Datasets:
license: cc-by-nc-4.0
task_categories:
- video-classification
language:
- en
tags:
- video
- skeleton
- real basketball gym
- amateur basketball player
size_categories:
- 10B<n<100B
Dataset Card for MultiSubjects
MultiSubjects Introduction
MultiSubjects is a multi-subject single-player basketball action dataset for amateur basketball action recognition.
Please refer to this paper for more details.
If you wish to access it, please contact us and specify your organization and purpose.
Our email: [email protected]; [email protected].
Languages
The class labels in the dataset are in English.
Action labels
d(0): dribble
p(1): lay up
s(2): shoot
Dataset Structure
The file: Subjects1000.
{
{-1(subjects ID lable)
-d(action label)
-1_d_1.mp4('id'_'action label'_'video number')
-p
...
-s
...}
.
.
.
{-1000(subjects ID lable)
-d
-1000_d_1.mp4
...
-p
...
-s
...}
}
The file: MultiSubjects_train_val_test, for video action recognition.
{
train
-'id'_'actionlabel video'_'number'.mp4
...
val
...
test
...
train.txt
-'video_name.mp4' 'action_label'
val.txt
...
test.txt
...
}
The file: MultiSubjects_SA, for skeleton-based action recognition.
We use mmaction2 to extract 2D human keypoints and construct the dataset in the format of the NTU dataset, divided into training and validation sets.
{
train.pkl
val.pkl
}
The file: key_points_csv, the coordinates of 33 keypoints detected frame-wise by BlazePose. The structure of 'id''action label''video number'.csv
{
'Frame number'{1,2,3...}
'Keypoint_0'{x, y, z}, 'keypoint_1'{x, y, z} ... 'keypoint_32'{x, y, z}
}
The file: MultiSubjects_person_GT.
{
'Video name'{'id'_'action label'_'video number'.mp4 ...}
'Frame number'{1,2,3...}
'Box'{<x1, y1, x2, y2> ...}
'Action label'{0, 1, 2}
'Joint'{0}
}
Dataset Curators
Authors of this paper
- Zhijie Han
- Wansong Qin
- Yalu Wang
- Qixiang Wang
- Yongbin Shi
Citation Information
@article{han2024multisubjects,
title={MultiSubjects: A multi-subject video dataset for single-person basketball action recognition from basketball gym},
author={Han, Zhijie and Qin, Wansong and Wang, Yalu and Wang, Qixiang and Shi, Yongbin},
journal={Computer Vision and Image Understanding},
pages={104193},
year={2024},
publisher={Elsevier}
}