Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
mt_bench_prompts / README.md
natolambert's picture
Update README.md
e3a795c
|
raw
history blame
1.49 kB
metadata
license: apache-2.0
task_categories:
  - question-answering
  - conversational
language:
  - en
tags:
  - evaluation
pretty_name: MT Bench
size_categories:
  - n<1K

MT Bench by LMSYS

This set of evaluation prompts is created by the LMSYS org for better evaluation of chat models. For more information, see the paper.

Dataset loading

To load this dataset, use 🤗 datasets:

from datasets import load_dataset
data = load_dataset(HuggingFaceH4/mt_bench_prompts, split="train")

Dataset creation

To create the dataset, we do the following for our internal tooling.

  • rename turns to prompts,
  • add empty reference to remaining prompts (for HF Datasets),
  • Use the following code to load and save as a dataset
from datasets import load_dataset
import hashlib

data = load_dataset("json", data_files="https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts/raw/main/raw/question.jsonl", split="train")

# %% create_dataset.ipynb 11
def format_example(example):
    return {
        "prompt": example["prompt"],
        "prompt_id": int(hashlib.sha256(''.join(example["prompt"]).encode("utf-8")).hexdigest(), 16) % (10 ** 8),
        "category": example["category"],
        "reference": example["reference"],
    }

formatted_ds = data.map(format_example, num_proc=6, remove_columns=data.column_names)

# 
formatted_ds.push_to_hub("HuggingFaceH4/mt_bench_prompts", split="train")