normal growth and development of female sex hormones. It has also been shown to prevent accelerated bone loss by inhibiting bone resorption and restoring the balance of bone resorption. In the hormonal area, it is shown to inhibit luteinizing hormone and decrease the serum concentration of testosterone. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The conjugated estrogens, equally to the normal physiological estrogen, work by agonistically binding to the estrogen receptors alpha and beta. The estrogen receptors vary in quantity and proportion according to the tissues and hence, the activity of this conjugated estrogens is very variable. The activity made by the conjugated estrogens is driven by the increase in the synthesis of DNA, RNA and various proteins in responsive tissues which in order will reduce the release of gonadotropin-releasing hormone, follicle-stimulating hormone and leuteinizing hormone. The specific mechanism of action cannot be described only in terms of total estrogenic action as the pharmacokinetic profile, the tissue specificity and the tissue metabolism is different for each component of the product. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The conjugated estrogens are well absorbed in the gastrointestinal tract and the maximum plasma concentration of the conjugated estrogens is reached after 7 hours depending on the estrone component. The maximal plasma concentration of conjugated estrogens after multiple doses of 0.45 mg is reported to be of 2.6 ng/ml with an AUC in the steady state of 35 ng.h/ml. Unconjugated estrogens are known to be cleared from the circulation at a faster rate than their ester forms. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The physiological distribution of estrogens in the body is very similar to what is seen in endogenous estrogens and hence, it is widely distributed. The conjugated estrogens are mainly found in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Conjugated estrogens are bound to plasma proteins and this bound state can represent around 50-80% of the administered dose. It circulates in the blood mainly bound to sex-hormone binding globulin and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The conjugated estrogens are metabolized by a number of different pathways. One of the metabolic pathways of the conjugated estrogens is driven by the action of the cytochrome isoenzyme CYP3A4. On the other hand, the conjugated estrogens can also be processed by a dynamic equilibrium of metabolic interconversion and sulfate conjugation. Some of the principal metabolic reactions of the conjugated estrogens are driven by the conversion of 17beta-estradiol to estrone and the further change to estriol. A portion of the administered conjugated estrogens will remain in the blood as sulfate conjugates which serve as a circulating reservoir for the generation of new estrogens. In the endometrium, equilin is metabolized to 2-hydroxy and 4-hydroxy equilin as well as 2-hydroxy and 4-hydroxy estradiol. This hydroxylation process is very large in various of the components of the conjugated estrogens and hence, the major metabolites in urine are known to be 17-ketosteroid-16-alpha-hydroxy estrone, 16-alpha-hydroxy-17-beta-dihydro equilin and 16-alpha-hydroxy-17-beta-dihydroequilenin. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The conjugated estrogens are eliminated mainly in the urine. In this renal elimination, it is possible to find 17 beta-estradiol, estrone, estriol, as well as the glucuronide and sulfate conjugates of the estrogens. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The median half-life of the conjugated estrogens is reported to be of 17 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The reported normal clearance rate for estrogens is of approximately 615 L/m2. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The reported oral LD50 in the rat is of more than 5000 mg/kg. Serious overdosage symptoms have not been reported. There have been only reports of nausea, vomiting, and withdrawal in bleeding in females. Long-term continuous administration of estrogens is correlated to increased risk on the incidence of carcinomas of the breast, uterus, cervix, vagina, testis, and liver. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Congest, Duavee, Duavive, Premarin, Premphase 28 Day, Prempro 0.625/2.5 28 Day •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Conjugated estrogens is a mixture of estrogens used in estrogen replacement therapy for menopause and hypoestrogenism, used in the treatment of various malignancies, and used in the treatment of postmenopausal osteoporosis.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Conjugated estrogens interact? Information: •Drug A: Aducanumab •Drug B: Conjugated estrogens •Severity: MINOR •Description: Conjugated estrogens may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): The conjugated estrogens are indicated for several different conditions including: Treatment of moderate to severe vasomotor symptoms due to menopause. Treatment of moderate to severe symptoms of vulvar and vaginal atrophy due to menopause. Treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure. Palliative treatment of breast cancer in appropriately selected patients with metastatic disease. Palliative treatment of androgen-dependent carcinoma of the prostate. Preventive therapy of postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): The binding of estrogens to the estrogen receptor produces the activation of nuclear receptors in order to bind to estrogen response elements in certain target genes. This mechanistic cascade results in histone acetylation, alteration of chromatin conformation and the initiation of transcription of certain specific drugs. In preclinical studies, the conjugated estrogens are known to have a similar estrogenic potency than estrone and the equilin components of the conjugated estrogens have similar potency in the liver when compared to bioidentical estradiol. It has also been tested and confirmed that conjugated estrogens present a selective estrogen receptor modulator profile which allows it to have a large beneficial effect on the bone and cardiovascular system. Clinically, the administration of conjugated estrogens is known to promote vasomotor stability, maintain genitourinary function, and normal growth and development of female sex hormones. It has also been shown to prevent accelerated bone loss by inhibiting bone resorption and restoring the balance of bone resorption. In the hormonal area, it is shown to inhibit luteinizing hormone and decrease the serum concentration of testosterone. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The conjugated estrogens, equally to the normal physiological estrogen, work by agonistically binding to the estrogen receptors alpha and beta. The estrogen receptors vary in quantity and proportion according to the tissues and hence, the activity of this conjugated estrogens is very variable. The activity made by the conjugated estrogens is driven by the increase in the synthesis of DNA, RNA and various proteins in responsive tissues which in order will reduce the release of gonadotropin-releasing hormone, follicle-stimulating hormone and leuteinizing hormone. The specific mechanism of action cannot be described only in terms of total estrogenic action as the pharmacokinetic profile, the tissue specificity and the tissue metabolism is different for each component of the product. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The conjugated estrogens are well absorbed in the gastrointestinal tract and the maximum plasma concentration of the conjugated estrogens is reached after 7 hours depending on the estrone component. The maximal plasma concentration of conjugated estrogens after multiple doses of 0.45 mg is reported to be of 2.6 ng/ml with an AUC in the steady state of 35 ng.h/ml. Unconjugated estrogens are known to be cleared from the circulation at a faster rate than their ester forms. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The physiological distribution of estrogens in the body is very similar to what is seen in endogenous estrogens and hence, it is widely distributed. The conjugated estrogens are mainly found in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Conjugated estrogens are bound to plasma proteins and this bound state can represent around 50-80% of the administered dose. It circulates in the blood mainly bound to sex-hormone binding globulin and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The conjugated estrogens are metabolized by a number of different pathways. One of the metabolic pathways of the conjugated estrogens is driven by the action of the cytochrome isoenzyme CYP3A4. On the other hand, the conjugated estrogens can also be processed by a dynamic equilibrium of metabolic interconversion and sulfate conjugation. Some of the principal metabolic reactions of the conjugated estrogens are driven by the conversion of 17beta-estradiol to estrone and the further change to estriol. A portion of the administered conjugated estrogens will remain in the blood as sulfate conjugates which serve as a circulating reservoir for the generation of new estrogens. In the endometrium, equilin is metabolized to 2-hydroxy and 4-hydroxy equilin as well as 2-hydroxy and 4-hydroxy estradiol. This hydroxylation process is very large in various of the components of the conjugated estrogens and hence, the major metabolites in urine are known to be 17-ketosteroid-16-alpha-hydroxy estrone, 16-alpha-hydroxy-17-beta-dihydro equilin and 16-alpha-hydroxy-17-beta-dihydroequilenin. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The conjugated estrogens are eliminated mainly in the urine. In this renal elimination, it is possible to find 17 beta-estradiol, estrone, estriol, as well as the glucuronide and sulfate conjugates of the estrogens. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The median half-life of the conjugated estrogens is reported to be of 17 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The reported normal clearance rate for estrogens is of approximately 615 L/m2. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The reported oral LD50 in the rat is of more than 5000 mg/kg. Serious overdosage symptoms have not been reported. There have been only reports of nausea, vomiting, and withdrawal in bleeding in females. Long-term continuous administration of estrogens is correlated to increased risk on the incidence of carcinomas of the breast, uterus, cervix, vagina, testis, and liver. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Congest, Duavee, Duavive, Premarin, Premphase 28 Day, Prempro 0.625/2.5 28 Day •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Conjugated estrogens is a mixture of estrogens used in estrogen replacement therapy for menopause and hypoestrogenism, used in the treatment of various malignancies, and used in the treatment of postmenopausal osteoporosis. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Daratumumab interact?
•Drug A: Aducanumab •Drug B: Daratumumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Daratumumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Daratumumab is indicated as an intravenous injection alone or in combination with other medications for the treatment of multiple myeloma. It is available as a combination product with hyaluronidase for the treatment of adults with multiple myeloma as monotherapy or combination therapy and light chain amyloidosis in combination with other drugs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Daratumumab is a monoclonal antibody that targets and induces apoptosis in cells that highly express CD38, including multiple myeloma cells. It has a long duration of action as it is given every 1-4 weeks. Patients should be counselled regarding the risk of hypersensitivity, neutropenia, thrombocytopenia, embryo-fetal toxicity, and interferences with cross-matching and red blood cell antibody screening. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): CD38 is a glycoprotein present on the surface of hematopoietic cells and is responsible for a number of cell signalling functions. Daratumumab is an immunoglobulin G1 kappa (IgG1κ) monoclonal antibody that targets CD38. Cancers like multiple myeloma overexpress CD38, allowing daratumumab to have higher affinity for these cells. This binding allows daratumumab to induce apoptosis, antibody dependent cellular phagocytosis, and antibody and complement-dependent cytotoxicity. Antibody dependent cellular phagocytosis is mediated by the FC region of the antibody inducing phagocytes such as macrophages, antibody dependent cellular cytotoxicity is mediated by the FC region of the antibody inducing effector cells such as natural killer cells, and complement dependent cytotoxicity is mediated by the FC region of the antibody binding to and inducing complement protein activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous daratumumab reaches a C max of 592µg/mL compared to intravenous daratumumab, which reaches a C max of 688µg/mL. The AUC of subcutaneous daratumumab is 4017µg/mL*day compared to intravenous daratumumab, which has an AUC of 4019µg/mL*day. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Daratumumab intravenous monotherapy has a volume of distribution of 4.7 ± 1.3L and the combination therapy has a volume of distribution of 4.4 ± 1.5L. Subcutaneous daratumumab has a volume of distribution of the central compartment of 5.2L and a volume of distribution of the peripheral compartment of 3.8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Data regarding protein binding of daratumumab in serum is not readily available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to be metabolized to smaller proteins and amino acids by proteolytic enzymes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are metabolized to amino acids used for synthesis of new proteins or are eliminated by the kidneys. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Intravenous daratumumab has a terminal half life of 18 ± 9 days. Subcutaneous daratumumab has a half life of 20 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Intravenous daratumumab has a clearance of 171.4 ± 95.3mL/day. Subcutaneous daratumumab has a clearance of 119mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdoses of daratumumab are not readily available. Patients should be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Darzalex, Darzalex Faspro •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Daratumumab is a CD38-directed cytolytic antibody used alone or as an adjunct drug in the treatment of multiple myeloma and light chain amyloidosis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Daratumumab interact? Information: •Drug A: Aducanumab •Drug B: Daratumumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Daratumumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Daratumumab is indicated as an intravenous injection alone or in combination with other medications for the treatment of multiple myeloma. It is available as a combination product with hyaluronidase for the treatment of adults with multiple myeloma as monotherapy or combination therapy and light chain amyloidosis in combination with other drugs. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Daratumumab is a monoclonal antibody that targets and induces apoptosis in cells that highly express CD38, including multiple myeloma cells. It has a long duration of action as it is given every 1-4 weeks. Patients should be counselled regarding the risk of hypersensitivity, neutropenia, thrombocytopenia, embryo-fetal toxicity, and interferences with cross-matching and red blood cell antibody screening. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): CD38 is a glycoprotein present on the surface of hematopoietic cells and is responsible for a number of cell signalling functions. Daratumumab is an immunoglobulin G1 kappa (IgG1κ) monoclonal antibody that targets CD38. Cancers like multiple myeloma overexpress CD38, allowing daratumumab to have higher affinity for these cells. This binding allows daratumumab to induce apoptosis, antibody dependent cellular phagocytosis, and antibody and complement-dependent cytotoxicity. Antibody dependent cellular phagocytosis is mediated by the FC region of the antibody inducing phagocytes such as macrophages, antibody dependent cellular cytotoxicity is mediated by the FC region of the antibody inducing effector cells such as natural killer cells, and complement dependent cytotoxicity is mediated by the FC region of the antibody binding to and inducing complement protein activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous daratumumab reaches a C max of 592µg/mL compared to intravenous daratumumab, which reaches a C max of 688µg/mL. The AUC of subcutaneous daratumumab is 4017µg/mL*day compared to intravenous daratumumab, which has an AUC of 4019µg/mL*day. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Daratumumab intravenous monotherapy has a volume of distribution of 4.7 ± 1.3L and the combination therapy has a volume of distribution of 4.4 ± 1.5L. Subcutaneous daratumumab has a volume of distribution of the central compartment of 5.2L and a volume of distribution of the peripheral compartment of 3.8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Data regarding protein binding of daratumumab in serum is not readily available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are expected to be metabolized to smaller proteins and amino acids by proteolytic enzymes. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are metabolized to amino acids used for synthesis of new proteins or are eliminated by the kidneys. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Intravenous daratumumab has a terminal half life of 18 ± 9 days. Subcutaneous daratumumab has a half life of 20 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Intravenous daratumumab has a clearance of 171.4 ± 95.3mL/day. Subcutaneous daratumumab has a clearance of 119mL/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Data regarding overdoses of daratumumab are not readily available. Patients should be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Darzalex, Darzalex Faspro •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Daratumumab is a CD38-directed cytolytic antibody used alone or as an adjunct drug in the treatment of multiple myeloma and light chain amyloidosis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Denosumab interact?
•Drug A: Aducanumab •Drug B: Denosumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Denosumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Denosumab under the brand name Prolia is indicated as a treatment for osteoporosis in menopausal women or men and glucocorticoid-induced osteoporosis in men and women at high risk of fracture. It is also used to increase bone mass in men at high risk for fractures receiving androgen deprivation therapy for nonmetastatic prostate cancer or women at high risk for fractures receiving adjuvant aromatase inhibitor therapy for breast cancer. Denosumab under the brand name Xgeva is indicated to prevent skeletal-related events in patients with multiple myeloma and in patients with bone metastases from solid tumors and to treat giant cell tumors of bone in adults and skeletally mature adolescents and hypercalcemia of malignancy refractory to bisphosphonate therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In clinical studies, treatment with 60 mg of denosumab resulted in a reduction in the bone resorption marker serum type 1 C-telopeptide (CTX) by approximately 85% by 3 days, with maximal reductions occurring by 1 month. CTX levels were below the limit of assay quantitation (0.049 ng/mL) in 39% to 68% of patients 1 to 3 months after dosing of denosumab. At the end of each dosing interval, CTX reductions were partially attenuated from a maximal reduction of ≥ 87% to ≥ 45% (range: 45% to 80%), as serum denosumab levels diminished, reflecting the reversibility of the effects of denosumab on bone remodelling. These effects were sustained with continued treatment. Upon reinitiation, the degree of inhibition of CTX by denosumab was similar to that observed in patients initiating denosumab treatment. Consistent with the physiological coupling of bone formation and resorption in skeletal remodeling, subsequent reductions in bone formation markers (i.e., osteocalcin and procollagen type 1 N-terminal peptide [P1NP]) were observed starting 1 month after the first dose of denosumab. After discontinuation of denosumab therapy, markers of bone resorption increased to levels 40% to 60% above pretreatment values but returned to baseline levels within 12 months. In patients with breast cancer and bone metastases, the median reduction in urinary N-terminal telopeptide corrected for creatinine (uNTx/Cr) was 82% within 1 week following initiation of denosumab 120 mg administered subcutaneously. In Studies 20050136, 20050244, and 20050103, the median reduction in uNTx/Cr from baseline to Month 3 was approximately 80% in 2075 denosumab-treated patients. In a phase 3 study of patients with newly diagnosed multiple myeloma who received subcutaneous doses of denosumab 120 mg every 4 weeks (Q4W), median reductions in uNTx/Cr of approximately 75% were observed by week 5. Reductions in bone turnover markers were maintained, with median reductions of 74% to 79% for uNTx/Cr from weeks 9 to 49 of continued 120 mg Q4W dosing. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Denosumab is designed to target RANKL (RANK ligand), a protein that acts as the primary signal to promote bone removal/resorption. In many bone loss conditions, RANKL overwhelms the body's natural defense against bone destruction. Denosumab prevents RANKL from activating its receptor, RANK, on the surface of osteoclasts and their precursors. Prevention of the RANKL/RANK interaction inhibits osteoclast formation, function, and survival, thereby decreasing bone resorption and increasing bone mass and strength in both cortical and trabecular bone. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In a study conducted in healthy male and female volunteers (n = 73, age range: 18 to 64 years) following a single subcutaneously administered denosumab dose of 60 mg after fasting (at least for 12 hours), the mean maximum denosumab concentration (C max ) was 6.75 mcg/mL (standard deviation [SD] = 1.89 mcg/mL). The median time to maximum denosumab concentration (T max ) was 10 days (range: 3 to 21 days). The mean area-under-the-concentration-time curve up to 16 weeks (AUC0-16 weeks) of denosumab was 316 mcg⋅day/mL (SD = 101 mcg⋅day/mL. No accumulation or change in denosumab pharmacokinetics with time was observed upon multiple dosing of 60 mg subcutaneously administered once every 6 months. Serum and seminal fluid concentrations of denosumab were measured in 12 healthy male volunteers (age range: 43-65 years). After a single 60 mg subcutaneous administration of denosumab, the mean (± SD) C max values in the serum and seminal fluid samples were 6170 (± 2070) and 100 (± 81.9) ng/mL, respectively, resulting in a maximum seminal fluid concentration of approximately 2% of serum levels. The median (range) T max values in the serum and seminal fluid samples were 8.0 (7.9 to 21) and 21 (8.0 to 49) days, respectively. Among the subjects, the highest denosumab concentration in the seminal fluid was 301 ng/mL at 22 days post-dose. On the first day of measurement (10 days post-dose), nine of eleven subjects had quantifiable concentrations in semen. On the last day of measurement (106 days post-dose), five subjects still had quantifiable concentrations of denosumab in seminal fluid, with a mean (± SD) seminal fluid concentration of 21.1 (± 36.5) ng/mL across all subjects (n = 12). In patients with newly diagnosed multiple myeloma who received 120 mg every 4 weeks, denosumab concentrations appear to reach a steady state by month 6. In patients with giant cell tumor of bone, after administration of subcutaneous doses of 120 mg once every 4 weeks with additional 120 mg doses on Days 8 and 15 of the first month of therapy, mean (± standard deviation) serum trough concentrations on Day 8, 15, and one month after the first dose were 19.0 (± 24.1), 31.6 (± 27.3), 36.4 (± 20.6) mcg/mL, respectively. Steady-state was achieved in 3 months after initiation of treatment with a mean serum trough concentration of 23.4 (± 12.1) mcg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central volume of distribution and volume of distribution at steady-state were calculated to be 2.49 L/66 kg and 3.5-7 L respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available on the protein binding of denosumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No information is available on the metabolism of denosumab. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): As an antibody, denosumab is likely cleared by the reticuloendothelial system with minimal renal filtration and excretion. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): After C max, serum denosumab concentrations declined over a period of 4 to 5 months with a mean half-life of 25.4 days (SD = 8.5 days; n = 46). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No information is available on the clearance of denosumab. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Denosumab is contraindicated for use in pregnant women because it may cause harm to a fetus. There are insufficient data with denosumab use in pregnant women to inform any drug-associated risks for adverse developmental outcomes. In utero denosumab exposure from cynomolgus monkeys dosed monthly with denosumab throughout pregnancy at a dose 50-fold higher than the recommended human dose based on body weight resulted in increased fetal loss, stillbirths, and postnatal mortality, and absent lymph nodes, abnormal bone growth, and decreased neonatal growth. In clinical trials, hypercalcemia has been reported in pediatric patients with osteogenesis imperfect treated with denosumab products, including Prolia. Some cases required hospitalization and were complicated by acute renal injury. Based on results from animal studies, denosumab may negatively affect long-bone growth and dentition in pediatric patients below the age of 4 years. The carcinogenic and genotoxic potential of denosumab has not been evaluated in long-term animal studies. Denosumab had no effect on female fertility or male reproductive organs in monkeys at doses that were 13- to 50-fold higher than the recommended human dose of 60 mg subcutaneously administered once every 6 months, based on body weight (mg/kg). •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Prolia, Xgeva •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Denosumab is a RANK ligand (RANKL) inhibitor used for the management of osteoporosis in patients at high risk for bone fractures.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Denosumab interact? Information: •Drug A: Aducanumab •Drug B: Denosumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Denosumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Denosumab under the brand name Prolia is indicated as a treatment for osteoporosis in menopausal women or men and glucocorticoid-induced osteoporosis in men and women at high risk of fracture. It is also used to increase bone mass in men at high risk for fractures receiving androgen deprivation therapy for nonmetastatic prostate cancer or women at high risk for fractures receiving adjuvant aromatase inhibitor therapy for breast cancer. Denosumab under the brand name Xgeva is indicated to prevent skeletal-related events in patients with multiple myeloma and in patients with bone metastases from solid tumors and to treat giant cell tumors of bone in adults and skeletally mature adolescents and hypercalcemia of malignancy refractory to bisphosphonate therapy. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In clinical studies, treatment with 60 mg of denosumab resulted in a reduction in the bone resorption marker serum type 1 C-telopeptide (CTX) by approximately 85% by 3 days, with maximal reductions occurring by 1 month. CTX levels were below the limit of assay quantitation (0.049 ng/mL) in 39% to 68% of patients 1 to 3 months after dosing of denosumab. At the end of each dosing interval, CTX reductions were partially attenuated from a maximal reduction of ≥ 87% to ≥ 45% (range: 45% to 80%), as serum denosumab levels diminished, reflecting the reversibility of the effects of denosumab on bone remodelling. These effects were sustained with continued treatment. Upon reinitiation, the degree of inhibition of CTX by denosumab was similar to that observed in patients initiating denosumab treatment. Consistent with the physiological coupling of bone formation and resorption in skeletal remodeling, subsequent reductions in bone formation markers (i.e., osteocalcin and procollagen type 1 N-terminal peptide [P1NP]) were observed starting 1 month after the first dose of denosumab. After discontinuation of denosumab therapy, markers of bone resorption increased to levels 40% to 60% above pretreatment values but returned to baseline levels within 12 months. In patients with breast cancer and bone metastases, the median reduction in urinary N-terminal telopeptide corrected for creatinine (uNTx/Cr) was 82% within 1 week following initiation of denosumab 120 mg administered subcutaneously. In Studies 20050136, 20050244, and 20050103, the median reduction in uNTx/Cr from baseline to Month 3 was approximately 80% in 2075 denosumab-treated patients. In a phase 3 study of patients with newly diagnosed multiple myeloma who received subcutaneous doses of denosumab 120 mg every 4 weeks (Q4W), median reductions in uNTx/Cr of approximately 75% were observed by week 5. Reductions in bone turnover markers were maintained, with median reductions of 74% to 79% for uNTx/Cr from weeks 9 to 49 of continued 120 mg Q4W dosing. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Denosumab is designed to target RANKL (RANK ligand), a protein that acts as the primary signal to promote bone removal/resorption. In many bone loss conditions, RANKL overwhelms the body's natural defense against bone destruction. Denosumab prevents RANKL from activating its receptor, RANK, on the surface of osteoclasts and their precursors. Prevention of the RANKL/RANK interaction inhibits osteoclast formation, function, and survival, thereby decreasing bone resorption and increasing bone mass and strength in both cortical and trabecular bone. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In a study conducted in healthy male and female volunteers (n = 73, age range: 18 to 64 years) following a single subcutaneously administered denosumab dose of 60 mg after fasting (at least for 12 hours), the mean maximum denosumab concentration (C max ) was 6.75 mcg/mL (standard deviation [SD] = 1.89 mcg/mL). The median time to maximum denosumab concentration (T max ) was 10 days (range: 3 to 21 days). The mean area-under-the-concentration-time curve up to 16 weeks (AUC0-16 weeks) of denosumab was 316 mcg⋅day/mL (SD = 101 mcg⋅day/mL. No accumulation or change in denosumab pharmacokinetics with time was observed upon multiple dosing of 60 mg subcutaneously administered once every 6 months. Serum and seminal fluid concentrations of denosumab were measured in 12 healthy male volunteers (age range: 43-65 years). After a single 60 mg subcutaneous administration of denosumab, the mean (± SD) C max values in the serum and seminal fluid samples were 6170 (± 2070) and 100 (± 81.9) ng/mL, respectively, resulting in a maximum seminal fluid concentration of approximately 2% of serum levels. The median (range) T max values in the serum and seminal fluid samples were 8.0 (7.9 to 21) and 21 (8.0 to 49) days, respectively. Among the subjects, the highest denosumab concentration in the seminal fluid was 301 ng/mL at 22 days post-dose. On the first day of measurement (10 days post-dose), nine of eleven subjects had quantifiable concentrations in semen. On the last day of measurement (106 days post-dose), five subjects still had quantifiable concentrations of denosumab in seminal fluid, with a mean (± SD) seminal fluid concentration of 21.1 (± 36.5) ng/mL across all subjects (n = 12). In patients with newly diagnosed multiple myeloma who received 120 mg every 4 weeks, denosumab concentrations appear to reach a steady state by month 6. In patients with giant cell tumor of bone, after administration of subcutaneous doses of 120 mg once every 4 weeks with additional 120 mg doses on Days 8 and 15 of the first month of therapy, mean (± standard deviation) serum trough concentrations on Day 8, 15, and one month after the first dose were 19.0 (± 24.1), 31.6 (± 27.3), 36.4 (± 20.6) mcg/mL, respectively. Steady-state was achieved in 3 months after initiation of treatment with a mean serum trough concentration of 23.4 (± 12.1) mcg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central volume of distribution and volume of distribution at steady-state were calculated to be 2.49 L/66 kg and 3.5-7 L respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No information is available on the protein binding of denosumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No information is available on the metabolism of denosumab. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): As an antibody, denosumab is likely cleared by the reticuloendothelial system with minimal renal filtration and excretion. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): After C max, serum denosumab concentrations declined over a period of 4 to 5 months with a mean half-life of 25.4 days (SD = 8.5 days; n = 46). •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No information is available on the clearance of denosumab. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Denosumab is contraindicated for use in pregnant women because it may cause harm to a fetus. There are insufficient data with denosumab use in pregnant women to inform any drug-associated risks for adverse developmental outcomes. In utero denosumab exposure from cynomolgus monkeys dosed monthly with denosumab throughout pregnancy at a dose 50-fold higher than the recommended human dose based on body weight resulted in increased fetal loss, stillbirths, and postnatal mortality, and absent lymph nodes, abnormal bone growth, and decreased neonatal growth. In clinical trials, hypercalcemia has been reported in pediatric patients with osteogenesis imperfect treated with denosumab products, including Prolia. Some cases required hospitalization and were complicated by acute renal injury. Based on results from animal studies, denosumab may negatively affect long-bone growth and dentition in pediatric patients below the age of 4 years. The carcinogenic and genotoxic potential of denosumab has not been evaluated in long-term animal studies. Denosumab had no effect on female fertility or male reproductive organs in monkeys at doses that were 13- to 50-fold higher than the recommended human dose of 60 mg subcutaneously administered once every 6 months, based on body weight (mg/kg). •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Prolia, Xgeva •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Denosumab is a RANK ligand (RANKL) inhibitor used for the management of osteoporosis in patients at high risk for bone fractures. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Digoxin Immune Fab (Ovine) interact?
•Drug A: Aducanumab •Drug B: Digoxin Immune Fab (Ovine) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Digoxin Immune Fab (Ovine) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For treatment of digitoxin overdose or digitalis glycoside toxicity. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): DigiFab binds molecules of digoxin, making them unavailable for binding at their site of action on cells in the body. The Fab fragment-digoxin complex accumulates in the blood, from which it is excreted by the kidney. The net effect is to shift the equilibrium away from binding of digoxin to its receptors in the body, thereby reversing its effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Binds excess digoxin or digitoxin molecules circulating in the blood. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 0.3 L/kg [DigiFab] 0.4 L/kg [Digibind] •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Cumulative urinary excretion of digoxin was comparable for both products and exceeded 40% of the administered dose by 24 hours. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 15-20 hrs •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Digifab •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Digoxin Immune Fab (Ovine) is an antibody binding fragment which binds digoxin molecules which is used as an antidote to digoxin overdose.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Digoxin Immune Fab (Ovine) interact? Information: •Drug A: Aducanumab •Drug B: Digoxin Immune Fab (Ovine) •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Digoxin Immune Fab (Ovine) is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For treatment of digitoxin overdose or digitalis glycoside toxicity. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): DigiFab binds molecules of digoxin, making them unavailable for binding at their site of action on cells in the body. The Fab fragment-digoxin complex accumulates in the blood, from which it is excreted by the kidney. The net effect is to shift the equilibrium away from binding of digoxin to its receptors in the body, thereby reversing its effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Binds excess digoxin or digitoxin molecules circulating in the blood. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): 0.3 L/kg [DigiFab] 0.4 L/kg [Digibind] •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Cumulative urinary excretion of digoxin was comparable for both products and exceeded 40% of the administered dose by 24 hours. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 15-20 hrs •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Digifab •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Digoxin Immune Fab (Ovine) is an antibody binding fragment which binds digoxin molecules which is used as an antidote to digoxin overdose. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Dinutuximab interact?
•Drug A: Aducanumab •Drug B: Dinutuximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dinutuximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dinutuximab is indicated, in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), and 13-cis-retinoic acid (RA), for the treatment of pediatric patients with high-risk neuroblastoma who achieve at least a partial response to prior first-line multiagent, multimodality therapy. Despite a high clinical response seen after first-line treatment, the complete eradication of neuroblastoma is rarely achieved and the majority of patients with advanced disease suffer a relapse. Current strategies for treatment include immunotherapy with drugs such as dinutuximab to target surviving neuroblastoma cells and to prevent relapse. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In vitro dinutuximab binds to neuroblastoma tumour cells and mediates the lysis of tumour cells via cell-mediated and complement-mediated cytotoxicity. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Dinutuximab is an IgG1 monoclonal human/mouse chimeric antibody against GD2, a disialoganglioside expressed on tumors of neuroectodermal origin, including human neuroblastoma and melanoma, with highly restricted expression on normal tissues. It is composed of the variable heavy- and light-chain regions of the murine anti-GD2 mAb 14.18 and the constant regions of human IgG1 heavy-chain and kappa light-chain. By binding to GD2, dinutiximab induces antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity of tumor cells thereby leading to apoptosis and inhibiting proliferation of the tumour. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean volume of distribution at steady state (Vdss) is 5.4 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is 10 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance is 0.21 L/day and increases with body size •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common (incidence 15 %) grade 3 or 4 treatment-related adverse events in dinutuximab compared with standard therapy recipients were neuropathic pain (52 vs. 6 %), fever without neutropenia (39 vs. 6 %), any in-fection (39 vs. 22 %), hypokalaemia (35 vs. 2 %), hypersensitivity reactions (25 vs. 1 %), hyponatraemia (23 vs. 4 %), elevation of alanine transferase levels (23 vs. 3 %) and hypotension (18 vs. 0 %). Based on its mechanism of action, dinutuximab may cause fetal harm when administered to a pregnant woman however, there are no studies in pregnant women and no reproductive studies in animals to inform the drug-associated risk. Non-clinical studies suggest that dinutuximab-induced neuropathic pain is mediated by binding of the antibody to the GD2 antigen located on the surface of peripheral nerve fibers and myelin and subsequent induction of cell- and complement-mediated cytotoxicity. In clinical trials, 114 (85%) patients treated in the dinutuximab/RA group experienced pain despite pre­-treatment with analgesics including morphine sulfate infusion. Severe (Grade 3) pain occurred in 68 (51%) patients in the dinutuximab/RA group compared to 5 (5%) patients in the RA group. Pain typically occurred during the dinutuximab infusion and was most commonly reported as abdominal pain, generalized pain, extremity pain, back pain, neuralgia, musculoskeletal chest pain, and arthralgia. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Unituxin •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dinutuximab is an immunotherapeutic agent used in combination with other immunomodulating agents to treat high-risk neuroblastoma in pediatric patients who achieve at least a partial response to prior first-line multiagent, multimodality therapy.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Dinutuximab interact? Information: •Drug A: Aducanumab •Drug B: Dinutuximab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dinutuximab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dinutuximab is indicated, in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), and 13-cis-retinoic acid (RA), for the treatment of pediatric patients with high-risk neuroblastoma who achieve at least a partial response to prior first-line multiagent, multimodality therapy. Despite a high clinical response seen after first-line treatment, the complete eradication of neuroblastoma is rarely achieved and the majority of patients with advanced disease suffer a relapse. Current strategies for treatment include immunotherapy with drugs such as dinutuximab to target surviving neuroblastoma cells and to prevent relapse. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In vitro dinutuximab binds to neuroblastoma tumour cells and mediates the lysis of tumour cells via cell-mediated and complement-mediated cytotoxicity. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Dinutuximab is an IgG1 monoclonal human/mouse chimeric antibody against GD2, a disialoganglioside expressed on tumors of neuroectodermal origin, including human neuroblastoma and melanoma, with highly restricted expression on normal tissues. It is composed of the variable heavy- and light-chain regions of the murine anti-GD2 mAb 14.18 and the constant regions of human IgG1 heavy-chain and kappa light-chain. By binding to GD2, dinutiximab induces antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity of tumor cells thereby leading to apoptosis and inhibiting proliferation of the tumour. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The mean volume of distribution at steady state (Vdss) is 5.4 L •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-life is 10 days •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance is 0.21 L/day and increases with body size •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common (incidence 15 %) grade 3 or 4 treatment-related adverse events in dinutuximab compared with standard therapy recipients were neuropathic pain (52 vs. 6 %), fever without neutropenia (39 vs. 6 %), any in-fection (39 vs. 22 %), hypokalaemia (35 vs. 2 %), hypersensitivity reactions (25 vs. 1 %), hyponatraemia (23 vs. 4 %), elevation of alanine transferase levels (23 vs. 3 %) and hypotension (18 vs. 0 %). Based on its mechanism of action, dinutuximab may cause fetal harm when administered to a pregnant woman however, there are no studies in pregnant women and no reproductive studies in animals to inform the drug-associated risk. Non-clinical studies suggest that dinutuximab-induced neuropathic pain is mediated by binding of the antibody to the GD2 antigen located on the surface of peripheral nerve fibers and myelin and subsequent induction of cell- and complement-mediated cytotoxicity. In clinical trials, 114 (85%) patients treated in the dinutuximab/RA group experienced pain despite pre­-treatment with analgesics including morphine sulfate infusion. Severe (Grade 3) pain occurred in 68 (51%) patients in the dinutuximab/RA group compared to 5 (5%) patients in the RA group. Pain typically occurred during the dinutuximab infusion and was most commonly reported as abdominal pain, generalized pain, extremity pain, back pain, neuralgia, musculoskeletal chest pain, and arthralgia. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Unituxin •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dinutuximab is an immunotherapeutic agent used in combination with other immunomodulating agents to treat high-risk neuroblastoma in pediatric patients who achieve at least a partial response to prior first-line multiagent, multimodality therapy. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Dostarlimab interact?
•Drug A: Aducanumab •Drug B: Dostarlimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Dostarlimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dostarlimab is indicated for the treatment of adult patients with mismatch repair deficient (dMMR) recurrent or advanced endometrial cancer that has progressed despite ongoing or prior treatment with a platinum-containing chemotherapy regimen. It is used as monotherapy or in combination with carboplatin and paclitaxel. It is also indicated for the treatment of dMMR recurrent or advanced solid tumors in adults, as determined by an FDA-approved test, that have progressed on or following prior treatment and in patients who have no satisfactory alternative treatment options. This indication is approved under accelerated approval, and continued approval for this indication may be contingent upon verification and description of and description of clinical benefit in confirmatory trials. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dostarlimab is an immunotherapy that facilitates the body's endogenous anti-tumor immune response in the treatment cancer. It is administered over a span of 30 minutes via intravenous infusion every three to six weeks depending on the cycle. Agents that interfere with the PD-1/PD-L1 pathway, including dostarlimab, remove an important immune system inhibitory response and may therefore induce immune-mediated adverse reactions which can be severe or fatal. These reactions can occur in any organ system and can occur at any time after starting therapy, and while they most often manifest during therapy they may also appear after discontinuing the causative agent. Patients receiving therapy with dostarlimab should be monitored closely for evidence of an underlying immune-mediated reaction and evaluated and treated promptly if an immune-mediated reaction is suspected. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Approximately 13-30% of recurrent endometrial cancers involve microsatellite instability (MSI) or mismatch repair deficiency (dMMR). The mutations resulting in dMMR endometrial cancers are primarily somatic in nature (~90%), although 5-10% of cases involve germline mutations. Cancers that have mutations resulting in dMMR can upregulate the expression of programmed death receptor-1 (PD-1) ligands 1 and 2 (PD-L1 and -L2) - PD-1 is found on T-cells and, when activated, inhibits their proliferation and the production of cytokines. The binding of these ligands to PD-1 thereby functions as an immune checkpoint that downregulates the anti-tumor immune response. Dostarlimab is a monoclonal antibody targeted against PD-1 - it binds to the receptor and prevents interactions with PD-L1 and PD-L2, thus allowing the anti-tumor immune response to proceed unimpeded. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): During the first cycle, and administered at 500mg intravenously every 3 weeks, the mean C max and AUC 0-tau of dostarlimab-gxly are 171 mcg/mL and 35,730 mcg.h/mL, respectively. When administered at 1000mg every 6 weeks, the mean C max and AUC 0-tau are 309 mcg/mL and 95,820 mcg.h/mL, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): At steady-state, the mean volume of distribution of dostarlimab is 5.3L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The metabolism of dostarlimab has not been characterized, but it is expected to be degraded via catabolic pathways into smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal elimination half-life of dostarlimab is 25.4 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): At steady-state, the mean clearance of dostarlimab is 0.007 L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no data regarding overdose with dostarlimab. Symptoms of overdosage are likely to be consistent with the adverse effect profile of dostarlimab and may therefore involve significant immune-mediated reactions. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Jemperli •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dostarlimab is an anti-PD-1 monoclonal antibody used in the treatment of mismatch repair deficient endometrial cancers and solid tumours with no alternative treatment options.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Dostarlimab interact? Information: •Drug A: Aducanumab •Drug B: Dostarlimab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Dostarlimab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dostarlimab is indicated for the treatment of adult patients with mismatch repair deficient (dMMR) recurrent or advanced endometrial cancer that has progressed despite ongoing or prior treatment with a platinum-containing chemotherapy regimen. It is used as monotherapy or in combination with carboplatin and paclitaxel. It is also indicated for the treatment of dMMR recurrent or advanced solid tumors in adults, as determined by an FDA-approved test, that have progressed on or following prior treatment and in patients who have no satisfactory alternative treatment options. This indication is approved under accelerated approval, and continued approval for this indication may be contingent upon verification and description of and description of clinical benefit in confirmatory trials. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dostarlimab is an immunotherapy that facilitates the body's endogenous anti-tumor immune response in the treatment cancer. It is administered over a span of 30 minutes via intravenous infusion every three to six weeks depending on the cycle. Agents that interfere with the PD-1/PD-L1 pathway, including dostarlimab, remove an important immune system inhibitory response and may therefore induce immune-mediated adverse reactions which can be severe or fatal. These reactions can occur in any organ system and can occur at any time after starting therapy, and while they most often manifest during therapy they may also appear after discontinuing the causative agent. Patients receiving therapy with dostarlimab should be monitored closely for evidence of an underlying immune-mediated reaction and evaluated and treated promptly if an immune-mediated reaction is suspected. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Approximately 13-30% of recurrent endometrial cancers involve microsatellite instability (MSI) or mismatch repair deficiency (dMMR). The mutations resulting in dMMR endometrial cancers are primarily somatic in nature (~90%), although 5-10% of cases involve germline mutations. Cancers that have mutations resulting in dMMR can upregulate the expression of programmed death receptor-1 (PD-1) ligands 1 and 2 (PD-L1 and -L2) - PD-1 is found on T-cells and, when activated, inhibits their proliferation and the production of cytokines. The binding of these ligands to PD-1 thereby functions as an immune checkpoint that downregulates the anti-tumor immune response. Dostarlimab is a monoclonal antibody targeted against PD-1 - it binds to the receptor and prevents interactions with PD-L1 and PD-L2, thus allowing the anti-tumor immune response to proceed unimpeded. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): During the first cycle, and administered at 500mg intravenously every 3 weeks, the mean C max and AUC 0-tau of dostarlimab-gxly are 171 mcg/mL and 35,730 mcg.h/mL, respectively. When administered at 1000mg every 6 weeks, the mean C max and AUC 0-tau are 309 mcg/mL and 95,820 mcg.h/mL, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): At steady-state, the mean volume of distribution of dostarlimab is 5.3L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The metabolism of dostarlimab has not been characterized, but it is expected to be degraded via catabolic pathways into smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean terminal elimination half-life of dostarlimab is 25.4 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): At steady-state, the mean clearance of dostarlimab is 0.007 L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no data regarding overdose with dostarlimab. Symptoms of overdosage are likely to be consistent with the adverse effect profile of dostarlimab and may therefore involve significant immune-mediated reactions. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Jemperli •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dostarlimab is an anti-PD-1 monoclonal antibody used in the treatment of mismatch repair deficient endometrial cancers and solid tumours with no alternative treatment options. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Dulaglutide interact?
•Drug A: Aducanumab •Drug B: Dulaglutide •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dulaglutide is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dulaglutide is indicated as an adjunct to diet and exercise to improve glycemic control in adults and pediatric patients ≥10 years of age with type 2 diabetes mellitus. It is also indicated to reduce the risk of major adverse cardiovascular events in adults with type 2 diabetes mellitus who have established cardiovascular disease or multiple cardiovascular risk factors. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dulaglutide reduces fasting glucose concentrations and reduces postprandial glucose (PPG) concentrations in patients with type 2 diabetes mellitus through the agonism of the GLP-1 receptor. This drug primarily acts as an incretin mimetic hormone or analog of human glucagon-like peptide-1, which normally acts on the GLP-1 receptor. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Dulaglutide activates the GLP-1 receptor found in pancreatic beta cells, increasing intracellular cyclic AMP (cAMP) in beta cells, leading to insulin release and subsequent reduction of blood glucose concentrations. Additionally, dulaglutide decreases glucagon secretion and slows gastric emptying. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Dulaglutide is slowly absorbed after subcutaneous injection. In a pharmacokinetic study of 20 healthy adults, Cmax occurred within 24-48 hours after dosing. The average absolute bioavailability of dulaglutide after subcutaneous injections of single 0.75 mg and 1.5 mg doses was 65% and 47%, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The apparent volume of distribution of dulaglutide was 3.09 L in a pharmacokinetic study; the apparent population mean peripheral volume of distribution was approximately 6 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Protein binding information for dulaglutide is not readily available in the literature. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Dulaglutide is presumed to be degraded into its component amino acids by general protein catabolism pathways. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Elimination of dulaglutide is expected to occur through degradation to individual amino acids. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In a pharmacokinetic study of 20 healthy adults, the average half-life of dulaglutide administered at various doses was approximately 3.75 days (89.9 hours). This extended half-life allows for once-weekly dosing. Prescribing information indicates a half-life of approximately 5 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent population mean clearance of dulaglutide was 0.142 L/h in a pharmacokinetic study. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LD50 information for dulaglutide is not readily available in the literature. Cases of overdose with dulaglutide have resulted in gastrointestinal disturbance. Appropriate supportive treatment is recommended to manage signs and symptoms. Additionally, hypoglycemia has been observed after an overdose with dulaglutide; frequent plasma glucose monitoring should be performed. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Trulicity •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dulaglutide is a GLP-1 agonist used to manage type 2 diabetes mellitus.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Dulaglutide interact? Information: •Drug A: Aducanumab •Drug B: Dulaglutide •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dulaglutide is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Dulaglutide is indicated as an adjunct to diet and exercise to improve glycemic control in adults and pediatric patients ≥10 years of age with type 2 diabetes mellitus. It is also indicated to reduce the risk of major adverse cardiovascular events in adults with type 2 diabetes mellitus who have established cardiovascular disease or multiple cardiovascular risk factors. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dulaglutide reduces fasting glucose concentrations and reduces postprandial glucose (PPG) concentrations in patients with type 2 diabetes mellitus through the agonism of the GLP-1 receptor. This drug primarily acts as an incretin mimetic hormone or analog of human glucagon-like peptide-1, which normally acts on the GLP-1 receptor. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Dulaglutide activates the GLP-1 receptor found in pancreatic beta cells, increasing intracellular cyclic AMP (cAMP) in beta cells, leading to insulin release and subsequent reduction of blood glucose concentrations. Additionally, dulaglutide decreases glucagon secretion and slows gastric emptying. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Dulaglutide is slowly absorbed after subcutaneous injection. In a pharmacokinetic study of 20 healthy adults, Cmax occurred within 24-48 hours after dosing. The average absolute bioavailability of dulaglutide after subcutaneous injections of single 0.75 mg and 1.5 mg doses was 65% and 47%, respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The apparent volume of distribution of dulaglutide was 3.09 L in a pharmacokinetic study; the apparent population mean peripheral volume of distribution was approximately 6 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Protein binding information for dulaglutide is not readily available in the literature. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Dulaglutide is presumed to be degraded into its component amino acids by general protein catabolism pathways. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Elimination of dulaglutide is expected to occur through degradation to individual amino acids. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In a pharmacokinetic study of 20 healthy adults, the average half-life of dulaglutide administered at various doses was approximately 3.75 days (89.9 hours). This extended half-life allows for once-weekly dosing. Prescribing information indicates a half-life of approximately 5 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent population mean clearance of dulaglutide was 0.142 L/h in a pharmacokinetic study. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LD50 information for dulaglutide is not readily available in the literature. Cases of overdose with dulaglutide have resulted in gastrointestinal disturbance. Appropriate supportive treatment is recommended to manage signs and symptoms. Additionally, hypoglycemia has been observed after an overdose with dulaglutide; frequent plasma glucose monitoring should be performed. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Trulicity •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dulaglutide is a GLP-1 agonist used to manage type 2 diabetes mellitus. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Dupilumab interact?
•Drug A: Aducanumab •Drug B: Dupilumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dupilumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): In the US, dupilumab is indicated for the treatment of patients aged six months and older with moderate-to-severe atopic dermatitis whose disease is not adequately controlled with topical prescription therapies or when those therapies are not advisable. In Europe and Canada, the drug for this indication is approved for patients aged six years and older. In Europe, patients six to 11 years of age should have severe atopic dermatitis and be candidates for systemic therapy. Dupilumab can be used with or without topical corticosteroids for this condition. Dupilumab is indicated as an add-on maintenance treatment of patients aged six years and older with moderate-to-severe asthma characterized by an eosinophilic phenotype or with oral corticosteroid dependent asthma. However, the drug is not indicated for relief of acute bronchospasm or status asthmaticus. Dupilumab is indicated as an add-on maintenance treatment in adult patients with inadequately controlled chronic rhinosinusitis with nasal polyposis. In Canada and Europe, it is used with intranasal corticosteroids. In the US and Europe, dupilumab is also indicated for the treatment of adults and children aged 12 years and older weighing at least 40 kg with eosinophilic esophagitis (EoE), and adults with prurigo nodularis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dupilumab is an recombinant human IgG4 antibody to the IL-4 receptor that works by inhibiting the activation of certain pro-inflammatory cytokines that are implicated in the pathophysiology of several allergic and atopic conditions, including asthma, chronic rhinosinusitis with nasal polyps, and food and environmental allergies. In vivo, dupilumab was shown to reduce the levels of type 2 inflammatory biomarkers associated with atopic dermatitis, such as thymus and activation-regulated chemokine (TARC/CCL17), total serum IgE, allergen-specific IgE, and lactate dehydrogenase (LDH). A decrease in the levels of biomarkers of asthma, such as FeNO, eotaxin-3, IgE, periostin, and eotaxin-3 (CCL26) was also observed. Since dupilumab works to suppress the immune response, it is proposed that it may influence the immune response against some infections, such as helminth infections, by inhibiting IL-4/IL-13 signaling. It is advised that infections are appropriately treated until resolved before initiating dupilumab therapy. While findings of some in vitro and in vivo studies suggest that some cytokine modulators may influence the expression and activity of specific cytochrome P450 (CYP450) enzymes, an open-label drug-drug interaction study demonstrated that dupilumab displays no significant effect on the activity of CYP450 enzymes studied (CYP3A, CYP2C19, CYP2C9, CYP1A2, and CYP2D6). •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Type 2 inflammatory processes in various allergic and atopic conditions, such as asthma and atopic diseases, involve the type 2 helper T-cell (Th2) immunity. Upregulation of this Type 2/Th2 pathway is commonly observed in other inflammatory conditions and the activation of Th2 cells is linked to the production of Th2-associated cytokines, such as interleukin (IL) 4, IL-5, IL-9, and IL-13. IL-4 and IL-13 play a central role in inducing inflammatory conditions such as allergic rhinitis, asthma, and atopic dermatitis, by regulating Type 2 inflammation and immune function. These inflammatory cytokines work by modulating gene expression downstream of receptor signalling, regulating Th2 cell differentiation, and activating inflammatory cells such as mast cells and macrophages. There are two types of receptors for IL-4: the type 1 receptor, which is composed of the IL-4 chain (IL-4Rα) and a γ chain (γC), and the type 2 receptor, which is composed of the IL-4Rα chain and the α1 chain of the IL-13 receptor (IL-13Rα1). Essentially, IL‐4Rα is a component shared by the IL‐4 and IL-13 receptor complexes and is ubiquitously expressed on both innate and adaptive immune cells to promote the signaling of IL-4 and IL-13. The type I receptor is primarily expressed on lymphocytes and controls Th2-cell differentiation, whereas the type II receptor is mostly found across resident and myeloid cells. Dupilumab is a fully human monoclonal antibody directed against IL‐4Rα to inhibit the signalling of IL‐4 and IL‐13. Dupilumab inhibits IL-4 signalling via the Type I receptor (IL-4Rα/γc), and both IL-4 and IL-13 signaling through the Type II receptor (IL-4Rα/IL-13Rα). It ultimately downregulates type-2 immunity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The Cmax following administration of a single subcutaneous dose of 600 mg or 400 mg of dupilumab were 70.1 ± 24.1 mcg/mL or 41.8 ± 12.4 mcg/mL, respectively. The Tmax ranged from 3 to 7 days following administration of a single subcutaneous dose ranging from 75 to 600 mg. Following a subcutaneous dose, the absolute bioavailability of dupilumab ranged between 61% and 64% in patients with atopic dermatitis or asthma. In clinical trials, the steady-state concentrations were reached by week 16 following the administration of 600 mg starting dose and 300 mg dose every other week. At these concentrations, the mean trough concentrations ranged from 60.3 ± 35.1 mcg/mL to 79.9 ± 41.4 mcg/mL for 300 mg dose and from 29.2 ± 18.7 to 36.5 ± 22.2 mcg/mL for 200 mg dose administered every other week. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The estimated volume of distribution is 4.8 ± 1.3 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is limited data on the serum protein binding profile of dupilumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Being a monoclonal antibody, dupilumab is not expected to undergo significant hepatic metabolism. While the metabolism of dupilumab has not been characterized, it is speculated that dupilumab undergoes nonspecific degradation into smaller peptides and amino acids, as often observed with endogenous IgG. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Being a monoclonal antibody, dupilumab is not expected to undergo significant renal elimination. It is proposed that dupilumab is eliminated via parallel linear and nonlinear pathways. At higher concentrations, dupilumab is primarily cleared through a non-saturable proteolytic pathway. At lower concentrations, it undergoes a non-linear saturable IL-4R α target-mediated elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): There is limited human data on the half-life of dupilumab. In single-dose pharmacokinetic studies, the mean half-life of dupilumab following intravenous or subcutaneous administration ranged from 4.8 to 7 days in rats and 11.7 to 20.5 days in cynomolgus monkeys. In these studies, the mean half-life was comparable was comparable following intravenous and subcutaneous administration. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): There is limited data on the clearance of dupilumab. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited data on the overdose of dupilumab. As there is no specific treatment for dupilumab, close monitoring of the patient with appropriate symptomatic treatment is advised in case of suspected overdosage.[] •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Dupixent •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dupilumab is a monoclonal antibody used to treat moderate to severe atopic dermatitis, asthma, and nasal polyps accompanied by chronic rhinosinusitis in adolescents and adults.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Dupilumab interact? Information: •Drug A: Aducanumab •Drug B: Dupilumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Dupilumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): In the US, dupilumab is indicated for the treatment of patients aged six months and older with moderate-to-severe atopic dermatitis whose disease is not adequately controlled with topical prescription therapies or when those therapies are not advisable. In Europe and Canada, the drug for this indication is approved for patients aged six years and older. In Europe, patients six to 11 years of age should have severe atopic dermatitis and be candidates for systemic therapy. Dupilumab can be used with or without topical corticosteroids for this condition. Dupilumab is indicated as an add-on maintenance treatment of patients aged six years and older with moderate-to-severe asthma characterized by an eosinophilic phenotype or with oral corticosteroid dependent asthma. However, the drug is not indicated for relief of acute bronchospasm or status asthmaticus. Dupilumab is indicated as an add-on maintenance treatment in adult patients with inadequately controlled chronic rhinosinusitis with nasal polyposis. In Canada and Europe, it is used with intranasal corticosteroids. In the US and Europe, dupilumab is also indicated for the treatment of adults and children aged 12 years and older weighing at least 40 kg with eosinophilic esophagitis (EoE), and adults with prurigo nodularis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Dupilumab is an recombinant human IgG4 antibody to the IL-4 receptor that works by inhibiting the activation of certain pro-inflammatory cytokines that are implicated in the pathophysiology of several allergic and atopic conditions, including asthma, chronic rhinosinusitis with nasal polyps, and food and environmental allergies. In vivo, dupilumab was shown to reduce the levels of type 2 inflammatory biomarkers associated with atopic dermatitis, such as thymus and activation-regulated chemokine (TARC/CCL17), total serum IgE, allergen-specific IgE, and lactate dehydrogenase (LDH). A decrease in the levels of biomarkers of asthma, such as FeNO, eotaxin-3, IgE, periostin, and eotaxin-3 (CCL26) was also observed. Since dupilumab works to suppress the immune response, it is proposed that it may influence the immune response against some infections, such as helminth infections, by inhibiting IL-4/IL-13 signaling. It is advised that infections are appropriately treated until resolved before initiating dupilumab therapy. While findings of some in vitro and in vivo studies suggest that some cytokine modulators may influence the expression and activity of specific cytochrome P450 (CYP450) enzymes, an open-label drug-drug interaction study demonstrated that dupilumab displays no significant effect on the activity of CYP450 enzymes studied (CYP3A, CYP2C19, CYP2C9, CYP1A2, and CYP2D6). •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Type 2 inflammatory processes in various allergic and atopic conditions, such as asthma and atopic diseases, involve the type 2 helper T-cell (Th2) immunity. Upregulation of this Type 2/Th2 pathway is commonly observed in other inflammatory conditions and the activation of Th2 cells is linked to the production of Th2-associated cytokines, such as interleukin (IL) 4, IL-5, IL-9, and IL-13. IL-4 and IL-13 play a central role in inducing inflammatory conditions such as allergic rhinitis, asthma, and atopic dermatitis, by regulating Type 2 inflammation and immune function. These inflammatory cytokines work by modulating gene expression downstream of receptor signalling, regulating Th2 cell differentiation, and activating inflammatory cells such as mast cells and macrophages. There are two types of receptors for IL-4: the type 1 receptor, which is composed of the IL-4 chain (IL-4Rα) and a γ chain (γC), and the type 2 receptor, which is composed of the IL-4Rα chain and the α1 chain of the IL-13 receptor (IL-13Rα1). Essentially, IL‐4Rα is a component shared by the IL‐4 and IL-13 receptor complexes and is ubiquitously expressed on both innate and adaptive immune cells to promote the signaling of IL-4 and IL-13. The type I receptor is primarily expressed on lymphocytes and controls Th2-cell differentiation, whereas the type II receptor is mostly found across resident and myeloid cells. Dupilumab is a fully human monoclonal antibody directed against IL‐4Rα to inhibit the signalling of IL‐4 and IL‐13. Dupilumab inhibits IL-4 signalling via the Type I receptor (IL-4Rα/γc), and both IL-4 and IL-13 signaling through the Type II receptor (IL-4Rα/IL-13Rα). It ultimately downregulates type-2 immunity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The Cmax following administration of a single subcutaneous dose of 600 mg or 400 mg of dupilumab were 70.1 ± 24.1 mcg/mL or 41.8 ± 12.4 mcg/mL, respectively. The Tmax ranged from 3 to 7 days following administration of a single subcutaneous dose ranging from 75 to 600 mg. Following a subcutaneous dose, the absolute bioavailability of dupilumab ranged between 61% and 64% in patients with atopic dermatitis or asthma. In clinical trials, the steady-state concentrations were reached by week 16 following the administration of 600 mg starting dose and 300 mg dose every other week. At these concentrations, the mean trough concentrations ranged from 60.3 ± 35.1 mcg/mL to 79.9 ± 41.4 mcg/mL for 300 mg dose and from 29.2 ± 18.7 to 36.5 ± 22.2 mcg/mL for 200 mg dose administered every other week. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The estimated volume of distribution is 4.8 ± 1.3 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is limited data on the serum protein binding profile of dupilumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Being a monoclonal antibody, dupilumab is not expected to undergo significant hepatic metabolism. While the metabolism of dupilumab has not been characterized, it is speculated that dupilumab undergoes nonspecific degradation into smaller peptides and amino acids, as often observed with endogenous IgG. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Being a monoclonal antibody, dupilumab is not expected to undergo significant renal elimination. It is proposed that dupilumab is eliminated via parallel linear and nonlinear pathways. At higher concentrations, dupilumab is primarily cleared through a non-saturable proteolytic pathway. At lower concentrations, it undergoes a non-linear saturable IL-4R α target-mediated elimination. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): There is limited human data on the half-life of dupilumab. In single-dose pharmacokinetic studies, the mean half-life of dupilumab following intravenous or subcutaneous administration ranged from 4.8 to 7 days in rats and 11.7 to 20.5 days in cynomolgus monkeys. In these studies, the mean half-life was comparable was comparable following intravenous and subcutaneous administration. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): There is limited data on the clearance of dupilumab. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited data on the overdose of dupilumab. As there is no specific treatment for dupilumab, close monitoring of the patient with appropriate symptomatic treatment is advised in case of suspected overdosage.[] •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Dupixent •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Dupilumab is a monoclonal antibody used to treat moderate to severe atopic dermatitis, asthma, and nasal polyps accompanied by chronic rhinosinusitis in adolescents and adults. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Durvalumab interact?
•Drug A: Aducanumab •Drug B: Durvalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Durvalumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Durvalumab is indicated for the treatment of adults with the following conditions: unresectable Stage III non-small cell lung cancer (NSCLC) whose disease has not progressed following concurrent platinum-based chemotherapy and radiation therapy. metastatic NSCLC with no sensitizing epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) genomic tumour aberrations, in combination with tremelimumab and platinum-based chemotherapy. extensive-stage small cell lung cancer (ES-SCLC) in combination with etoposide and either carboplatin or cisplatin as first-line therapy. locally advanced or metastatic biliary tract cancer (BTC) in combination with gemcitabine and cisplatin. unresectable hepatocellular carcinoma (uHCC) in combination with tremelimumab. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Durvalumab is an anticancer antibody that works to promote the antitumour responses mediated by immune cells. By blocking the action of PD-L1, durvalumab exerts its anticancer effects by increasing T-cell activation, enhancing detection and ablation of tumour cells. In in vitro assays, durvalumab inhibited the activity of PD-L1 in a concentration-dependent manner. In co-engrafted human tumor and immune cell xenograft mouse models, durvalumab was effective in decreasing tumour size. Durvalumab does not mediate antibody-dependent cell-mediated cytotoxicity (ADCC). •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Because cancer cells express antigens that are recognized and taken up by antigen-presenting cells (APCs), the immune responses prime and activate cytotoxic T cells, and allow them to travel to the site of the tumour to destroy cancer cells. However, tumours often evade T cell-mediated immune responses to enhance their survival. Inflammatory mediators, such as IFN-gamma, induce the expression of programmed cell death ligand-1 (PD-L1), which is a type 1 transmembrane protein expressed on tumour cells and tumour-associated immune cells in the tumour microenvironment. PD-L1 acts as an immune checkpoint to regulate immune responses. PD-L1 is a ligand to PD-1, which is a cell surface receptor expressed on activated T cells in peripheral tissues following antigen exposure. Both PD-L1 and PD-1 are co-inhibitory molecules involved in blocking T cell-mediated immune responses. PD-L1 also interacts with CD-80, which is a receptor constitutively expressed by T cells and is upregulated early after T cell activation. The expression of PD-L1 is an adaptive immune response by tumour cells, resulting in the over-expression of the molecule in some cancers. PD-L1 interacts with PD-1 and CD80, which leads to blocked cytotoxic T cell activation, T cell proliferation, and cytokine production. By binding to PD-L1 and preventing its association with PD-1 and CD80, durvalumab activates the immune responses mediated by cytotoxic T cells that attack tumour cells. Durvalumab displays selective and high affinity toward PD-L1 but not PD-L2, which is a regulatory ligand expressed in tumour cells to a lesser extent and involved in regulating inflammation and differentiation of T cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Durvalumab exhibits a dose-proportional pharmacokinetic profile that is non-linear at doses <3 mg/kg and linear at doses ≥3 mg/kg. Following intravenous administration in patients with solid tumours, the steady-state plasma concentrations were reached at approximately 16 weeks. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In patients receiving the dose range of ≥ 10 mg/kg every 2 weeks, the mean steady state volume of distribution (Vss) was 5.64 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is limited information on the serum protein binding profile of durvalumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Durvalumab is subject to protein catabolism via reticuloedothelial system or target-mediated disposition. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Durvalumab is primarily eliminated by protein catabolism. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Based on baseline clearance rate, the geometric mean terminal half-life is 18 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Clearance of durvalumab decreases over time, resulting in a mean steady-state clearance (CLss) of 8.2 mL/h following 365 days of initial drug administration. However, the decrease in CLss is not considered clinically relevant. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information about the overdose profile and LD 50 of durvalumab. In case of overdose, the patient should be closely monitored for drug-related adverse events, and appropriate symptomatic treatment should be immediately initiated. Based on the findings of clinical studies, durvalumab had a risk of causing immune-mediated reactions, such as pneumonitis, hepatitis, and other serious infections. In animal reproductive studies, durvalumab caused fetal harm and this fetal toxicity may be possible in humans. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Imfinzi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Durvalumab is an antineoplastic monoclonal antibody used to treat urothelial carcinoma and locally advanced, unresectable non-small cell lung cancer.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Durvalumab interact? Information: •Drug A: Aducanumab •Drug B: Durvalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Durvalumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Durvalumab is indicated for the treatment of adults with the following conditions: unresectable Stage III non-small cell lung cancer (NSCLC) whose disease has not progressed following concurrent platinum-based chemotherapy and radiation therapy. metastatic NSCLC with no sensitizing epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) genomic tumour aberrations, in combination with tremelimumab and platinum-based chemotherapy. extensive-stage small cell lung cancer (ES-SCLC) in combination with etoposide and either carboplatin or cisplatin as first-line therapy. locally advanced or metastatic biliary tract cancer (BTC) in combination with gemcitabine and cisplatin. unresectable hepatocellular carcinoma (uHCC) in combination with tremelimumab. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Durvalumab is an anticancer antibody that works to promote the antitumour responses mediated by immune cells. By blocking the action of PD-L1, durvalumab exerts its anticancer effects by increasing T-cell activation, enhancing detection and ablation of tumour cells. In in vitro assays, durvalumab inhibited the activity of PD-L1 in a concentration-dependent manner. In co-engrafted human tumor and immune cell xenograft mouse models, durvalumab was effective in decreasing tumour size. Durvalumab does not mediate antibody-dependent cell-mediated cytotoxicity (ADCC). •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Because cancer cells express antigens that are recognized and taken up by antigen-presenting cells (APCs), the immune responses prime and activate cytotoxic T cells, and allow them to travel to the site of the tumour to destroy cancer cells. However, tumours often evade T cell-mediated immune responses to enhance their survival. Inflammatory mediators, such as IFN-gamma, induce the expression of programmed cell death ligand-1 (PD-L1), which is a type 1 transmembrane protein expressed on tumour cells and tumour-associated immune cells in the tumour microenvironment. PD-L1 acts as an immune checkpoint to regulate immune responses. PD-L1 is a ligand to PD-1, which is a cell surface receptor expressed on activated T cells in peripheral tissues following antigen exposure. Both PD-L1 and PD-1 are co-inhibitory molecules involved in blocking T cell-mediated immune responses. PD-L1 also interacts with CD-80, which is a receptor constitutively expressed by T cells and is upregulated early after T cell activation. The expression of PD-L1 is an adaptive immune response by tumour cells, resulting in the over-expression of the molecule in some cancers. PD-L1 interacts with PD-1 and CD80, which leads to blocked cytotoxic T cell activation, T cell proliferation, and cytokine production. By binding to PD-L1 and preventing its association with PD-1 and CD80, durvalumab activates the immune responses mediated by cytotoxic T cells that attack tumour cells. Durvalumab displays selective and high affinity toward PD-L1 but not PD-L2, which is a regulatory ligand expressed in tumour cells to a lesser extent and involved in regulating inflammation and differentiation of T cells. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Durvalumab exhibits a dose-proportional pharmacokinetic profile that is non-linear at doses <3 mg/kg and linear at doses ≥3 mg/kg. Following intravenous administration in patients with solid tumours, the steady-state plasma concentrations were reached at approximately 16 weeks. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): In patients receiving the dose range of ≥ 10 mg/kg every 2 weeks, the mean steady state volume of distribution (Vss) was 5.64 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): There is limited information on the serum protein binding profile of durvalumab. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Durvalumab is subject to protein catabolism via reticuloedothelial system or target-mediated disposition. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Durvalumab is primarily eliminated by protein catabolism. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Based on baseline clearance rate, the geometric mean terminal half-life is 18 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Clearance of durvalumab decreases over time, resulting in a mean steady-state clearance (CLss) of 8.2 mL/h following 365 days of initial drug administration. However, the decrease in CLss is not considered clinically relevant. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There is limited information about the overdose profile and LD 50 of durvalumab. In case of overdose, the patient should be closely monitored for drug-related adverse events, and appropriate symptomatic treatment should be immediately initiated. Based on the findings of clinical studies, durvalumab had a risk of causing immune-mediated reactions, such as pneumonitis, hepatitis, and other serious infections. In animal reproductive studies, durvalumab caused fetal harm and this fetal toxicity may be possible in humans. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Imfinzi •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Durvalumab is an antineoplastic monoclonal antibody used to treat urothelial carcinoma and locally advanced, unresectable non-small cell lung cancer. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Ebola Zaire vaccine (live, attenuated) interact?
•Drug A: Aducanumab •Drug B: Ebola Zaire vaccine (live, attenuated) •Severity: MINOR •Description: The therapeutic efficacy of Ebola Zaire vaccine (live, attenuated) can be decreased when used in combination with Aducanumab. •Extended Description: Immunoglobulins suppress the immune response and may reduce the therapeutic effectiveness of live attenuated Ebola vaccine virus when co-administered in a short time frame, as vaccines work by eliciting an immune response. It is speculated that administration of immune globulins administered 3 months before or up to 1 month after the Ebola virus vaccine administration may interfere with the expected immune response. There is also a possibility of an infection, as live vaccines hold viral proteins and carry a risk of systemic infection, especially to individuals with profound immunosuppression caused by disease or drugs. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Summary not found
Immunoglobulins suppress the immune response and may reduce the therapeutic effectiveness of live attenuated Ebola vaccine virus when co-administered in a short time frame, as vaccines work by eliciting an immune response. It is speculated that administration of immune globulins administered 3 months before or up to 1 month after the Ebola virus vaccine administration may interfere with the expected immune response. There is also a possibility of an infection, as live vaccines hold viral proteins and carry a risk of systemic infection, especially to individuals with profound immunosuppression caused by disease or drugs. The severity of the interaction is minor.
Question: Does Aducanumab and Ebola Zaire vaccine (live, attenuated) interact? Information: •Drug A: Aducanumab •Drug B: Ebola Zaire vaccine (live, attenuated) •Severity: MINOR •Description: The therapeutic efficacy of Ebola Zaire vaccine (live, attenuated) can be decreased when used in combination with Aducanumab. •Extended Description: Immunoglobulins suppress the immune response and may reduce the therapeutic effectiveness of live attenuated Ebola vaccine virus when co-administered in a short time frame, as vaccines work by eliciting an immune response. It is speculated that administration of immune globulins administered 3 months before or up to 1 month after the Ebola virus vaccine administration may interfere with the expected immune response. There is also a possibility of an infection, as live vaccines hold viral proteins and carry a risk of systemic infection, especially to individuals with profound immunosuppression caused by disease or drugs. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Protein binding (Drug A): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Brand Names (Drug A): Aduhelm •Synonyms (Drug A): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Summary not found Output: Immunoglobulins suppress the immune response and may reduce the therapeutic effectiveness of live attenuated Ebola vaccine virus when co-administered in a short time frame, as vaccines work by eliciting an immune response. It is speculated that administration of immune globulins administered 3 months before or up to 1 month after the Ebola virus vaccine administration may interfere with the expected immune response. There is also a possibility of an infection, as live vaccines hold viral proteins and carry a risk of systemic infection, especially to individuals with profound immunosuppression caused by disease or drugs. The severity of the interaction is minor.
Does Aducanumab and Eculizumab interact?
•Drug A: Aducanumab •Drug B: Eculizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Eculizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eculizumab is indicated in the US to treat paroxysmal nocturnal hemoglobinuria (PNH) to reduce hemolysis, atypical hemolytic uremic syndrome to inhibit complement-mediated thrombotic microangiopathy, and neuromyelitis optica spectrum disorder (NMOSD). It is also indicated in EU to treat PNH in both adult and pediatric patients. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eculizumab is a monoclonal antibody that prevents the activation of terminal complement in some autoimmune conditions. Eculizumab has a long duration of action. Patients taking this medication should be vaccinated against Neisseria meningiditis as serious meningococcal infections have occurred in the past. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eculizumab is a monoclonal antibody that targets complement protein C5, preventing cleavage to C5a and C5b, and the formation of the terminal complement complex C5b-9. Inhibition of this complex prevents complement mediated intravascular hemolysis in paroxysmal nocturnal hemoglobunuria, complement mediated microangiopathy in atypical hemolytic uremic syndrome, and immune mediated inflammation and damage of the central nervous system in neuromyelitis optica spectrum disorder. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Eculizumab is administered by intravenous infusion so the bioavailability is 100%. This drug reaches a C max of 194±76µg/mL and C trough of 97±60µg/mL. The AUC was calculated to be 24,467.6µg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of eculizumab is 5-8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Though protein binding data is scarce, eculizumab is unlikely to be protein bound as it is a monoclonal antibody. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Eculizumab is a monoclonal antibody and is expected to be metabolized to small peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are not eliminated in the urine, and only a small amount is excreted in bile. Most monoclonal antibodies are catabolized in lysosomes to amino acids. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half life of eculizumab is 270-375h or 272±82h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Pharmacokinetic properties in healthy patients have not been determined. In patients with rhematoid arthritis, there is an average clearance of 0.26mL/kg/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Overdoses of eculizumab are unlikely as it is administered under specialist supervision. In case of overdose, contact local poison control. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Soliris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eculizumab is a recombinant humanized monoclonal antibody used to reduce the risk of hemolysis in paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS).
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Eculizumab interact? Information: •Drug A: Aducanumab •Drug B: Eculizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Eculizumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eculizumab is indicated in the US to treat paroxysmal nocturnal hemoglobinuria (PNH) to reduce hemolysis, atypical hemolytic uremic syndrome to inhibit complement-mediated thrombotic microangiopathy, and neuromyelitis optica spectrum disorder (NMOSD). It is also indicated in EU to treat PNH in both adult and pediatric patients. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eculizumab is a monoclonal antibody that prevents the activation of terminal complement in some autoimmune conditions. Eculizumab has a long duration of action. Patients taking this medication should be vaccinated against Neisseria meningiditis as serious meningococcal infections have occurred in the past. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eculizumab is a monoclonal antibody that targets complement protein C5, preventing cleavage to C5a and C5b, and the formation of the terminal complement complex C5b-9. Inhibition of this complex prevents complement mediated intravascular hemolysis in paroxysmal nocturnal hemoglobunuria, complement mediated microangiopathy in atypical hemolytic uremic syndrome, and immune mediated inflammation and damage of the central nervous system in neuromyelitis optica spectrum disorder. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Eculizumab is administered by intravenous infusion so the bioavailability is 100%. This drug reaches a C max of 194±76µg/mL and C trough of 97±60µg/mL. The AUC was calculated to be 24,467.6µg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of eculizumab is 5-8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Though protein binding data is scarce, eculizumab is unlikely to be protein bound as it is a monoclonal antibody. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Eculizumab is a monoclonal antibody and is expected to be metabolized to small peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibodies are not eliminated in the urine, and only a small amount is excreted in bile. Most monoclonal antibodies are catabolized in lysosomes to amino acids. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The half life of eculizumab is 270-375h or 272±82h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Pharmacokinetic properties in healthy patients have not been determined. In patients with rhematoid arthritis, there is an average clearance of 0.26mL/kg/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Overdoses of eculizumab are unlikely as it is administered under specialist supervision. In case of overdose, contact local poison control. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Soliris •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eculizumab is a recombinant humanized monoclonal antibody used to reduce the risk of hemolysis in paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Eflapegrastim interact?
•Drug A: Aducanumab •Drug B: Eflapegrastim •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Eflapegrastim. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eflapegrastim is indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in adult patients with non-myeloid malignancies receiving myelosuppressive anti-cancer drugs associated with a clinically significant incidence of febrile neutropenia. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eflapegrastim increases absolute neutrophil count (ANC) in a dose-dependent manner in both healthy subjects and cancer patients. In rat studies, it was associated with higher serum and bone marrow concentrations than pegfilgrastim, which translated to a significantly shorter duration of neutropenia when eflapegrastim was administered 24 hours post-chemotherapy compared to pegfilgrastim. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eflapegrastim is a recombinant human granulocyte-colony stimulating factor (rhG-CSF). Like endogenous G-CSF, eflapegrastim binds to G-CSF receptors on myeloid progenitor cells and neutrophils - this triggers signaling pathways that result in neutrophil differentiation, proliferation, migration, and survival. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The T max of eflapegrastim is dose-dependent and increases with increasing dose. Following administration of the recommended dosage in patients with breast cancer, the median T max of eflapegrastim-xnst is 25 hours. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of eflapegrastim-xnst is 1.44 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Eflapegrastim is likely metabolized via endogenous degradation following internalization by cells expressing G-CSF receptors. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Following subcutaneous administration, eflapegrastim is not detectable in the urine. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In patients with breast cancer, the geometric mean half-life of eflapegrastim-xnst is 36.4 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of eflapegrastim-xnst decreased with increasing dose, suggesting target-mediated clearance by neutrophils. With repeat dosing clearance appears to increase, potentially due to the subsequent increase in circulating neutrophils. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): An overdose of eflapegrastim may result in leukocytosis and bone pain. In the event of an overdose, the patient should be monitored for adverse effects and general supportive measures should be implemented as necessary. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Rolvedon •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eflapegrastim is a form of recombinant human granulocyte colony stimulating factor used to induce the production of granulocytes and lower infection risk after myelosuppressive therapy.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Eflapegrastim interact? Information: •Drug A: Aducanumab •Drug B: Eflapegrastim •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Eflapegrastim. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eflapegrastim is indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in adult patients with non-myeloid malignancies receiving myelosuppressive anti-cancer drugs associated with a clinically significant incidence of febrile neutropenia. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eflapegrastim increases absolute neutrophil count (ANC) in a dose-dependent manner in both healthy subjects and cancer patients. In rat studies, it was associated with higher serum and bone marrow concentrations than pegfilgrastim, which translated to a significantly shorter duration of neutropenia when eflapegrastim was administered 24 hours post-chemotherapy compared to pegfilgrastim. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eflapegrastim is a recombinant human granulocyte-colony stimulating factor (rhG-CSF). Like endogenous G-CSF, eflapegrastim binds to G-CSF receptors on myeloid progenitor cells and neutrophils - this triggers signaling pathways that result in neutrophil differentiation, proliferation, migration, and survival. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The T max of eflapegrastim is dose-dependent and increases with increasing dose. Following administration of the recommended dosage in patients with breast cancer, the median T max of eflapegrastim-xnst is 25 hours. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The volume of distribution of eflapegrastim-xnst is 1.44 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Eflapegrastim is likely metabolized via endogenous degradation following internalization by cells expressing G-CSF receptors. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Following subcutaneous administration, eflapegrastim is not detectable in the urine. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): In patients with breast cancer, the geometric mean half-life of eflapegrastim-xnst is 36.4 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of eflapegrastim-xnst decreased with increasing dose, suggesting target-mediated clearance by neutrophils. With repeat dosing clearance appears to increase, potentially due to the subsequent increase in circulating neutrophils. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): An overdose of eflapegrastim may result in leukocytosis and bone pain. In the event of an overdose, the patient should be monitored for adverse effects and general supportive measures should be implemented as necessary. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Rolvedon •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eflapegrastim is a form of recombinant human granulocyte colony stimulating factor used to induce the production of granulocytes and lower infection risk after myelosuppressive therapy. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Eftrenonacog alfa interact?
•Drug A: Aducanumab •Drug B: Eftrenonacog alfa •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Eftrenonacog alfa is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated for the treatment and prophylaxis of bleeding in patients of all age with haemophilia B (congenital factor IX deficiency). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In two multinational, phase III studies in previously treated children, adolescents and adults with severe haemophilia B, eftrenonacog alfa prophylaxis resulted in low median annualized bleeding rates (ABRs), and was associated with reductions in median weekly factor consumption and dosing frequency compared with pre-study FIX regimens. The extension of those studies demonstrated effectiveness in the treatment of bleeding episodes and when used in the perioperative setting in all age groups. In animal models, a single intravenous dose of eftrenonacog alfa displayed half values approximately three- to four-fold longer than those seen with recombinant FIX. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The coagulation protein factor IX (FIX) is a vitamin K-dependent coagulation factor and one of the critical serine proteases involved in the coagulation cascade. Upon activation by factor XIa in the intrinsic coagulation pathway and by the factor VII/tissue factor complex in the extrinsic pathway, factor IX, in combination with factor VIII, activates factor X. Activated factor X mediates the conversion of prothrombin to thrombin which sequentially leads to thrombin converting fibrinogen into fibrin. A blood clot is then formed. With a mutation in the gene encoding the coagulation protein factor IX (FIX), patients with hemophilia B have factor IX deficiency and are at high risk for recurrent bleeding episodes. Eftrenonacog alfa is composed of a single molecule of recombinant FIX (rFIX) covalently fused to the dimeric Fc domain of immunoglobulin (Ig) G1 (rFIXFc). It serves as a replacement therapy to increase the plasma levels of factor IX thereby enabling a temporary correction of the factor deficiency and correction of the bleeding tendencies. The Fc region of human immunoglobulin G1 binds with the neonatal Fc receptor which is expressed throughout life as part of a naturally occurring pathway that protects immunoglobulins from lysosomal degradation by cycling these proteins back into circulation, resulting in their long plasma half-life. The binding of eftrenonacog alfa to the neonatal Fc receptor delays degradation and recycles the fusion protein back into circulation for increased plasma half life and prolonged therapeutic action. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean peak plasma concentration (Cmax) was 46.10 IU/dL. The mean area under the FIX activity time curve (AUC) was 31.58 Uxh/dL per IU/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean AUC ranged from 22.71 to 29.50 Uxh/dL per IU/kg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean volume of distribution at steady-state (Vss) was 303.4 mL/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean Vss ranged from 289 to 365.1 mL/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The Fc domain of eftrenonacog alfa is expected to undergo lysosomal degradation while the remaining recombinant FIX (rFIX) portion is expected to be metabolized by the same pathway as endogenous factor IX. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Eftrenonacog alfa is expected to undergo renal clearance. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean terminal half life (t1/2) was 77.6 hours. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean t1/2 ranged from 66.49 to 82.22 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean clearance (CL) was 3.17 mL/h/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, mean CL ranged from 3.390 to 4.365 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Based on findings from a rabbit thrombogenicity test and rat or monkey repeated-dose toxicity studies, eftrenonacog alfa displays no special hazards for humans. Studies to investigate the genotoxicity, carcinogenicity, toxicity to reproduction or embryo-foetal development have not been conducted. Eftrenonacog alfa has shown to cross the placenta in small amounts according to a mouse placental transfer study. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Alprolix •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eftrenonacog alfa is a recombinant Factor IX used to treat and prevent bleeding in hemophilia B.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Eftrenonacog alfa interact? Information: •Drug A: Aducanumab •Drug B: Eftrenonacog alfa •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Eftrenonacog alfa is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated for the treatment and prophylaxis of bleeding in patients of all age with haemophilia B (congenital factor IX deficiency). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In two multinational, phase III studies in previously treated children, adolescents and adults with severe haemophilia B, eftrenonacog alfa prophylaxis resulted in low median annualized bleeding rates (ABRs), and was associated with reductions in median weekly factor consumption and dosing frequency compared with pre-study FIX regimens. The extension of those studies demonstrated effectiveness in the treatment of bleeding episodes and when used in the perioperative setting in all age groups. In animal models, a single intravenous dose of eftrenonacog alfa displayed half values approximately three- to four-fold longer than those seen with recombinant FIX. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): The coagulation protein factor IX (FIX) is a vitamin K-dependent coagulation factor and one of the critical serine proteases involved in the coagulation cascade. Upon activation by factor XIa in the intrinsic coagulation pathway and by the factor VII/tissue factor complex in the extrinsic pathway, factor IX, in combination with factor VIII, activates factor X. Activated factor X mediates the conversion of prothrombin to thrombin which sequentially leads to thrombin converting fibrinogen into fibrin. A blood clot is then formed. With a mutation in the gene encoding the coagulation protein factor IX (FIX), patients with hemophilia B have factor IX deficiency and are at high risk for recurrent bleeding episodes. Eftrenonacog alfa is composed of a single molecule of recombinant FIX (rFIX) covalently fused to the dimeric Fc domain of immunoglobulin (Ig) G1 (rFIXFc). It serves as a replacement therapy to increase the plasma levels of factor IX thereby enabling a temporary correction of the factor deficiency and correction of the bleeding tendencies. The Fc region of human immunoglobulin G1 binds with the neonatal Fc receptor which is expressed throughout life as part of a naturally occurring pathway that protects immunoglobulins from lysosomal degradation by cycling these proteins back into circulation, resulting in their long plasma half-life. The binding of eftrenonacog alfa to the neonatal Fc receptor delays degradation and recycles the fusion protein back into circulation for increased plasma half life and prolonged therapeutic action. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean peak plasma concentration (Cmax) was 46.10 IU/dL. The mean area under the FIX activity time curve (AUC) was 31.58 Uxh/dL per IU/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean AUC ranged from 22.71 to 29.50 Uxh/dL per IU/kg. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean volume of distribution at steady-state (Vss) was 303.4 mL/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean Vss ranged from 289 to 365.1 mL/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): The Fc domain of eftrenonacog alfa is expected to undergo lysosomal degradation while the remaining recombinant FIX (rFIX) portion is expected to be metabolized by the same pathway as endogenous factor IX. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Eftrenonacog alfa is expected to undergo renal clearance. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean terminal half life (t1/2) was 77.6 hours. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, the mean t1/2 ranged from 66.49 to 82.22 hours. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Following administration of a single intravenous dose of 50 IU/kg of eftrenonacog alfa in patients ≥19 years of age with hemophilia B, the mean clearance (CL) was 3.17 mL/h/kg. In pediatric and adolescent patients (< 18 years of age) receiving the same dose, mean CL ranged from 3.390 to 4.365 mL/h/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Based on findings from a rabbit thrombogenicity test and rat or monkey repeated-dose toxicity studies, eftrenonacog alfa displays no special hazards for humans. Studies to investigate the genotoxicity, carcinogenicity, toxicity to reproduction or embryo-foetal development have not been conducted. Eftrenonacog alfa has shown to cross the placenta in small amounts according to a mouse placental transfer study. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Alprolix •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eftrenonacog alfa is a recombinant Factor IX used to treat and prevent bleeding in hemophilia B. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Elotuzumab interact?
•Drug A: Aducanumab •Drug B: Elotuzumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Elotuzumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received one to three prior therapies. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Elotuzumab is a humanized IgG1 monoclonal antibody that specifically targets the SLAMF7 (Signaling Lymphocytic Activation Molecule Family member 7) protein. SLAMF7 is expressed on myeloma cells independent of cytogenetic abnormalities. SLAMF7 is also expressed on Natural Killer cells, plasma cells, and at lower levels on specific immune cell subsets of differentiated cells within the hematopoietic lineage. Elotuzumab directly activates Natural Killer cells through both the SLAMF7 pathway and Fc receptors. Elotuzumab also targets SLAMF7 on myeloma cells and facilitates the interaction with Natural Killer cells to mediate the killing of myeloma cells through antibody-dependent cellular cytotoxicity (ADCC). In preclinical models, the combination of elotuzumab and lenalidomide resulted in enhanced activation of Natural Killer cells that was greater than the effects of either agent alone and increased anti-tumor activity in vitro and in vivo. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of elotuzumab decreased from a geometric mean (CV%) of 17.5 (21.2%) to 5.8 (31%) mL/day/kg with an increase in dose from 0.5 (i.e., 0.05 times the recommended dosage) to 20 mg/kg (i.e., 2 times the recommended dosage). Based on a population PK model, when elotuzumab is given in combination with lenalidomide and dexamethasone, approximately 97% of the maximum steady-state concentration is predicted to be eliminated with a geometric mean (CV%) of 82.4 (48%) days. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Empliciti •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Elotuzumab is an antineoplastic agent and SLAMF7-directed immunostimulatory antibody used for the treatment of refractory multiple myeloma in combination with other antineoplastic agents.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Elotuzumab interact? Information: •Drug A: Aducanumab •Drug B: Elotuzumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Elotuzumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Indicated in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received one to three prior therapies. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Elotuzumab is a humanized IgG1 monoclonal antibody that specifically targets the SLAMF7 (Signaling Lymphocytic Activation Molecule Family member 7) protein. SLAMF7 is expressed on myeloma cells independent of cytogenetic abnormalities. SLAMF7 is also expressed on Natural Killer cells, plasma cells, and at lower levels on specific immune cell subsets of differentiated cells within the hematopoietic lineage. Elotuzumab directly activates Natural Killer cells through both the SLAMF7 pathway and Fc receptors. Elotuzumab also targets SLAMF7 on myeloma cells and facilitates the interaction with Natural Killer cells to mediate the killing of myeloma cells through antibody-dependent cellular cytotoxicity (ADCC). In preclinical models, the combination of elotuzumab and lenalidomide resulted in enhanced activation of Natural Killer cells that was greater than the effects of either agent alone and increased anti-tumor activity in vitro and in vivo. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The clearance of elotuzumab decreased from a geometric mean (CV%) of 17.5 (21.2%) to 5.8 (31%) mL/day/kg with an increase in dose from 0.5 (i.e., 0.05 times the recommended dosage) to 20 mg/kg (i.e., 2 times the recommended dosage). Based on a population PK model, when elotuzumab is given in combination with lenalidomide and dexamethasone, approximately 97% of the maximum steady-state concentration is predicted to be eliminated with a geometric mean (CV%) of 82.4 (48%) days. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Empliciti •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Elotuzumab is an antineoplastic agent and SLAMF7-directed immunostimulatory antibody used for the treatment of refractory multiple myeloma in combination with other antineoplastic agents. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Emapalumab interact?
•Drug A: Aducanumab •Drug B: Emapalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Emapalumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Emapalumab is indicated for the treatment of pediatric and adult patients with primary hemophagocytic lymphohistiocytosis (HLH) with refractory, recurrent or progressive disease or intolerance to conventional HLH therapy. The HLH condition is a hyperinflammatory status characterized by the overwhelming activation of normal T lymphocytes and macrophages which can lead to disturbances in the hematology profile and even death. As part of the condition profile, there have been reports proving a massive overexpression of interferon-gamma which is thought to drive the immune hyperactivation leading to organ failure. This condition is usually developed and present the symptomatic profile within the first months or years of life. These symptoms consist of fever, enlarged liver or spleen and a lower number of blood cells. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In phase 2/3 clinical trials, emapalumab administered concomitantly with dexamethasone reported an overall response in 63% of the patients. The overall response was defined as achievement of a complete or partial response or HLH improvement. In this trial and as a proof of interferon-gamma neutralization, there was registered a sharp decrease in serum CXCL9 and to avoid QT prolongation in the presence of low doses of emapalumab. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Emapalumab acts by binding and neutralizing interferon-gamma. The specific interaction between emapalumab and interferon-gamma produces an inhibition in the interaction between interferon-gamma and its cognate receptor on T-cells which produces the neutralizing activity. It is important to consider that emapalumab inhibits both free and IFNGR1-bound interferon-gamma as well as the interaction with IFNGR1 and IFNGR2 at the cell surface. HLH is an immune dysregulation syndrome in which several cytokines are involved but it has been reported that interferon-gamma plays a pivotal role in the development of this disease as studies have shown a vast increase in the interferon-gamma levels in HLH patients. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In clinical pharmacokinetic studies, a dose of 1 mg/kg of emapalumab was administered which generated a peak concentration at steady state of 44 mcg/ml and a median steady-state concentration of 25 mcg/ml. The serum concentration of emapalumab increases proportionally between a dose of 1-3 mg/kg and the steady-state is attained by the 7th infusion. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central and peripheral volume of distribution of emapalumab are 4.2 and 5.6 L, respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are usually not required to have protein binding studies. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are thought to be internalized in endothelial cells bound to Fc receptor and rescued from metabolism by recycling. Later, they are degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Emapalumab presents a target-mediated clearance that is dependent on interferon-gamma production. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Emapalumab elimination half-life is of approximately 22 days in healthy subjects and it ranges between 2.5-18.9 in HLH patients. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Emapalumab clearance is reported to be 0.007 L/h in healthy subjects. This clearance rate can vary in HLH patients depending on the production of interferon-gamma. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no reported effects in male or female reproductive organs after an 8- or 13-week repeat-dose toxicity study in animals. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Gamifant •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Emapalumab is an interferon gamma blocking antibody used to treat primary hemophagocytic lymphohistiocytosis.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Emapalumab interact? Information: •Drug A: Aducanumab •Drug B: Emapalumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Emapalumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Emapalumab is indicated for the treatment of pediatric and adult patients with primary hemophagocytic lymphohistiocytosis (HLH) with refractory, recurrent or progressive disease or intolerance to conventional HLH therapy. The HLH condition is a hyperinflammatory status characterized by the overwhelming activation of normal T lymphocytes and macrophages which can lead to disturbances in the hematology profile and even death. As part of the condition profile, there have been reports proving a massive overexpression of interferon-gamma which is thought to drive the immune hyperactivation leading to organ failure. This condition is usually developed and present the symptomatic profile within the first months or years of life. These symptoms consist of fever, enlarged liver or spleen and a lower number of blood cells. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): In phase 2/3 clinical trials, emapalumab administered concomitantly with dexamethasone reported an overall response in 63% of the patients. The overall response was defined as achievement of a complete or partial response or HLH improvement. In this trial and as a proof of interferon-gamma neutralization, there was registered a sharp decrease in serum CXCL9 and to avoid QT prolongation in the presence of low doses of emapalumab. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Emapalumab acts by binding and neutralizing interferon-gamma. The specific interaction between emapalumab and interferon-gamma produces an inhibition in the interaction between interferon-gamma and its cognate receptor on T-cells which produces the neutralizing activity. It is important to consider that emapalumab inhibits both free and IFNGR1-bound interferon-gamma as well as the interaction with IFNGR1 and IFNGR2 at the cell surface. HLH is an immune dysregulation syndrome in which several cytokines are involved but it has been reported that interferon-gamma plays a pivotal role in the development of this disease as studies have shown a vast increase in the interferon-gamma levels in HLH patients. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): In clinical pharmacokinetic studies, a dose of 1 mg/kg of emapalumab was administered which generated a peak concentration at steady state of 44 mcg/ml and a median steady-state concentration of 25 mcg/ml. The serum concentration of emapalumab increases proportionally between a dose of 1-3 mg/kg and the steady-state is attained by the 7th infusion. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central and peripheral volume of distribution of emapalumab are 4.2 and 5.6 L, respectively. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Monoclonal antibodies are usually not required to have protein binding studies. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibodies are thought to be internalized in endothelial cells bound to Fc receptor and rescued from metabolism by recycling. Later, they are degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Emapalumab presents a target-mediated clearance that is dependent on interferon-gamma production. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Emapalumab elimination half-life is of approximately 22 days in healthy subjects and it ranges between 2.5-18.9 in HLH patients. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Emapalumab clearance is reported to be 0.007 L/h in healthy subjects. This clearance rate can vary in HLH patients depending on the production of interferon-gamma. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): There are no reported effects in male or female reproductive organs after an 8- or 13-week repeat-dose toxicity study in animals. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Gamifant •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Emapalumab is an interferon gamma blocking antibody used to treat primary hemophagocytic lymphohistiocytosis. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Emicizumab interact?
•Drug A: Aducanumab •Drug B: Emicizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Emicizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): The main function of Emicizumab is the prevention of bleeding episodes. Thus, Emicizumab is approved for the routine prophylaxis to prevent or reduce the frequency of bleeding episodes of adult and pediatric patients with hemophilia A with or without Factor VIII inhibitors. Hemophilia A is a deficiency of coagulation Factor VIII which causes a serious bleeding disorder. The standard treatment is done with the administration of recombinant or serum-deriver Factor VIII which induces the formation of anti-factor VIII alloantibodies (Factor VIII inhibitors) and renders the standard treatment ineffective. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Emicizumab mimics the function of coagulation factor VIII, therefore it binds to the activated form of Factor IX (Factor IXa). This binding forms a complex that will later bind to the X factor of the coagulation factor. The ability of Emicizumab to interact with both factors (Factor IXa and Factor X) activates the coagulation cascade that will subsequently lead to the segmentation of fibrinogen into fibrin and the formation of blood clots. The effect of Emicizumab is translated into the restoration of the blood coagulation process and, therefore, in the reduction of hemorrhagic episodes. The activity of emicizumab can also produce changes in activated clotting time (ACT), activated partial thromboplastin time (aPTT) and one-step Factor VIII activity. In addition, the unique bispecific structure of Emicizumab prevents the formation of Factor VIII inhibitors or their effect. In the first clinical trials, emicizumab was tried on previously treated adult and pediatric patients of hemophilia A with FVIII inhibitors. In this trials, the annualized bleeding rate requiring treatment with coagulation factors was reduced by 87% when compared to untreated patients. Those clinical trials were followed by a second round on previously treated patients of severe hemophilia A without FVIII inhibitors. In this trial, the annualized bleed rate was reduced by 96% when compared to untreated patients. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Emicizumab exerts its action by performing the function of the coagulation Factor VIII without presenting a structural homology. It presents a dual specificity which allows it to bind to both the Factor IXa and Factor X, performing the required bridging activity for the launch of the coagulation cascade. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous administration of Emicizumab presents a very high bioavailability ranging from 80.4% to 93.1% when administered subcutaneously in a dose of 1 mg/kg. In clinical trials, at the same dose, Emicizumab presented a linear exposure which concentration peaked 1-2 weeks after administration and presented a profile framed by a Cmax of 5.92 mcg/ml and an AUC of 304 mcg day/ml. After subcutaneous administration, the absorption half-life was 1.7 days and the pharmacokinetic profile seemed to be shared when the medication was administered in the abdomen, upper arm, and thigh. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The apparent volume of distribution is 11.4 L when administered subcutaneously and there are reports indicating that this value can increase with increasing body weight. When emicizumab is administered intravenously, the volume of distribution at steady state is 106 ml/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): As emicizumab is a monoclonal antibody acting on the bloodstream, the determination of protein binding studies is not required. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Emicizumab is a monoclonal antibody and thus, it is thought to be internalized in endothelial cells bound to Fc receptor and rescued from metabolism by recycling. Later, they are degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The elimination of Emicizumab was monophasic in clinical trials. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Emcicizumab presents a long half-life ranging from 27.8 to 34.4 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance is 0.24 L/day when administered in multiple subcutaneous injections and there are reports indicating that this value can increase with increasing body weight. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The administration of Emicizumab has reported cases of microangiopathy and thrombotic events with concomitant use of activated prothrombin complex concentrate at doses higher of 100 U/kg/24 hours. There are also reports of injection site reaction, headaches and arthralgia. Genotoxicity and carcinogenicity studies have not been performed as it is not expected that emicizumab can have any interaction with DNA, or chromosomal material. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Hemlibra •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Emicizumab is an antibody against Factor IXa and Factor X used to treat hemophilia A.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Emicizumab interact? Information: •Drug A: Aducanumab •Drug B: Emicizumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Emicizumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): The main function of Emicizumab is the prevention of bleeding episodes. Thus, Emicizumab is approved for the routine prophylaxis to prevent or reduce the frequency of bleeding episodes of adult and pediatric patients with hemophilia A with or without Factor VIII inhibitors. Hemophilia A is a deficiency of coagulation Factor VIII which causes a serious bleeding disorder. The standard treatment is done with the administration of recombinant or serum-deriver Factor VIII which induces the formation of anti-factor VIII alloantibodies (Factor VIII inhibitors) and renders the standard treatment ineffective. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Emicizumab mimics the function of coagulation factor VIII, therefore it binds to the activated form of Factor IX (Factor IXa). This binding forms a complex that will later bind to the X factor of the coagulation factor. The ability of Emicizumab to interact with both factors (Factor IXa and Factor X) activates the coagulation cascade that will subsequently lead to the segmentation of fibrinogen into fibrin and the formation of blood clots. The effect of Emicizumab is translated into the restoration of the blood coagulation process and, therefore, in the reduction of hemorrhagic episodes. The activity of emicizumab can also produce changes in activated clotting time (ACT), activated partial thromboplastin time (aPTT) and one-step Factor VIII activity. In addition, the unique bispecific structure of Emicizumab prevents the formation of Factor VIII inhibitors or their effect. In the first clinical trials, emicizumab was tried on previously treated adult and pediatric patients of hemophilia A with FVIII inhibitors. In this trials, the annualized bleeding rate requiring treatment with coagulation factors was reduced by 87% when compared to untreated patients. Those clinical trials were followed by a second round on previously treated patients of severe hemophilia A without FVIII inhibitors. In this trial, the annualized bleed rate was reduced by 96% when compared to untreated patients. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Emicizumab exerts its action by performing the function of the coagulation Factor VIII without presenting a structural homology. It presents a dual specificity which allows it to bind to both the Factor IXa and Factor X, performing the required bridging activity for the launch of the coagulation cascade. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Subcutaneous administration of Emicizumab presents a very high bioavailability ranging from 80.4% to 93.1% when administered subcutaneously in a dose of 1 mg/kg. In clinical trials, at the same dose, Emicizumab presented a linear exposure which concentration peaked 1-2 weeks after administration and presented a profile framed by a Cmax of 5.92 mcg/ml and an AUC of 304 mcg day/ml. After subcutaneous administration, the absorption half-life was 1.7 days and the pharmacokinetic profile seemed to be shared when the medication was administered in the abdomen, upper arm, and thigh. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The apparent volume of distribution is 11.4 L when administered subcutaneously and there are reports indicating that this value can increase with increasing body weight. When emicizumab is administered intravenously, the volume of distribution at steady state is 106 ml/kg. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): As emicizumab is a monoclonal antibody acting on the bloodstream, the determination of protein binding studies is not required. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Emicizumab is a monoclonal antibody and thus, it is thought to be internalized in endothelial cells bound to Fc receptor and rescued from metabolism by recycling. Later, they are degraded in the reticuloendothelial system to small peptides and amino acids which can be used for de-novo protein synthesis. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): The elimination of Emicizumab was monophasic in clinical trials. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Emcicizumab presents a long half-life ranging from 27.8 to 34.4 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance is 0.24 L/day when administered in multiple subcutaneous injections and there are reports indicating that this value can increase with increasing body weight. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The administration of Emicizumab has reported cases of microangiopathy and thrombotic events with concomitant use of activated prothrombin complex concentrate at doses higher of 100 U/kg/24 hours. There are also reports of injection site reaction, headaches and arthralgia. Genotoxicity and carcinogenicity studies have not been performed as it is not expected that emicizumab can have any interaction with DNA, or chromosomal material. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Hemlibra •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Emicizumab is an antibody against Factor IXa and Factor X used to treat hemophilia A. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Eptinezumab interact?
•Drug A: Aducanumab •Drug B: Eptinezumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Eptinezumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eptinezumab is indicated for the preventive treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eptinezumab is experimentally administered as an intravenous infusion and/or subcutaneous injection. During Phase 3 clinical trials, it was noted that patients with episodic migraine who on average had 8.6 days of migraine per month demonstrated significant reductions in migraine frequency over weeks 1-12, associated with the 300mg dose arm. Additionally, 29.7% of patients achieved a 75% or greater reduction in migraine days from baseline, compared to 16.2% for placebo (p<0.0007). Moreover, a post hoc analysis revealed that those patients achieving a 75% or greater response rate had over an eight-fold increase in days between migraines. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eptinezumab is a fully-humanized IgG1 antibody manufactured and designed specifically to bind both alpha and beta forms of the human calcitonin gene-related peptide (CGRP). Studies since 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after efficacious sumatriptan therapy. Moreover, research has also shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For all these reasons, the binding of CGRP to interfere with its activity was specifically designed to be the form and mechanism of action for eptinezumab. The binding of eptinezumab to natural endogenous CGRP subsequently interferes with its activities, such as its binding to CGRP receptors, for example. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Eptinezumab is the only potent and selective and anti-calcitonin gene-related peptide (CGRP) monoclonal antibody administered by quarterly infusion for migraine prevention delivering 100% bioavailability by way of the intravenous route of administration to immediately inhibit CGRP. With an intravenous dose of eptinezumab 1000 mg, the mean maximum concentration of 336.4 ug/mL (SD 79.9) occurred after 4.8 hours after the start of the 1 hour infusion. The mean exposure to free eptinezumab, as characterized by area under the plasma concentration-time curve from time zero to the time of the last quantifiable concentration and from time zero to infinity were 8245 days per ug per mL (SD 2619) and 8722 days per ug per mL (SD 2522), respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central volume of distribution for eptinezumab is approximately 3.7 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Readily accessible data regarding the protein binding of eptinezumab is not available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibody agents like eptinezumab are not expected to generate toxic metabolites as they generally undergo proteolysis to their constituent amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibody agents like eptinezumab are generally not eliminated via hepatic, renal, or biliary routes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The plasma half-life after an intravenous infusion is approximately 27 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance of eptinezumab is 0.006 L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most frequent adverse events associated with eptinezumab use include upper respiratory tract infection, urinary tract infection, fatigue, back pain, arthralgia, and nausea and vomiting. No data regarding overdosage has been reported yet. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Vyepti •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eptinezumab is a monoclonal antibody directed against CGRP infused every 3 months for the preventive treatment of migraine in adults.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Eptinezumab interact? Information: •Drug A: Aducanumab •Drug B: Eptinezumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Eptinezumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Eptinezumab is indicated for the preventive treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Eptinezumab is experimentally administered as an intravenous infusion and/or subcutaneous injection. During Phase 3 clinical trials, it was noted that patients with episodic migraine who on average had 8.6 days of migraine per month demonstrated significant reductions in migraine frequency over weeks 1-12, associated with the 300mg dose arm. Additionally, 29.7% of patients achieved a 75% or greater reduction in migraine days from baseline, compared to 16.2% for placebo (p<0.0007). Moreover, a post hoc analysis revealed that those patients achieving a 75% or greater response rate had over an eight-fold increase in days between migraines. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Eptinezumab is a fully-humanized IgG1 antibody manufactured and designed specifically to bind both alpha and beta forms of the human calcitonin gene-related peptide (CGRP). Studies since 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after efficacious sumatriptan therapy. Moreover, research has also shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For all these reasons, the binding of CGRP to interfere with its activity was specifically designed to be the form and mechanism of action for eptinezumab. The binding of eptinezumab to natural endogenous CGRP subsequently interferes with its activities, such as its binding to CGRP receptors, for example. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Eptinezumab is the only potent and selective and anti-calcitonin gene-related peptide (CGRP) monoclonal antibody administered by quarterly infusion for migraine prevention delivering 100% bioavailability by way of the intravenous route of administration to immediately inhibit CGRP. With an intravenous dose of eptinezumab 1000 mg, the mean maximum concentration of 336.4 ug/mL (SD 79.9) occurred after 4.8 hours after the start of the 1 hour infusion. The mean exposure to free eptinezumab, as characterized by area under the plasma concentration-time curve from time zero to the time of the last quantifiable concentration and from time zero to infinity were 8245 days per ug per mL (SD 2619) and 8722 days per ug per mL (SD 2522), respectively. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The central volume of distribution for eptinezumab is approximately 3.7 L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Readily accessible data regarding the protein binding of eptinezumab is not available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Monoclonal antibody agents like eptinezumab are not expected to generate toxic metabolites as they generally undergo proteolysis to their constituent amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibody agents like eptinezumab are generally not eliminated via hepatic, renal, or biliary routes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The plasma half-life after an intravenous infusion is approximately 27 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance of eptinezumab is 0.006 L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most frequent adverse events associated with eptinezumab use include upper respiratory tract infection, urinary tract infection, fatigue, back pain, arthralgia, and nausea and vomiting. No data regarding overdosage has been reported yet. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Vyepti •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Eptinezumab is a monoclonal antibody directed against CGRP infused every 3 months for the preventive treatment of migraine in adults. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Erenumab interact?
•Drug A: Aducanumab •Drug B: Erenumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Erenumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Erenumab is indicated for the preventative treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): As a human monoclonal antibody designed to specifically bind with and antagonize the calcitonin gene-related peptide (CGRP) receptor, there is the possibility that erenumab could interfere with natural activities of CGRP that may not be immediately or directly associated with migraines. For example, at peripheral synapses, CGRP released from trigeminal terminals results in vasodilation by way of CGRP receptor on smooth muscle cells of meningeal and cerebral blood vessels, making CGRP a potent general arterial vasodilator. Antagonism of CGRP receptors responsible for such vasodilation could theoretically result in vasoconstriction and raises in blood pressure. In a randomised, double-blind, placebo-controlled study in healthy volunteers, concomitant administration of erenumab (140 mg intravenous, single dose) with sumatriptan (12 mg subcutaneous, given as two 6 mg doses separated by one hour) had no effect on resting blood pressure compared with sumatriptan alone, however. Please note that erenumab is indicated for subcutaneous use only, though. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Erenumab is a human monoclonal antibody that has been designed to bind specifically to the calcitonin gene-related peptide (CGRP) receptor and antagonize the CGRP receptor function. Studies since 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after efficacious sumatriptan therapy. Moreover, research has also shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For all these reasons, the binding and antagonism of CGRP receptors was designed to be mechanism of action for erenumab to take advantage of in reversing the migraine-inducing activity of natural CGRP. CGRP and its receptor are expressed in both the peripheral and the central nervous system. In addition to playing a role in cranial nociception, CGRP is also a potent general arterial vasodilator. At peripheral synapses, CGRP released from trigeminal terminals results in vasodilation via CGRP receptors on the smooth muscle cells of meningeal and cerebral blood vessels. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following a single subcutaneous dose of 70 mg or 140 mg erenumab administered to healthy adults, the median peak serum concentrations were attained in about 6 days, and the estimated absolute bioavailability was approximately 82%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): After a single 140 mg intravenous dose, the mean (SD) volume of distribution during the terminal phase (Vz) was estimated to be approximately 3.86 (0.77) L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Readily accessible data regarding the protein binding of erenumab is not available, although it is reported that erenumab is capable of 50% to 99% total inhibition of calcitonin gene-related peptide receptors with dosages of 255 ng/mL and 1134 ng/mL, respectively. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Erenumab CGRP antibodies demonstrate a low risk for drug-drug interactions and hepatotoxicity since they are predominantly metabolized by degradation into peptides and single amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Two elimination phases are observed for erenumab. At low concentrations, the elimination is mainly through saturable binding to target (CGRP receptor), while at higher concentrations the elimination of erenumab is primarily through a non-specific, non-saturable proteolytic pathway. These phases correspond to studies that demonstrated two parallel elimination pathways: (a) a slow non-specific elimination pathway through the hepatic reticuloendothelial system, and (b) a rapid saturable elimination pathway mediated by degradation or internalization of the erenumab-receptor complex. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Erenumab exhibits non-linear kinetics as a result of binding to the CGRP receptor. Lower than 2-fold accumulation was recorded in trough serum concentrations (Cmin) for episodic and chronic migraine patients following subcutaneous administration of 70 mg once-monthly and 140 mg once-monthly doses. Serum trough concentrations approached steady state by 3 months of dosing. The effective half-life of erenumab was observed to be 28 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Certain studies show that the population estimate of linear clearance is independent of erenumab concentrations and stays approximately constant at 0.214 L/day (95% CI: 0.191–0.243). In contrast, the nonlinear clearance is dependent on the target receptor density and the amount of erenumab bound to the receptors. Nevertheless, the maximal nonlinear clearance was observed to be about 1.84L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common side effects of erenumab include pain, redness, or swelling at the injection site, and constipation. Information regarding overdosage is not available. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Aimovig •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Erenumab is a calcitonin-gene related peptide antagonist used to prevent migraines.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Erenumab interact? Information: •Drug A: Aducanumab •Drug B: Erenumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Erenumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Erenumab is indicated for the preventative treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): As a human monoclonal antibody designed to specifically bind with and antagonize the calcitonin gene-related peptide (CGRP) receptor, there is the possibility that erenumab could interfere with natural activities of CGRP that may not be immediately or directly associated with migraines. For example, at peripheral synapses, CGRP released from trigeminal terminals results in vasodilation by way of CGRP receptor on smooth muscle cells of meningeal and cerebral blood vessels, making CGRP a potent general arterial vasodilator. Antagonism of CGRP receptors responsible for such vasodilation could theoretically result in vasoconstriction and raises in blood pressure. In a randomised, double-blind, placebo-controlled study in healthy volunteers, concomitant administration of erenumab (140 mg intravenous, single dose) with sumatriptan (12 mg subcutaneous, given as two 6 mg doses separated by one hour) had no effect on resting blood pressure compared with sumatriptan alone, however. Please note that erenumab is indicated for subcutaneous use only, though. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Erenumab is a human monoclonal antibody that has been designed to bind specifically to the calcitonin gene-related peptide (CGRP) receptor and antagonize the CGRP receptor function. Studies since 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after efficacious sumatriptan therapy. Moreover, research has also shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For all these reasons, the binding and antagonism of CGRP receptors was designed to be mechanism of action for erenumab to take advantage of in reversing the migraine-inducing activity of natural CGRP. CGRP and its receptor are expressed in both the peripheral and the central nervous system. In addition to playing a role in cranial nociception, CGRP is also a potent general arterial vasodilator. At peripheral synapses, CGRP released from trigeminal terminals results in vasodilation via CGRP receptors on the smooth muscle cells of meningeal and cerebral blood vessels. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Following a single subcutaneous dose of 70 mg or 140 mg erenumab administered to healthy adults, the median peak serum concentrations were attained in about 6 days, and the estimated absolute bioavailability was approximately 82%. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): After a single 140 mg intravenous dose, the mean (SD) volume of distribution during the terminal phase (Vz) was estimated to be approximately 3.86 (0.77) L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Readily accessible data regarding the protein binding of erenumab is not available, although it is reported that erenumab is capable of 50% to 99% total inhibition of calcitonin gene-related peptide receptors with dosages of 255 ng/mL and 1134 ng/mL, respectively. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Erenumab CGRP antibodies demonstrate a low risk for drug-drug interactions and hepatotoxicity since they are predominantly metabolized by degradation into peptides and single amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Two elimination phases are observed for erenumab. At low concentrations, the elimination is mainly through saturable binding to target (CGRP receptor), while at higher concentrations the elimination of erenumab is primarily through a non-specific, non-saturable proteolytic pathway. These phases correspond to studies that demonstrated two parallel elimination pathways: (a) a slow non-specific elimination pathway through the hepatic reticuloendothelial system, and (b) a rapid saturable elimination pathway mediated by degradation or internalization of the erenumab-receptor complex. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Erenumab exhibits non-linear kinetics as a result of binding to the CGRP receptor. Lower than 2-fold accumulation was recorded in trough serum concentrations (Cmin) for episodic and chronic migraine patients following subcutaneous administration of 70 mg once-monthly and 140 mg once-monthly doses. Serum trough concentrations approached steady state by 3 months of dosing. The effective half-life of erenumab was observed to be 28 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Certain studies show that the population estimate of linear clearance is independent of erenumab concentrations and stays approximately constant at 0.214 L/day (95% CI: 0.191–0.243). In contrast, the nonlinear clearance is dependent on the target receptor density and the amount of erenumab bound to the receptors. Nevertheless, the maximal nonlinear clearance was observed to be about 1.84L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The most common side effects of erenumab include pain, redness, or swelling at the injection site, and constipation. Information regarding overdosage is not available. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Aimovig •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Erenumab is a calcitonin-gene related peptide antagonist used to prevent migraines. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Esterified estrogens interact?
•Drug A: Aducanumab •Drug B: Esterified estrogens •Severity: MINOR •Description: Esterified estrogens may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Esterified estrogens are indicated to replace estrogen in women with ovarian failure or other conditions that cause a lack of natural estrogen in the body. It is also indicated for the treatment of symptoms of breast cancer in both men and women. In men it can be used for the treatment of advanced prostate cancer. It is also indicated for the treatment of menopausal symptoms. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogens are responsible for the development and maintenance of the female reproductive system and secondary sexual characteristics. Estradiol is the principle intracellular human estrogen and is more potent than estrone and estriol at the receptor level; it is the primary estrogen secreted prior to menopause. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogens modulate the pituitary secretion of gonadotropins, luteinizing hormone, and follicle-stimulating hormone through a negative feedback system; estrogen replacement reduces elevated levels of these hormones. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Readily absorbed after oral administration. High concentrations of estrone are achieved with oral administration, whereas higher concentrations of estradiol are generally achieved after percutaneous absorption. Although vaginal products (such as gel, rings, etc.) are administered locally, they achieve high serum concentrations. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentration in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 95-98% of estradiol is bound loosely to albumin or tightly to sex hormone binding globulin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Hepatic; partial metabolism via CYP3A4 enzymes; estradiol is reversibly converted to estrone and estriol; oral estradiol also undergoes enterohepatic recirculation by conjugation in the liver, followed by excretion of sulfate and glucuronide conjugates into the bile, then hydrolysis in the intestine and estrogen reabsorption. Sulfate conjugates are the primary form found in postmenopausal women. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Mainly urinary as estradiol, estrone, estriol, and their glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Half-life varies, it is in the range 1-2 hr. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): There is variation in the clearance rate depends on each estrogen individual: estradiol-17β: 580 L/day/m2 estrone: 4050 L/day/m2 estriol: 1110 L/day/m2 •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LD50 IP 325 mg/Kg (rat). LD50 IV 1740 mg/Kg (mouse). LD50 oral >5000 mg/Kg (rat). •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Covaryx, Menest •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Esterified estrogens Estrogens, esterified Estrogens,esterified •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Esterified estrogens is a female hormone used to treat conditions related to estrogen deficiency and moderate to severe vasomotor menopausal symptoms in women.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Esterified estrogens interact? Information: •Drug A: Aducanumab •Drug B: Esterified estrogens •Severity: MINOR •Description: Esterified estrogens may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Esterified estrogens are indicated to replace estrogen in women with ovarian failure or other conditions that cause a lack of natural estrogen in the body. It is also indicated for the treatment of symptoms of breast cancer in both men and women. In men it can be used for the treatment of advanced prostate cancer. It is also indicated for the treatment of menopausal symptoms. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogens are responsible for the development and maintenance of the female reproductive system and secondary sexual characteristics. Estradiol is the principle intracellular human estrogen and is more potent than estrone and estriol at the receptor level; it is the primary estrogen secreted prior to menopause. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogens modulate the pituitary secretion of gonadotropins, luteinizing hormone, and follicle-stimulating hormone through a negative feedback system; estrogen replacement reduces elevated levels of these hormones. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Readily absorbed after oral administration. High concentrations of estrone are achieved with oral administration, whereas higher concentrations of estradiol are generally achieved after percutaneous absorption. Although vaginal products (such as gel, rings, etc.) are administered locally, they achieve high serum concentrations. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentration in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Approximately 95-98% of estradiol is bound loosely to albumin or tightly to sex hormone binding globulin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Hepatic; partial metabolism via CYP3A4 enzymes; estradiol is reversibly converted to estrone and estriol; oral estradiol also undergoes enterohepatic recirculation by conjugation in the liver, followed by excretion of sulfate and glucuronide conjugates into the bile, then hydrolysis in the intestine and estrogen reabsorption. Sulfate conjugates are the primary form found in postmenopausal women. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Mainly urinary as estradiol, estrone, estriol, and their glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): Half-life varies, it is in the range 1-2 hr. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): There is variation in the clearance rate depends on each estrogen individual: estradiol-17β: 580 L/day/m2 estrone: 4050 L/day/m2 estriol: 1110 L/day/m2 •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): LD50 IP 325 mg/Kg (rat). LD50 IV 1740 mg/Kg (mouse). LD50 oral >5000 mg/Kg (rat). •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Covaryx, Menest •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Esterified estrogens Estrogens, esterified Estrogens,esterified •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Esterified estrogens is a female hormone used to treat conditions related to estrogen deficiency and moderate to severe vasomotor menopausal symptoms in women. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estradiol acetate interact?
•Drug A: Aducanumab •Drug B: Estradiol acetate •Severity: MINOR •Description: Estradiol acetate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Femring is indicated for the treatment of vasomotor and urogenital symptoms associated with menopause. Use of Femring (estradiol acetate) has been shown to improve symptoms caused by atrophy of the vagina (such as dryness, burning, pruritus and dyspareunia) and/or the lower urinary tract (urinary urgency and dysuria). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Drug delivery from Femring is rapid for the first hour and then declines to a relatively constant rate for the remainder of the 3-month dosing interval. Estradiol acetate is rapidly hydrolyzed to estradiol which is absorbed through the vaginal mucosa as evidenced by the mean time to maximum concentration (tmax) for estradiol of about 1 hour (range 0.25 to 1.5 hrs). Following the maximum concentration (Cmax=1129pg/mL), serum estradiol decreases rapidly such that by 24 to 48 hours postdose, serum estradiol concentrations are relatively constant through the end of the 3-month dosing interval. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely (>95%) bound to sex hormone binding globulin (SHBG) and to albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Can cause nausea and vomiting, and withdrawal bleeding may occur in females. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Femring •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estradiol 3-acetate Estradiol acetate •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol acetate is an estrogen used to treat vasomotor symptoms and moderate to severe vulvar and vaginal atrophy from menopause.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estradiol acetate interact? Information: •Drug A: Aducanumab •Drug B: Estradiol acetate •Severity: MINOR •Description: Estradiol acetate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Femring is indicated for the treatment of vasomotor and urogenital symptoms associated with menopause. Use of Femring (estradiol acetate) has been shown to improve symptoms caused by atrophy of the vagina (such as dryness, burning, pruritus and dyspareunia) and/or the lower urinary tract (urinary urgency and dysuria). •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Drug delivery from Femring is rapid for the first hour and then declines to a relatively constant rate for the remainder of the 3-month dosing interval. Estradiol acetate is rapidly hydrolyzed to estradiol which is absorbed through the vaginal mucosa as evidenced by the mean time to maximum concentration (tmax) for estradiol of about 1 hour (range 0.25 to 1.5 hrs). Following the maximum concentration (Cmax=1129pg/mL), serum estradiol decreases rapidly such that by 24 to 48 hours postdose, serum estradiol concentrations are relatively constant through the end of the 3-month dosing interval. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely (>95%) bound to sex hormone binding globulin (SHBG) and to albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Can cause nausea and vomiting, and withdrawal bleeding may occur in females. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Femring •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estradiol 3-acetate Estradiol acetate •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol acetate is an estrogen used to treat vasomotor symptoms and moderate to severe vulvar and vaginal atrophy from menopause. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estradiol benzoate interact?
•Drug A: Aducanumab •Drug B: Estradiol benzoate •Severity: MINOR •Description: Estradiol benzoate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol benzoate is not currently available in any FDA or Health Canada approved products. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estradiol, the principal intracellular human estrogen, is substantially more active than its metabolites, estrone and estriol, at the cellular level. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely (>95%) bound to sex hormone binding globulin (SHBG) and to albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estrogens are partially metabolized by cytochrome P450. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol benzoate is an estrogen indicated in combination with progesterone for the treatment of irregular menstruation.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estradiol benzoate interact? Information: •Drug A: Aducanumab •Drug B: Estradiol benzoate •Severity: MINOR •Description: Estradiol benzoate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol benzoate is not currently available in any FDA or Health Canada approved products. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estradiol, the principal intracellular human estrogen, is substantially more active than its metabolites, estrone and estriol, at the cellular level. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely (>95%) bound to sex hormone binding globulin (SHBG) and to albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estrogens are partially metabolized by cytochrome P450. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol benzoate is an estrogen indicated in combination with progesterone for the treatment of irregular menstruation. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estradiol cypionate interact?
•Drug A: Aducanumab •Drug B: Estradiol cypionate •Severity: MINOR •Description: Estradiol cypionate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Depo-Estradiol intramuscular depot injection is indicated for the treatment of moderate to severe vasomotor symptoms and hypoestrogenism due to hypogonadism. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause and of hypoestrogenism, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): When conjugated with aryl and alkyl groups for parenteral administration, the rate of absorption of oily preparations is slowed with a prolonged duration of action, such that a single intramuscular injection of estradiol valerate or estradiol cypionate is absorbed over several weeks. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely bound to sex hormone binding globulin (SHBG) and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Depo-estradiol •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol cypionate is an estradiol prodrug used to treat vasomotor symptoms and hypoestrogenisms from hypogonadism.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estradiol cypionate interact? Information: •Drug A: Aducanumab •Drug B: Estradiol cypionate •Severity: MINOR •Description: Estradiol cypionate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Depo-Estradiol intramuscular depot injection is indicated for the treatment of moderate to severe vasomotor symptoms and hypoestrogenism due to hypogonadism. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause and of hypoestrogenism, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): When conjugated with aryl and alkyl groups for parenteral administration, the rate of absorption of oily preparations is slowed with a prolonged duration of action, such that a single intramuscular injection of estradiol valerate or estradiol cypionate is absorbed over several weeks. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): The distribution of exogenous estrogens is similar to that of endogenous estrogens. Estrogens are widely distributed in the body and are generally found in higher concentrations in the sex hormone target organs. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Estrogens circulate in the blood largely bound to sex hormone binding globulin (SHBG) and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Depo-estradiol •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol cypionate is an estradiol prodrug used to treat vasomotor symptoms and hypoestrogenisms from hypogonadism. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estradiol valerate interact?
•Drug A: Aducanumab •Drug B: Estradiol valerate •Severity: MINOR •Description: Estradiol valerate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol valerate is commercially available as an intramuscular injection as the product Delestrogen and is indicated for the treatment of moderate to severe vasomotor symptoms and vulvovaginal atrophy due to menopause, for the treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure, and for the treatment of advanced androgen-dependent carcinoma of the prostate (for palliation only). Estradiol valerate is also available in combination with Dienogest as the commercially available product Natazia used for the prevention of pregnancy and for the treatment of heavy menstrual bleeding. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): IM Injection: When conjugated with aryl and alkyl groups for parenteral administration, the rate of absorption of oily preparations is slowed with a prolonged duration of action, such that a single intramuscular injection of estradiol valerate or estradiol cypionate is absorbed over several weeks. Natazia: After oral administration of estradiol valerate, cleavage to 17β-estradiol and valeric acid takes place during absorption by the intestinal mucosa or in the course of the first liver passage. This gives rise to estradiol and its metabolites, estrone and other metabolites. Maximum serum estradiol concentrations of 73.3 pg/mL are reached at a median of approximately 6 hours (range: 1.5–12 hours) and the area under the estradiol concentration curve [AUC(0–24h)] was 1301 pg·h/mL after single ingestion of a tablet containing 3 mg estradiol valerate under fasted condition on Day 1 of the 28-day sequential regimen. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estrogens are partially metabolized by cytochrome P450. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Delestrogen, Natazia •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol valerate is an estradiol prodrug used to treat some effects of menopause, hypoestrogenism, androgen dependant carcinoma of the prostate, and in combination products for endometriosis and contraception.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estradiol valerate interact? Information: •Drug A: Aducanumab •Drug B: Estradiol valerate •Severity: MINOR •Description: Estradiol valerate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol valerate is commercially available as an intramuscular injection as the product Delestrogen and is indicated for the treatment of moderate to severe vasomotor symptoms and vulvovaginal atrophy due to menopause, for the treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure, and for the treatment of advanced androgen-dependent carcinoma of the prostate (for palliation only). Estradiol valerate is also available in combination with Dienogest as the commercially available product Natazia used for the prevention of pregnancy and for the treatment of heavy menstrual bleeding. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrogen mediates its effects across the body through potent agonism of the Estrogen Receptor (ER), which is located in various tissues including in the breasts, uterus, ovaries, skin, prostate, bone, fat, and brain. Estradiol binds to both subtypes of the Estrogen Receptor: Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ). Estradiol also acts as a potent agonist of G Protein-coupled Estrogen Receptor (GPER), which has recently been recognized as a major mediator of estradiol's rapid cellular effects. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. Increases in the down-stream effects of ER binding reverses some of the symptoms of menopause, which are primarily caused by a loss of estrogenic activity. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): IM Injection: When conjugated with aryl and alkyl groups for parenteral administration, the rate of absorption of oily preparations is slowed with a prolonged duration of action, such that a single intramuscular injection of estradiol valerate or estradiol cypionate is absorbed over several weeks. Natazia: After oral administration of estradiol valerate, cleavage to 17β-estradiol and valeric acid takes place during absorption by the intestinal mucosa or in the course of the first liver passage. This gives rise to estradiol and its metabolites, estrone and other metabolites. Maximum serum estradiol concentrations of 73.3 pg/mL are reached at a median of approximately 6 hours (range: 1.5–12 hours) and the area under the estradiol concentration curve [AUC(0–24h)] was 1301 pg·h/mL after single ingestion of a tablet containing 3 mg estradiol valerate under fasted condition on Day 1 of the 28-day sequential regimen. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized using the same mechanism as endogenous estrogens. Estrogens are partially metabolized by cytochrome P450. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Delestrogen, Natazia •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol valerate is an estradiol prodrug used to treat some effects of menopause, hypoestrogenism, androgen dependant carcinoma of the prostate, and in combination products for endometriosis and contraception. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estradiol interact?
•Drug A: Aducanumab •Drug B: Estradiol •Severity: MINOR •Description: Estradiol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol is indicated in various preparations for the treatment of moderate to severe vasomotor symptoms and vulvar and vaginal atrophy due to menopause, for the treatment of hypoestrogenism due to hypogonadism, castration, or primary ovarian failure, and for the prevention of postmenopausal osteoporosis. It is also used for the treatment of breast cancer (only for palliation therapy) in certain men or women with metastatic disease, and for the treatment of androgen-dependent prostate cancer (only for palliation therapy). It is also used in combination with other hormones as a component of oral contraceptive pills for preventing pregnancy (most commonly as Ethinylestradiol, a synthetic form of estradiol). A note on duration of treatment Recommendations for treatment of menopausal symptoms changed drastically following the release of results and early termination of the Women's Health Initiative (WHI) studies in 2002 as concerns were raised regarding estrogen use. Specifically, the combined estrogen–progestin group was discontinued after about 5 years of follow up due to a statistically significant increase in invasive breast cancer and in cardiovascular events. Following extensive critique of the WHI results, Hormone Replacement Therapy (HRT) is now recommended to be used only for a short period (for 3-5 years postmenopause) in low doses, and in women without a history of breast cancer or increased risk of cardiovascular or thromboembolic disease. Estrogen for postmenopausal symptoms should always be given with a progestin component due to estrogen's stimulatory effects on the endometrium; in women with an intact uterus, unopposed estrogen has been shown to promote the growth of the endometrium which can lead to endometrial hyperplasia and possibly cancer over the long-term. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estradiol acts on the on the estrogen receptors to relieve vasomotor systems (such as hot flashes) and urogenital symptoms (such as vaginal dryness and dyspareunia). Estradiol has also been shown to exert favorable effects on bone density by inhibiting bone resorption. Estrogen appears to inhibit bone resorption and may have beneficial effects on the plasma lipid profile. Estrogens cause an increase in hepatic synthesis of various proteins, which include sex hormone binding globulin (SHBG), and thyroid-binding globulin (TBG). Estrogens are known to suppress the formation of follicle-stimulating hormone (FSH) in the anterior pituitary gland. A note on hyper-coagulable state, cardiovascular health, and blood pressure Estradiol may cause an increased risk of cardiovascular disease, DVT, and stroke, and its use should be avoided in patients at high risk of these conditions. Estrogen induces a hyper-coagulable state, which is also associated with both estrogen-containing oral contraceptive (OC) use and pregnancy. Although estrogen causes an increase in levels of plasma renin and angiotensin. Estrogen-induced increases in angiotensin, causing sodium retention, which is likely to be the mechanism causing hypertension after oral contraceptive treatment. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogen is found in the the breast, uterine, ovarian, skin, prostate, bone, fat, and brain tissues. The main source of estrogen in adult women during the reproductive period of life is the ovarian follicle, which secretes 70 to 500 mcg of estradiol each day. After menopause, however, the majority of endogenous estrogen is produced by transformation of androstenedione (which is secreted by the adrenal cortex) to estrone in the peripheral tissues. Both estrone and its sulphate conjugated form, estrone sulphate, represent the most abundant estrogens found in postmenopausal women. Estradiol, however, is considerably more potent than estrone and estriol at the estrogen receptor (ER). As a result, the higher estrone concentration in postmenopausal population, can cause various undesirable effects. These effects may include hot flashes, chills, vaginal dryness, mood swings, irregular menstruation, and chills, in addition to sleep problems. Estradiol workings by binding to subtypes of the estrogen receptor: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). It also exerts potent agonism of G Protein-coupled estrogen receptor (GPER), which is recognized an important regulator of this drug's rapid effects. Once the estrogen receptor has bound to its ligand, it enters the nucleus of the target cell, regulating gene transcription and formation of of messenger RNA. This mRNA makes contact with ribosomes producing specific proteins that express the effect of estradiol upon the target cell. Agonism of estrogen receptors increases pro-estrogenic effects, leading to the relief of vasomotor and urogenital symptoms of a postmenopausal or low estradiol state. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absorption of several formulations of estradiol is described below: Oral tablets and injections First-pass metabolism in the gastrointestinal tract rapidly breaks down estradiol tablets before entering the systemic circulation. The bioavailability of oral estrogens is said to be 2-10% due to significant first-pass effects. The esterification of estradiol improves the administration (such as with estradiol valerate) or to sustain release from intramuscular depot injections (including estradiol cypionate ) via higher lipophilicity. After absorption, the esters are cleaved, which leads to the release of endogenous estradiol, or 17β-estradiol. Transdermal preparations The transdermal preparations slowly release estradiol through intact skin, which sustains circulating levels of estradiol during a 1 week period of time. Notably, the bioavailability of estradiol after transdermal administration is about 20 times higher than after oral administration. Transdermal estradiol avoids first pass metabolism effects that reduce bioavailability. Administration via the buttock leads to a Cmax of about 174 pg/mL compared to 147 pg/mL via the abdomen. Spray preparations After daily administration, the spray formulations of estradiol reach steady state within 7-8 days. After 3 sprays daily, Cmax is about 54 pg/mL with a Tmax of 20 hours. AUC is about 471 pg•hr/mL. Vaginal ring and cream preparations Estradiol is efficiently absorbed through the mucous membranes of the vagina. The vaginal administration of estrogens evades first-pass metabolism. Tmax after vaginal ring delivery ranges from 0.5 to 1 hour. Cmax is about 63 pg/mL. The vaginal cream preparation has a Cmax of estradiol (a component of Premarin vaginal estrogen conjugate cream) was a Cmax of 12.8 ± 16.6 pg/mL, Tmax of 8.5 ± 6.2 hours, with an AUC of 231 ± 285 pg•hr/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Estrogens administered exogenously distribute in a similar fashion to endogenous estrogens. They can be found throughout the body, especially in the sex hormone target organs, such as the breast, ovaries and uterus. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): More than 95% of estrogens are found to circulate in the blood bound to sex hormone binding globulin (SHBG) and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenously administered estrogens are metabolized in the same fashion as endogenous estrogens. Metabolic transformation occurs primarily in the liver and intestine. Estradiol is metabolized to estrone, and both are converted to estriol, which is later excreted in the urine. Sulfate and glucuronide conjugation estrogens also take place in the liver. Biliary secretion of metabolic conjugates are released into the intestine, and estrogen hydrolysis in the gut occurs, followed by reabsorption. The CYP3A4 hepatic cytochrome enzyme is heavily involved in the metabolism of estradiol. CYP1A2 also plays a role. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol is excreted in the urine with both glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-lives for various estrogen products post oral or intravenous administration has been reported to range from 1-12 hours. One pharmacokinetic study of oral estradiol valerate administration in postmenopausal women revealed a terminal elimination half-life of 16.9 ± 6.0 h. A pharmacokinetic study of intravenous estradiol administration in postmenopausal women showed an elimination half-life of 27.45 ± 5.65 minutes. The half-life of estradiol appears to vary by route of administration. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): In one pharmacokinetic study, the clearance of orally administered micronized estradiol in postmenopausal women was 29.9±15.5 mL/min/kg. Another study revealed a clearance of intravenously administered estradiol was 1.3 mL/min/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The NOAEL (no-observed-adverse-effect-level) oral toxicity of estradiol after 90 day in rats was 0.003 mg/kg/day for blood, female reproductive, and male reproductive, endocrine, and liver toxicity. Oral TDLO of ethinyl estradiol is 21 mg/kg/21D intermittent, woman) with an oral LD50 of 960 mg/kg in the rat. There is limited information in the literature regarding estrogen overdose. Estradiol overdose likely leads to the occurrence of estrogen-associated adverse effects, including nausea, vomiting, abdominal pain, breast tenderness, venous thrombosis, and vaginal bleeding. It is generally recommend to discontinue estradiol treatment and offer supportive care in the case of an overdose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Activella 1/0.5 28 Day, Activelle, Amabelz 0.5/0.1 28 Day, Angeliq 0.25/0.5 28 Day, Bijuva, Climara, Climara Pro, Combipatch, Divigel, Dotti, Elestrin, Estalis, Estrace, Estradot, Estring, Estrogel, Etyqa 0.5/0.1 28 Day, Evamist, Imvexxy 4 Mcg Starter Pack, Lopreeza 1/0.5 28 Day, Lyllana, Menostar, Mimvey, Minivelle, Myfembree, Oesclim, Oriahnn 28 Day Kit, Prefest 30 Day, Vagifem, Vivelle, Yuvafem •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 17beta oestradiol beta-Estradiol cis-Estradiol Estradiol Estradiol-17beta Estradiolum •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol is an estrogenic steroid used to treat vasomotor symptoms of vulvar and vaginal atrophy in menopause, hypoestrogenism, prevention of postmenopausal osteoporosis, treatment of breast cancer, and advanced androgen-dependent carcinoma of the prostate.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estradiol interact? Information: •Drug A: Aducanumab •Drug B: Estradiol •Severity: MINOR •Description: Estradiol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estradiol is indicated in various preparations for the treatment of moderate to severe vasomotor symptoms and vulvar and vaginal atrophy due to menopause, for the treatment of hypoestrogenism due to hypogonadism, castration, or primary ovarian failure, and for the prevention of postmenopausal osteoporosis. It is also used for the treatment of breast cancer (only for palliation therapy) in certain men or women with metastatic disease, and for the treatment of androgen-dependent prostate cancer (only for palliation therapy). It is also used in combination with other hormones as a component of oral contraceptive pills for preventing pregnancy (most commonly as Ethinylestradiol, a synthetic form of estradiol). A note on duration of treatment Recommendations for treatment of menopausal symptoms changed drastically following the release of results and early termination of the Women's Health Initiative (WHI) studies in 2002 as concerns were raised regarding estrogen use. Specifically, the combined estrogen–progestin group was discontinued after about 5 years of follow up due to a statistically significant increase in invasive breast cancer and in cardiovascular events. Following extensive critique of the WHI results, Hormone Replacement Therapy (HRT) is now recommended to be used only for a short period (for 3-5 years postmenopause) in low doses, and in women without a history of breast cancer or increased risk of cardiovascular or thromboembolic disease. Estrogen for postmenopausal symptoms should always be given with a progestin component due to estrogen's stimulatory effects on the endometrium; in women with an intact uterus, unopposed estrogen has been shown to promote the growth of the endometrium which can lead to endometrial hyperplasia and possibly cancer over the long-term. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estradiol acts on the on the estrogen receptors to relieve vasomotor systems (such as hot flashes) and urogenital symptoms (such as vaginal dryness and dyspareunia). Estradiol has also been shown to exert favorable effects on bone density by inhibiting bone resorption. Estrogen appears to inhibit bone resorption and may have beneficial effects on the plasma lipid profile. Estrogens cause an increase in hepatic synthesis of various proteins, which include sex hormone binding globulin (SHBG), and thyroid-binding globulin (TBG). Estrogens are known to suppress the formation of follicle-stimulating hormone (FSH) in the anterior pituitary gland. A note on hyper-coagulable state, cardiovascular health, and blood pressure Estradiol may cause an increased risk of cardiovascular disease, DVT, and stroke, and its use should be avoided in patients at high risk of these conditions. Estrogen induces a hyper-coagulable state, which is also associated with both estrogen-containing oral contraceptive (OC) use and pregnancy. Although estrogen causes an increase in levels of plasma renin and angiotensin. Estrogen-induced increases in angiotensin, causing sodium retention, which is likely to be the mechanism causing hypertension after oral contraceptive treatment. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogen is found in the the breast, uterine, ovarian, skin, prostate, bone, fat, and brain tissues. The main source of estrogen in adult women during the reproductive period of life is the ovarian follicle, which secretes 70 to 500 mcg of estradiol each day. After menopause, however, the majority of endogenous estrogen is produced by transformation of androstenedione (which is secreted by the adrenal cortex) to estrone in the peripheral tissues. Both estrone and its sulphate conjugated form, estrone sulphate, represent the most abundant estrogens found in postmenopausal women. Estradiol, however, is considerably more potent than estrone and estriol at the estrogen receptor (ER). As a result, the higher estrone concentration in postmenopausal population, can cause various undesirable effects. These effects may include hot flashes, chills, vaginal dryness, mood swings, irregular menstruation, and chills, in addition to sleep problems. Estradiol workings by binding to subtypes of the estrogen receptor: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). It also exerts potent agonism of G Protein-coupled estrogen receptor (GPER), which is recognized an important regulator of this drug's rapid effects. Once the estrogen receptor has bound to its ligand, it enters the nucleus of the target cell, regulating gene transcription and formation of of messenger RNA. This mRNA makes contact with ribosomes producing specific proteins that express the effect of estradiol upon the target cell. Agonism of estrogen receptors increases pro-estrogenic effects, leading to the relief of vasomotor and urogenital symptoms of a postmenopausal or low estradiol state. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): The absorption of several formulations of estradiol is described below: Oral tablets and injections First-pass metabolism in the gastrointestinal tract rapidly breaks down estradiol tablets before entering the systemic circulation. The bioavailability of oral estrogens is said to be 2-10% due to significant first-pass effects. The esterification of estradiol improves the administration (such as with estradiol valerate) or to sustain release from intramuscular depot injections (including estradiol cypionate ) via higher lipophilicity. After absorption, the esters are cleaved, which leads to the release of endogenous estradiol, or 17β-estradiol. Transdermal preparations The transdermal preparations slowly release estradiol through intact skin, which sustains circulating levels of estradiol during a 1 week period of time. Notably, the bioavailability of estradiol after transdermal administration is about 20 times higher than after oral administration. Transdermal estradiol avoids first pass metabolism effects that reduce bioavailability. Administration via the buttock leads to a Cmax of about 174 pg/mL compared to 147 pg/mL via the abdomen. Spray preparations After daily administration, the spray formulations of estradiol reach steady state within 7-8 days. After 3 sprays daily, Cmax is about 54 pg/mL with a Tmax of 20 hours. AUC is about 471 pg•hr/mL. Vaginal ring and cream preparations Estradiol is efficiently absorbed through the mucous membranes of the vagina. The vaginal administration of estrogens evades first-pass metabolism. Tmax after vaginal ring delivery ranges from 0.5 to 1 hour. Cmax is about 63 pg/mL. The vaginal cream preparation has a Cmax of estradiol (a component of Premarin vaginal estrogen conjugate cream) was a Cmax of 12.8 ± 16.6 pg/mL, Tmax of 8.5 ± 6.2 hours, with an AUC of 231 ± 285 pg•hr/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Estrogens administered exogenously distribute in a similar fashion to endogenous estrogens. They can be found throughout the body, especially in the sex hormone target organs, such as the breast, ovaries and uterus. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): More than 95% of estrogens are found to circulate in the blood bound to sex hormone binding globulin (SHBG) and albumin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenously administered estrogens are metabolized in the same fashion as endogenous estrogens. Metabolic transformation occurs primarily in the liver and intestine. Estradiol is metabolized to estrone, and both are converted to estriol, which is later excreted in the urine. Sulfate and glucuronide conjugation estrogens also take place in the liver. Biliary secretion of metabolic conjugates are released into the intestine, and estrogen hydrolysis in the gut occurs, followed by reabsorption. The CYP3A4 hepatic cytochrome enzyme is heavily involved in the metabolism of estradiol. CYP1A2 also plays a role. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol is excreted in the urine with both glucuronide and sulfate conjugates. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The terminal half-lives for various estrogen products post oral or intravenous administration has been reported to range from 1-12 hours. One pharmacokinetic study of oral estradiol valerate administration in postmenopausal women revealed a terminal elimination half-life of 16.9 ± 6.0 h. A pharmacokinetic study of intravenous estradiol administration in postmenopausal women showed an elimination half-life of 27.45 ± 5.65 minutes. The half-life of estradiol appears to vary by route of administration. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): In one pharmacokinetic study, the clearance of orally administered micronized estradiol in postmenopausal women was 29.9±15.5 mL/min/kg. Another study revealed a clearance of intravenously administered estradiol was 1.3 mL/min/kg. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): The NOAEL (no-observed-adverse-effect-level) oral toxicity of estradiol after 90 day in rats was 0.003 mg/kg/day for blood, female reproductive, and male reproductive, endocrine, and liver toxicity. Oral TDLO of ethinyl estradiol is 21 mg/kg/21D intermittent, woman) with an oral LD50 of 960 mg/kg in the rat. There is limited information in the literature regarding estrogen overdose. Estradiol overdose likely leads to the occurrence of estrogen-associated adverse effects, including nausea, vomiting, abdominal pain, breast tenderness, venous thrombosis, and vaginal bleeding. It is generally recommend to discontinue estradiol treatment and offer supportive care in the case of an overdose. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Activella 1/0.5 28 Day, Activelle, Amabelz 0.5/0.1 28 Day, Angeliq 0.25/0.5 28 Day, Bijuva, Climara, Climara Pro, Combipatch, Divigel, Dotti, Elestrin, Estalis, Estrace, Estradot, Estring, Estrogel, Etyqa 0.5/0.1 28 Day, Evamist, Imvexxy 4 Mcg Starter Pack, Lopreeza 1/0.5 28 Day, Lyllana, Menostar, Mimvey, Minivelle, Myfembree, Oesclim, Oriahnn 28 Day Kit, Prefest 30 Day, Vagifem, Vivelle, Yuvafem •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 17beta oestradiol beta-Estradiol cis-Estradiol Estradiol Estradiol-17beta Estradiolum •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estradiol is an estrogenic steroid used to treat vasomotor symptoms of vulvar and vaginal atrophy in menopause, hypoestrogenism, prevention of postmenopausal osteoporosis, treatment of breast cancer, and advanced androgen-dependent carcinoma of the prostate. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estriol interact?
•Drug A: Aducanumab •Drug B: Estriol •Severity: MINOR •Description: Estriol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Used as a test to determine the general health of an unborn fetus. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estriol (also oestriol) is one of the three main estrogens produced by the human body. It is only produced in significant amounts during pregnancy as it is made by the placenta. In pregnant women with multiple sclerosis (MS), estriol reduces the disease's symptoms noticeably, according to researchers at UCLA's Geffen Medical School. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estriol levels can be measured to give an indication of the general health of the fetus. DHEA-S is produced by the adrenal cortex of the fetus. This is converted to estriol by the placenta. If levels of "unconjugated estriol" are abnormally low in a pregnant woman, this may indicate a problem with the development of the child. The drug interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estriol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): ORAL (LD50): Acute: >2000 mg/kg [Rat]. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 16-alpha-Hydroxyestradiol 16alpha-hydroxyestradiol Estriol Oestriol Östriol Trihydroxyestrin •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estriol is a weak estrogen used to treat vaginal dryness and estrogen deficiency conditions, such as vaginitis and vulvar itching.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estriol interact? Information: •Drug A: Aducanumab •Drug B: Estriol •Severity: MINOR •Description: Estriol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Used as a test to determine the general health of an unborn fetus. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estriol (also oestriol) is one of the three main estrogens produced by the human body. It is only produced in significant amounts during pregnancy as it is made by the placenta. In pregnant women with multiple sclerosis (MS), estriol reduces the disease's symptoms noticeably, according to researchers at UCLA's Geffen Medical School. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estriol levels can be measured to give an indication of the general health of the fetus. DHEA-S is produced by the adrenal cortex of the fetus. This is converted to estriol by the placenta. If levels of "unconjugated estriol" are abnormally low in a pregnant woman, this may indicate a problem with the development of the child. The drug interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estriol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): No absorption available •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): ORAL (LD50): Acute: >2000 mg/kg [Rat]. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 16-alpha-Hydroxyestradiol 16alpha-hydroxyestradiol Estriol Oestriol Östriol Trihydroxyestrin •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estriol is a weak estrogen used to treat vaginal dryness and estrogen deficiency conditions, such as vaginitis and vulvar itching. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estrone sulfate interact?
•Drug A: Aducanumab •Drug B: Estrone sulfate •Severity: MINOR •Description: Estrone sulfate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estropipate is used for the treatment of moderate to severe vasomotor symptoms associated with the monopause, and moderate to severe symptoms of vulval and vaginal atrophy associated with the menopause. It is also used to treat hypoestrogenism due to hypogonadism, castration or primary ovarian failure, and prevent postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estropipate is an estrogenic substance. It acts as naturally produced estrogen does. Estrogens act through binding to nuclear receptors in estrogen-responsive tissues. Circulating estrogens modulate the pituitary secretion of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), through a negative feedback mechanism. Estrogens act to reduce the elevated levels of these hormones seen in postmenopausal women. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Estropipate is well absorbed through the skin and gastrointestinal tract. When applied for a local action, absorption is usually sufficient to cause systemic effects. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estrone 3-sulfate Estrone bisulfate Estrone hemisulfate Estrone hydrogen sulfate Estrone sulphate Estrone, hydrogen sulfate •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estrone sulfate is an estrogen used as monotherapy or in several combination hormone replacement products for managing menopause symptoms and hormone disorders.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estrone sulfate interact? Information: •Drug A: Aducanumab •Drug B: Estrone sulfate •Severity: MINOR •Description: Estrone sulfate may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Estropipate is used for the treatment of moderate to severe vasomotor symptoms associated with the monopause, and moderate to severe symptoms of vulval and vaginal atrophy associated with the menopause. It is also used to treat hypoestrogenism due to hypogonadism, castration or primary ovarian failure, and prevent postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estropipate is an estrogenic substance. It acts as naturally produced estrogen does. Estrogens act through binding to nuclear receptors in estrogen-responsive tissues. Circulating estrogens modulate the pituitary secretion of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), through a negative feedback mechanism. Estrogens act to reduce the elevated levels of these hormones seen in postmenopausal women. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Estropipate is well absorbed through the skin and gastrointestinal tract. When applied for a local action, absorption is usually sufficient to cause systemic effects. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Exogenous estrogens are metabolized in the same manner as endogenous estrogens. Circulating estrogens exist in a dynamic equilibrium of metabolic interconversions. These transformations take place mainly in the liver. Estradiol is converted reversibly to estrone, and both can be converted to estriol, which is the major urinary metabolite. Estrogens also undergo enterohepatic recirculation via sulfate and glucuronide conjugation in the liver, biliary secretion of conjugates into the intestine, and hydrolysis in the gut followed by reabsorption. In postmenopausal women, a significant proportion of the circulating estrogens exist as sulfate conjugates, especially estrone sulfate, which serves as a circulating reservoir for the formation of more active estrogens. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Estradiol, estrone and estriol are excreted in the urine along with glucuronide and sulfate conjugates •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): No brand names available •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estrone 3-sulfate Estrone bisulfate Estrone hemisulfate Estrone hydrogen sulfate Estrone sulphate Estrone, hydrogen sulfate •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estrone sulfate is an estrogen used as monotherapy or in several combination hormone replacement products for managing menopause symptoms and hormone disorders. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Estrone interact?
•Drug A: Aducanumab •Drug B: Estrone •Severity: MINOR •Description: Estrone may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For management of perimenopausal and postmenopausal symptoms. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrone, a synthetically prepared or naturally occurring steroidal estrogen obtained from pregnant equine urine, is the primary circulating estrogen after menopause. Estrone is naturally derived from the peripheral conversion of androstenedione by an aromatase enzyme found in adipose tissues and is converted to estradiol in peripheral tissues. The estrogenic potency of estrone is one third that of estradiol. Estropipate is piperazine-stabilized estrone sulfate. Estrone, and estropipate are used to treat abnormalities related to gonadotropin hormone dysfunction, vasomotor symptoms, atrophic vaginitis, and vulvar atrophy associated with menopause, and for the prevention of osteoporosis due to estrogen deficiency. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): 43% •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): > 95% •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Hepatic. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 19 hours •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Symptoms of overdose include nausea and vomiting. Estrogen related side effects include nausea, breast tenderness, fluid retention and edema, headaches and/or migraines, chloasma and poor contact lens fit. Estrogen hormone deficiency is associated with breakthrough bleeding, hypomenorrhea, irritability, depression and menopausal symptoms. Withdrawal bleeds may occur in females. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Estragyn •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estrona Estrone Estronum Follicular hormone Folliculin Oestrone •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estrone is an estrogen used to treat perimenopausal and postmenopausal symptoms.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Estrone interact? Information: •Drug A: Aducanumab •Drug B: Estrone •Severity: MINOR •Description: Estrone may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): For management of perimenopausal and postmenopausal symptoms. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Estrone, a synthetically prepared or naturally occurring steroidal estrogen obtained from pregnant equine urine, is the primary circulating estrogen after menopause. Estrone is naturally derived from the peripheral conversion of androstenedione by an aromatase enzyme found in adipose tissues and is converted to estradiol in peripheral tissues. The estrogenic potency of estrone is one third that of estradiol. Estropipate is piperazine-stabilized estrone sulfate. Estrone, and estropipate are used to treat abnormalities related to gonadotropin hormone dysfunction, vasomotor symptoms, atrophic vaginitis, and vulvar atrophy associated with menopause, and for the prevention of osteoporosis due to estrogen deficiency. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Estrogens enter the cells of responsive tissues (e.g. female organs, breasts, hypothalamus, pituitary) where they interact with estrogen receptors. Hormone-bound estrogen receptors dimerize, translocate to the nucleus of cells and bind to estrogen response elements (ERE) of genes. Binding to ERE alters the transcription rate of affected genes. Estrogens increase the hepatic synthesis of sex hormone binding globulin (SHBG), thyroid-binding globulin (TBG), and other serum proteins and suppress follicle-stimulating hormone (FSH) release from the anterior pituitary. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): 43% •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): > 95% •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Hepatic. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): 19 hours •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): No clearance available •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Symptoms of overdose include nausea and vomiting. Estrogen related side effects include nausea, breast tenderness, fluid retention and edema, headaches and/or migraines, chloasma and poor contact lens fit. Estrogen hormone deficiency is associated with breakthrough bleeding, hypomenorrhea, irritability, depression and menopausal symptoms. Withdrawal bleeds may occur in females. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Estragyn •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): Estrona Estrone Estronum Follicular hormone Folliculin Oestrone •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Estrone is an estrogen used to treat perimenopausal and postmenopausal symptoms. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Ethinylestradiol interact?
•Drug A: Aducanumab •Drug B: Ethinylestradiol •Severity: MINOR •Description: Ethinylestradiol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Ethinylestradiol is combined with other drugs for use as a contraceptive, premenstrual dysphoric disorder, moderate acne, moderate to severe vasomotor symptoms of menopause, prevention of postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Ethinylestradiol is a synthetic estrogen that decreases luteinizing hormone to decrease endometrial vascularization, and decreases gonadotrophic hormone to prevent ovulation. It has a long duration of action as it is taken once daily, and a wide therapeutic index as overdoses are generally not associated with serious adverse effects. Patients should be counselled regarding the risks of thrombotic events. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Ethinylestradiol is a synthetic estrogenic compound. Use of estrogens have a number of effects on the body including reduced bone density. Combined oral contraceptives suppress ovulation by suppressing gonadotrophic hormone, thickening cervical mucus to prevent the travel of sperm, and preventing changes in the endometrium required for implantation of a fertilized egg. Ethinylestradiol decreases luteinizing hormone, decreasing vascularity in the endometrium. It also increases sex hormone binding globulin. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): A 30µg oral dose of ethinylestradiol reaches a C max of 74.1±35.6pg/mL, with a T max of 1.5±0.5h, and an AUC of 487.4±166.6pg*h/mL. A 1.2mg dose delivered via a patch reaches a C max of 28.8±10.3pg/mL, with a T max of 86±31h, and an AUC of3895±1423pg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): A 30µg oral dose has an apparent volume of distribution of 625.3±228.7L and a 1.2mg topical dose has an apparent volume of distribution of 11745.3±15934.8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Enthinylestradiol is 98.3-98.5% bound to albumin in serum but also exhibits binding to sex hormone binding globulin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Ethinylestradiol can be glucuronidated by UGT1A1, UGT1A3, UGT1A4, UGT1A9, and UGT2B7. Ethinylestradiol is also sulfated by SULT1A1, SULT1A3, and SULT1E1. Ethinylestradiol can also be hydroxylated at positions 2, 4, 6, 7, and 16 by CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP1A2. These hydroxylated metabolites can be methylated by catechol-O-methyltransferase. The methoxy metabolites can in turn be sulfated or glucuronidated. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Ethinylestradiol is 59.2% eliminated in the urine and bile, while 2-3% is eliminated in the feces. Over 90% of ethinylestradiol is eliminated as the unchanged parent drug. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): A 30µg oral dose has a half life of 8.4±4.8h and a 1.2mg topical dose has a half life of 27.7±34.2h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Ethinylestradiol has an intravenous clearance of 16.47L/h, and an estimated renal clearance of approximately 2.1L/h. A 30µg oral dose has a clearance of 58.0±19.8L/h and a 1.2mg topical dose has a clearance of 303.5±100.5L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Female patients experiencing and overdose may present with withdrawal bleeding, nausea, vomiting, breast tenderness, abdominal pain, drowsiness, and fatigue. Overdose should be treated with symptomatic and supportive care including monitoring for potassium concentrations, sodium concentrations, and signs of metabolic acidosis. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Afirmelle 28 Day, Alesse, Altavera 28 Day, Alyacen 1/35, Alyacen 7/7/7, Amethia 91 Day, Amethyst, Annovera, Apri 28 Day, Aranelle 28, Ashlyna 91 Day, Aubra 28 Day, Aurovela, Aurovela Fe, Aviane 28, Ayuna 28 Day Pack, Azurette 28 Day, Balcoltra 28 Day, Balziva 28 Day, Bekyree 28 Day, Beyaz 28 Day, Blisovi 21 Fe 1.5/30 28 Day Pack, Blisovi 21 Fe 1/20 28 Day Pack, Blisovi 24 Fe 1/20 28 Day, Brevicon, Briellyn 28 Day, Camrese 91 Day, Camreselo 91 Day, Caziant 28 Day, Cesia 28 Day, Charlotte 24 Fe Chewable 28 Day, Chateal 28 Day, Cléo -35, Cryselle 28, Cyclafem 1/35 28 Day, Cyclafem 7/7/7 28 Day, Cyestra-35, Cyonanz 28 Day, Cyred 28 Day, Dasetta 1/35 28 Day, Dasetta 7/7/7 28 Day, Daysee 91 Day, Delyla 28 Day, Diane, Dolishale 28 Day, Elinest 28 Day, Eluryng, Emoquette, Enilloring, Enpresse 28 Day, Enskyce 28 Day, Estarylla 28 Day, Evra, Falmina 28 Day, Fayosim 91 Day, Femcon Fe 28 Day, Femhrt 0.5/2.5 28 Day, Femynor 28 Day, Finzala 24 Fe Chewable 28 Day, Freya, Fyavolv, Gemmily 28 Day, Gianvi 28-day, Hailey 1.5/30 21 Day, Hailey 24 Fe 28 Day, Hailey Fe 1.5/30 28 Day, Hailey Fe 1/20 28 Day, Iclevia 91 Day, Indayo, Introvale 91 Day, Isibloom 28 Day, Jaimiess 91 Day, Jasmiel 28 Day, Jinteli, Jolessa 91 Day, Joyeaux 28 Day, Juleber 28 Day, Junel 1.5/30 21 Day, Junel 1/20 21 Day, Junel Fe 1.5/30 28 Day, Junel Fe 1/20 28 Day, Junel Fe 24 1/20 28 Day, Kaitlib Fe 28 Day, Kalliga, Kariva 28 Day, Kelnor 1/35 28 Day, Kelnor 1/50 28 Day, Kurvelo, Larin 1.5/30, Larin 1/20, Larin 24 Fe 1/20, Larin Fe 1.5/30, Larin Fe 1/20, Layolis Fe 28, Leena 28 Day, Levonest 28 Day, Levora 0.15/30 28 Day, Linessa, Lo Loestrin Fe 28 Day, Lo Simpesse, Lo-zumandimine 28 Day, Lo/ovral 28 Day, LoJaimiess, Loestrin 1.5/30 21 Day, Loestrin 24 Fe 28 Day, Loestrin Fe 1/20 28 Day, Lolo, Lomedia 24 Fe, Loryna, Loseasonique, Low-ogestrel 28 Day, Lutera 28 Day, Marlissa 28 Day, Marvelon, Melodetta 24 Fe Chewable 28 Day, Merzee 28 Day, Mibelas 24 Fe Chewable 28 Day, Microgestin 1.5/30 21 Day, Microgestin 1/20 21 Day, Microgestin 24 Fe 28 Day, Microgestin Fe 1.5/30 28 Day, Microgestin Fe 1/20 28 Day, Mili 28 Day, Min-ovral, Minastrin 24 Fe Chewable 28 Day, Mircette 28 Day, Mono-linyah 28 Day, Mononessa 28 Day, Myzilra 28 Day, Necon 0.5/35 28 Day, Necon 1/35 28 Day, Necon 7/7/7 28 Day, Nexesta Fe 28 Day, Nikki 28 Day, Nortrel 1/35 21 Day, Nortrel 1/35 28 Day, Nortrel 7/7/7 28 Day, Nuvaring, Nylia 1/35 28 Day, Nylia 7/7/7 28 Day, Nymyo 28 Day, Ocella 28 Day, Orsythia 28 Day, Ortho Tri-cyclen 28 Day, Ortho Tri-cyclen Lo 28 Day, Ortho-novum 7/7/7 28 Day, Philith 28 Day, Pimtrea Pack, Pirmella 1/35 28 Day, Pirmella 7/7/7 28 Day, Portia 28 Day, Previfem 28 Day, Quartette 91 Day Pack, Reclipsen, Rhuzdah 28 Day, Rivelsa 91 Day, Safyral 28 Day, Seasonale, Seasonique, Select, Setlakin 91 Day, Simliya, Simpesse, Sprintec 28 Day, Sronyx 28 Day, Syeda 28 Day, Synphasic, Tarina 24 Fe 1/20 28 Day, Tarina Fe 1/20 28 Day, Taysofy 28 Day, Taytulla 28 Day, Tilia Fe, Tri Femynor 28 Day, Tri-LO- Estarylla 28 Day, Tri-LO-marzia 28-day, Tri-LO-mili, Tri-Lo-Sprintec, Tri-estarylla 28 Day, Tri-legest 28 Day, Tri-linyah, Tri-mili 28 Day, Tri-nymyo 28 Day Pack, Tri-previfem 28 Day, Tri-sprintec 28 Day, Tri-vylibra 28 Day, Tri-vylibra Lo 28 Day, Trinessa 28 Day, Trinessa Lo 28 Day, Triquilar, Trivora 28 Day, Turqoz 28 Day, Twirla 3 Count Weekly Patch, Tyblume 28 Day, Tydemy 28 Day, Velivet 28 Day, Vestura, Vienva 28 Day, Viorele 28 Day, Volnea 28 Day, Vyfemla 28 Day, Vylibra 28 Day, Wera 28 Day, Wymzya Fe 28 Day, Xulane, Yasmin, Yasmin 28 Day, Yaz 28 Day, Yaz Plus, Zafemy, Zarah, Zenchent, Zovia 1/35e 28 Day, Zovia 1/50e 28 Day, Zumandimine 28 Day •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 17-ethinylestradiol 17alpha-Ethinyl estradiol Ethinyl estradiol Ethinylestradiol Ethinylestradiolum Ethinyloestradiol Ethynyl estradiol Etinilestradiol •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Ethinylestradiol is an estradiol used as a contraceptive.
Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Question: Does Aducanumab and Ethinylestradiol interact? Information: •Drug A: Aducanumab •Drug B: Ethinylestradiol •Severity: MINOR •Description: Ethinylestradiol may increase the thrombogenic activities of Aducanumab. •Extended Description: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Ethinylestradiol is combined with other drugs for use as a contraceptive, premenstrual dysphoric disorder, moderate acne, moderate to severe vasomotor symptoms of menopause, prevention of postmenopausal osteoporosis. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Ethinylestradiol is a synthetic estrogen that decreases luteinizing hormone to decrease endometrial vascularization, and decreases gonadotrophic hormone to prevent ovulation. It has a long duration of action as it is taken once daily, and a wide therapeutic index as overdoses are generally not associated with serious adverse effects. Patients should be counselled regarding the risks of thrombotic events. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Ethinylestradiol is a synthetic estrogenic compound. Use of estrogens have a number of effects on the body including reduced bone density. Combined oral contraceptives suppress ovulation by suppressing gonadotrophic hormone, thickening cervical mucus to prevent the travel of sperm, and preventing changes in the endometrium required for implantation of a fertilized egg. Ethinylestradiol decreases luteinizing hormone, decreasing vascularity in the endometrium. It also increases sex hormone binding globulin. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): A 30µg oral dose of ethinylestradiol reaches a C max of 74.1±35.6pg/mL, with a T max of 1.5±0.5h, and an AUC of 487.4±166.6pg*h/mL. A 1.2mg dose delivered via a patch reaches a C max of 28.8±10.3pg/mL, with a T max of 86±31h, and an AUC of3895±1423pg*h/mL. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): A 30µg oral dose has an apparent volume of distribution of 625.3±228.7L and a 1.2mg topical dose has an apparent volume of distribution of 11745.3±15934.8L. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Enthinylestradiol is 98.3-98.5% bound to albumin in serum but also exhibits binding to sex hormone binding globulin. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Ethinylestradiol can be glucuronidated by UGT1A1, UGT1A3, UGT1A4, UGT1A9, and UGT2B7. Ethinylestradiol is also sulfated by SULT1A1, SULT1A3, and SULT1E1. Ethinylestradiol can also be hydroxylated at positions 2, 4, 6, 7, and 16 by CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP1A2. These hydroxylated metabolites can be methylated by catechol-O-methyltransferase. The methoxy metabolites can in turn be sulfated or glucuronidated. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Ethinylestradiol is 59.2% eliminated in the urine and bile, while 2-3% is eliminated in the feces. Over 90% of ethinylestradiol is eliminated as the unchanged parent drug. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): A 30µg oral dose has a half life of 8.4±4.8h and a 1.2mg topical dose has a half life of 27.7±34.2h. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Ethinylestradiol has an intravenous clearance of 16.47L/h, and an estimated renal clearance of approximately 2.1L/h. A 30µg oral dose has a clearance of 58.0±19.8L/h and a 1.2mg topical dose has a clearance of 303.5±100.5L/h. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Female patients experiencing and overdose may present with withdrawal bleeding, nausea, vomiting, breast tenderness, abdominal pain, drowsiness, and fatigue. Overdose should be treated with symptomatic and supportive care including monitoring for potassium concentrations, sodium concentrations, and signs of metabolic acidosis. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Afirmelle 28 Day, Alesse, Altavera 28 Day, Alyacen 1/35, Alyacen 7/7/7, Amethia 91 Day, Amethyst, Annovera, Apri 28 Day, Aranelle 28, Ashlyna 91 Day, Aubra 28 Day, Aurovela, Aurovela Fe, Aviane 28, Ayuna 28 Day Pack, Azurette 28 Day, Balcoltra 28 Day, Balziva 28 Day, Bekyree 28 Day, Beyaz 28 Day, Blisovi 21 Fe 1.5/30 28 Day Pack, Blisovi 21 Fe 1/20 28 Day Pack, Blisovi 24 Fe 1/20 28 Day, Brevicon, Briellyn 28 Day, Camrese 91 Day, Camreselo 91 Day, Caziant 28 Day, Cesia 28 Day, Charlotte 24 Fe Chewable 28 Day, Chateal 28 Day, Cléo -35, Cryselle 28, Cyclafem 1/35 28 Day, Cyclafem 7/7/7 28 Day, Cyestra-35, Cyonanz 28 Day, Cyred 28 Day, Dasetta 1/35 28 Day, Dasetta 7/7/7 28 Day, Daysee 91 Day, Delyla 28 Day, Diane, Dolishale 28 Day, Elinest 28 Day, Eluryng, Emoquette, Enilloring, Enpresse 28 Day, Enskyce 28 Day, Estarylla 28 Day, Evra, Falmina 28 Day, Fayosim 91 Day, Femcon Fe 28 Day, Femhrt 0.5/2.5 28 Day, Femynor 28 Day, Finzala 24 Fe Chewable 28 Day, Freya, Fyavolv, Gemmily 28 Day, Gianvi 28-day, Hailey 1.5/30 21 Day, Hailey 24 Fe 28 Day, Hailey Fe 1.5/30 28 Day, Hailey Fe 1/20 28 Day, Iclevia 91 Day, Indayo, Introvale 91 Day, Isibloom 28 Day, Jaimiess 91 Day, Jasmiel 28 Day, Jinteli, Jolessa 91 Day, Joyeaux 28 Day, Juleber 28 Day, Junel 1.5/30 21 Day, Junel 1/20 21 Day, Junel Fe 1.5/30 28 Day, Junel Fe 1/20 28 Day, Junel Fe 24 1/20 28 Day, Kaitlib Fe 28 Day, Kalliga, Kariva 28 Day, Kelnor 1/35 28 Day, Kelnor 1/50 28 Day, Kurvelo, Larin 1.5/30, Larin 1/20, Larin 24 Fe 1/20, Larin Fe 1.5/30, Larin Fe 1/20, Layolis Fe 28, Leena 28 Day, Levonest 28 Day, Levora 0.15/30 28 Day, Linessa, Lo Loestrin Fe 28 Day, Lo Simpesse, Lo-zumandimine 28 Day, Lo/ovral 28 Day, LoJaimiess, Loestrin 1.5/30 21 Day, Loestrin 24 Fe 28 Day, Loestrin Fe 1/20 28 Day, Lolo, Lomedia 24 Fe, Loryna, Loseasonique, Low-ogestrel 28 Day, Lutera 28 Day, Marlissa 28 Day, Marvelon, Melodetta 24 Fe Chewable 28 Day, Merzee 28 Day, Mibelas 24 Fe Chewable 28 Day, Microgestin 1.5/30 21 Day, Microgestin 1/20 21 Day, Microgestin 24 Fe 28 Day, Microgestin Fe 1.5/30 28 Day, Microgestin Fe 1/20 28 Day, Mili 28 Day, Min-ovral, Minastrin 24 Fe Chewable 28 Day, Mircette 28 Day, Mono-linyah 28 Day, Mononessa 28 Day, Myzilra 28 Day, Necon 0.5/35 28 Day, Necon 1/35 28 Day, Necon 7/7/7 28 Day, Nexesta Fe 28 Day, Nikki 28 Day, Nortrel 1/35 21 Day, Nortrel 1/35 28 Day, Nortrel 7/7/7 28 Day, Nuvaring, Nylia 1/35 28 Day, Nylia 7/7/7 28 Day, Nymyo 28 Day, Ocella 28 Day, Orsythia 28 Day, Ortho Tri-cyclen 28 Day, Ortho Tri-cyclen Lo 28 Day, Ortho-novum 7/7/7 28 Day, Philith 28 Day, Pimtrea Pack, Pirmella 1/35 28 Day, Pirmella 7/7/7 28 Day, Portia 28 Day, Previfem 28 Day, Quartette 91 Day Pack, Reclipsen, Rhuzdah 28 Day, Rivelsa 91 Day, Safyral 28 Day, Seasonale, Seasonique, Select, Setlakin 91 Day, Simliya, Simpesse, Sprintec 28 Day, Sronyx 28 Day, Syeda 28 Day, Synphasic, Tarina 24 Fe 1/20 28 Day, Tarina Fe 1/20 28 Day, Taysofy 28 Day, Taytulla 28 Day, Tilia Fe, Tri Femynor 28 Day, Tri-LO- Estarylla 28 Day, Tri-LO-marzia 28-day, Tri-LO-mili, Tri-Lo-Sprintec, Tri-estarylla 28 Day, Tri-legest 28 Day, Tri-linyah, Tri-mili 28 Day, Tri-nymyo 28 Day Pack, Tri-previfem 28 Day, Tri-sprintec 28 Day, Tri-vylibra 28 Day, Tri-vylibra Lo 28 Day, Trinessa 28 Day, Trinessa Lo 28 Day, Triquilar, Trivora 28 Day, Turqoz 28 Day, Twirla 3 Count Weekly Patch, Tyblume 28 Day, Tydemy 28 Day, Velivet 28 Day, Vestura, Vienva 28 Day, Viorele 28 Day, Volnea 28 Day, Vyfemla 28 Day, Vylibra 28 Day, Wera 28 Day, Wymzya Fe 28 Day, Xulane, Yasmin, Yasmin 28 Day, Yaz 28 Day, Yaz Plus, Zafemy, Zarah, Zenchent, Zovia 1/35e 28 Day, Zovia 1/50e 28 Day, Zumandimine 28 Day •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): 17-ethinylestradiol 17alpha-Ethinyl estradiol Ethinyl estradiol Ethinylestradiol Ethinylestradiolum Ethinyloestradiol Ethynyl estradiol Etinilestradiol •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Ethinylestradiol is an estradiol used as a contraceptive. Output: Therapeutic immune globulins have been associated with the risk for adverse thromboembolic events, oftentimes leading to withdrawal from therapy. The use of estrogen-containing preparations, such as oral contraceptives (OC), is also a well established risk factor for venous thrombosis. Co-administration of two agents may further elevate the risk for developing thrombotic disorders. The severity of the interaction is minor.
Does Aducanumab and Evolocumab interact?
•Drug A: Aducanumab •Drug B: Evolocumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Evolocumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Evolocumab is indicated in adult patients with established cardiovascular disease to reduce the risk of myocardial infarction, stroke, and coronary revascularization. It is also indicated as an adjunct to diet, alone or in combination with other hypolipidemic treatments, in adults with primary hyperlipidemia (and in pediatric patients ≥10 years old with heterozygous familial hypercholesterolemia) to reduce LDL-C. In addition, it is indicated adjunctly to other hypolipidemic treatments in patients ≥10 years old with homozygous familiar hypercholesterolemia to reduce LDL-C. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Evolocumab is a human IgG monoclonal antibody which targets PCSK9 (proprotein convertase subtilisin/kexin type 9). PCSK9 is a serine protease produced by the liver which binds LDL receptors and creates a complex to be targeted for lysosomal degradation. LDL receptors typically bind LDL-cholesterol ("bad" cholesterol) for cellular reuptake, therefore the formation of these complexes with PCSK9 inhibits LDL receptor recycling to the cell surface, resulting in decreased cellular reuptake of LDL-C and increased levels of free LDL-C in the plasma. Individuals with familial hypercholesterolemia often may have "gain of function" mutations in the PCSK9 molecules in their body, resulting in increased LDL-C plasma levels and a consequent cardiovascular risk. Evolocumab is able to bind both the normal PCSK9 and the "gain of function" mutant, D374Y. The exact mechanism of the binding has not been published, however the precursor molecule, mAb1, is indicative of the interaction. The mAb1 molecule binds on the catalytic site of PCSK9 next to the binding site for the LDL receptor and creates hydrogen bonds and hydrophobic interactions, resulting in the steric inhibition of binding between PCSK9 and the LDL receptor. Because the formation of complexes between LDL receptor and PCSK9 are prevented, the internalized LDL receptors are less likely to be degrated by lysosomes and may recycle to the surface of the cell to serve their function of removing LDL from the blood. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Total bioavailability from subcutaneous injection was 82% in cynomolgus monkeys. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Evolocumab showed non-linear, dose-dependent clearance in healthy volunteers; clearance decreased with increasing dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Repatha •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Evolocumab is a PCSK9 (proprotein convertase subtilisin kexin type 9) inhibitor antibody used as an adjunct to LDL cholesterol reducing therapies, aiding in the prevention of cardiovascular events and cardiovascular revascularization procedures.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Evolocumab interact? Information: •Drug A: Aducanumab •Drug B: Evolocumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Evolocumab is combined with Aducanumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Evolocumab is indicated in adult patients with established cardiovascular disease to reduce the risk of myocardial infarction, stroke, and coronary revascularization. It is also indicated as an adjunct to diet, alone or in combination with other hypolipidemic treatments, in adults with primary hyperlipidemia (and in pediatric patients ≥10 years old with heterozygous familial hypercholesterolemia) to reduce LDL-C. In addition, it is indicated adjunctly to other hypolipidemic treatments in patients ≥10 years old with homozygous familiar hypercholesterolemia to reduce LDL-C. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): No pharmacodynamics available •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Evolocumab is a human IgG monoclonal antibody which targets PCSK9 (proprotein convertase subtilisin/kexin type 9). PCSK9 is a serine protease produced by the liver which binds LDL receptors and creates a complex to be targeted for lysosomal degradation. LDL receptors typically bind LDL-cholesterol ("bad" cholesterol) for cellular reuptake, therefore the formation of these complexes with PCSK9 inhibits LDL receptor recycling to the cell surface, resulting in decreased cellular reuptake of LDL-C and increased levels of free LDL-C in the plasma. Individuals with familial hypercholesterolemia often may have "gain of function" mutations in the PCSK9 molecules in their body, resulting in increased LDL-C plasma levels and a consequent cardiovascular risk. Evolocumab is able to bind both the normal PCSK9 and the "gain of function" mutant, D374Y. The exact mechanism of the binding has not been published, however the precursor molecule, mAb1, is indicative of the interaction. The mAb1 molecule binds on the catalytic site of PCSK9 next to the binding site for the LDL receptor and creates hydrogen bonds and hydrophobic interactions, resulting in the steric inhibition of binding between PCSK9 and the LDL receptor. Because the formation of complexes between LDL receptor and PCSK9 are prevented, the internalized LDL receptors are less likely to be degrated by lysosomes and may recycle to the surface of the cell to serve their function of removing LDL from the blood. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Total bioavailability from subcutaneous injection was 82% in cynomolgus monkeys. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): No volume of distribution available •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): No protein binding available •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): No metabolism available •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): No route of elimination available •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): No half-life available •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): Evolocumab showed non-linear, dose-dependent clearance in healthy volunteers; clearance decreased with increasing dose. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): No toxicity available •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Repatha •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Evolocumab is a PCSK9 (proprotein convertase subtilisin kexin type 9) inhibitor antibody used as an adjunct to LDL cholesterol reducing therapies, aiding in the prevention of cardiovascular events and cardiovascular revascularization procedures. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Does Aducanumab and Fremanezumab interact?
•Drug A: Aducanumab •Drug B: Fremanezumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Fremanezumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Fremanezumab is indicated for the preventative treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Fremanezumab is a subcutaneous injection that targets the calcitonin gene-related peptide (CGRP) ligand, preventing its binding to the CGRP receptor. It possesses a long duration of action requiring only monthly or quarterly administration and appears well-tolerated in clinical trials. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Studies dating back to 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after administration of antimigraine therapy such as sumatriptan. Moreover, research has shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For these reasons, and despite the fact that their role in migraine headaches has not been entirely elucidated, CGRP and its receptors have become desirable targets for antimigraine therapies. Fremanezumab is a humanized monoclonal antibody directed against endogenous CGRP - it interferes with the activity of CGRP, preventing its downstream effects and ultimately mitigating the development of migraine headaches. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Geometric mean ratios (GMRs) for Cmax for Japanese and Caucasian study subjects were 0.91, 1.04, and 1.14 for 225 mg, 675 mg, and 900 mg doses of fremanezumab. GMRs for AUC (0-inf) were 0.96, 1.09, and 0.98, respectively. Mean Tmax in a range of 5 to 11 days were similar across doses for both ethnicities as well. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Fremanezumab has an apparent volume of distribution of approximately 6 liters which indicates very little distribution into tissue. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Data regarding protein binding of fremanezumab are not readily available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Like other monoclonal antibodies, fremanezumab is expected to undergo enzymatic proteolysis into smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibody agents like fremanezumab are generally not eliminated via hepatic, renal, or biliary routes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean half-life recorded for fremanezumab was similar across doses for Japanese and Caucasian study subjects and was estimated to be approximately 31-39 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance of fremanezumab is 0.141 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Information regarding overdose of fremanezumab is not readily available. The most common adverse events that led to discontinuation of fremanezumab therapy were injection site reactions including erythema, induration, and pain. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Ajovy •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Fremanezumab is a humanized monoclonal antibody directed against human calcitonin-gene related peptide to prevent migraines.
Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.
Question: Does Aducanumab and Fremanezumab interact? Information: •Drug A: Aducanumab •Drug B: Fremanezumab •Severity: MINOR •Description: The risk or severity of adverse effects can be increased when Aducanumab is combined with Fremanezumab. •Extended Description: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . •Indication (Drug A): Aducanumab is indicated for the treatment of Alzheimer’s disease. Treatment should be initiated in patients with mild cognitive impairment or mild dementia stage of disease, the population in which treatment was initiated in clinical trials. There are no safety or effectiveness data on initiating treatment at earlier or later stages of the disease than were studied. •Indication (Drug B): Fremanezumab is indicated for the preventative treatment of migraine in adults. •Pharmacodynamics (Drug A): Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β, reducing amyloid plaques in the brain. It has a long duration of action as it is given once every 4 weeks. Patients should be counselled regarding the risk of amyloid related imaging abnormalities, including microhemorrhages, and hypersensitivity reactions. •Pharmacodynamics (Drug B): Fremanezumab is a subcutaneous injection that targets the calcitonin gene-related peptide (CGRP) ligand, preventing its binding to the CGRP receptor. It possesses a long duration of action requiring only monthly or quarterly administration and appears well-tolerated in clinical trials. •Mechanism of action (Drug A): Alzheimer's disease is a neurodegenerative disease. Part of the pathology of Alzheimer's disease is the presence of plaques forming extracellularly in the brain. These plaques are mostly composed of amyloid-β, a peptide of varying length formed by the cleavage of the amyloid precursor protein. The "amyloid cascade hypothesis" suggests that the accumulation of amyloid-β oligopeptides in the brain drives the pathogenesis of Alzheimer's disease. Aducanumab is a monoclonal IgG1 antibody that binds to amyloid-β at amino acids 3-7. The amyloid-β residues Phe4, His6, Glu3, and Arg5 are responsible for the majority of the contact between amyloid-β and aducanumab's Fab region. Data from studies in mice and humans shows aducanumab treatment reduces amyloid-β, however human trials show non-significant changes in amyloid-β40 and amyloid-β42 across a dose range of 0.3-30 mg/kg and an increase in amyloid-β40 and amyloid-β42 at 60 mg/kg. Aducanumab treatment is associated with slowing the rate of progression of Alzheimer's disease, based on Mini-Mental State Examination, Clinical Dementia Rating, and levels of p-tau in the cerebrospinal fluid. •Mechanism of action (Drug B): Studies dating back to 1985 have demonstrated that CGRP levels increase during acute migraine attacks in migraine-suffering patients but normalize after administration of antimigraine therapy such as sumatriptan. Moreover, research has shown that intravenous administration of CGRP can induce migraine-like attacks in migraine-suffering patients. For these reasons, and despite the fact that their role in migraine headaches has not been entirely elucidated, CGRP and its receptors have become desirable targets for antimigraine therapies. Fremanezumab is a humanized monoclonal antibody directed against endogenous CGRP - it interferes with the activity of CGRP, preventing its downstream effects and ultimately mitigating the development of migraine headaches. •Absorption (Drug A): A 10 mg/kg intravenous dose of aducanumab reached a C max of 182.7 µg/mL, with a T max of 3.0 hours, and an AUC inf of 31,400 h*µg/mL. •Absorption (Drug B): Geometric mean ratios (GMRs) for Cmax for Japanese and Caucasian study subjects were 0.91, 1.04, and 1.14 for 225 mg, 675 mg, and 900 mg doses of fremanezumab. GMRs for AUC (0-inf) were 0.96, 1.09, and 0.98, respectively. Mean Tmax in a range of 5 to 11 days were similar across doses for both ethnicities as well. •Volume of distribution (Drug A): The volume of distribution of aducanumab is 9.63 L. •Volume of distribution (Drug B): Fremanezumab has an apparent volume of distribution of approximately 6 liters which indicates very little distribution into tissue. •Protein binding (Drug A): No protein binding available •Protein binding (Drug B): Data regarding protein binding of fremanezumab are not readily available. •Metabolism (Drug A): Aducanumab is expected to be broken down into smaller oligopeptides and amino acids. •Metabolism (Drug B): Like other monoclonal antibodies, fremanezumab is expected to undergo enzymatic proteolysis into smaller peptides and amino acids. •Route of elimination (Drug A): Monoclonal IgG is predominantly eliminated by catabolism to individual amino acids that are either recycled in the body or metabolized for energy. •Route of elimination (Drug B): Monoclonal antibody agents like fremanezumab are generally not eliminated via hepatic, renal, or biliary routes. •Half-life (Drug A): The terminal half life of aducanumab is 24.8 days. •Half-life (Drug B): The mean half-life recorded for fremanezumab was similar across doses for Japanese and Caucasian study subjects and was estimated to be approximately 31-39 days. •Clearance (Drug A): A 10 mg/kg intravenous dose of aducanumab has a clearance of 0.39 mL/h/kg. •Clearance (Drug B): The apparent clearance of fremanezumab is 0.141 L/day. •Toxicity (Drug A): Patients experiencing dose-limiting toxicity may present with amyloid-related imaging abnormalities including edema or microhemorrhages of the brain. Symptoms of dose limiting toxicity were generally transient, however patients may need to be treated with symptomatic and supportive measures. •Toxicity (Drug B): Information regarding overdose of fremanezumab is not readily available. The most common adverse events that led to discontinuation of fremanezumab therapy were injection site reactions including erythema, induration, and pain. •Brand Names (Drug A): Aduhelm •Brand Names (Drug B): Ajovy •Synonyms (Drug A): No synonyms listed •Synonyms (Drug B): No synonyms listed •Summary (Drug A): Aducanumab is a monoclonal antibody indicated in the treatment of Alzheimer's disease. •Summary (Drug B): Fremanezumab is a humanized monoclonal antibody directed against human calcitonin-gene related peptide to prevent migraines. Output: Biologic therapies carry a risk of immunogenicity which can produce a wide array of adverse effects the most serious of which include anaphylaxis and serum sickness-type reactions . Use of multiple immunoglobulin-based therapies may increase the risk of these immunological complications. A few studies suggest the use of multiple immunoglobulin agents is relatively safe and may be more effective than monotherapy for certain conditions . The severity of the interaction is minor.