Search is not available for this dataset
image_id
int64
52
52
image
imagewidth (px)
375
1.6k
width
int64
375
1.6k
height
int64
277
2.05k
objects
dict
52
950
605
{ "bbox": [ [ 639, 299, 244, 49 ], [ 471, 465, 58, 64 ], [ 477, 417, 352, 203 ] ], "categories": [ 1, 3, 2 ] }
52
1,280
960
{ "bbox": [ [ 693, 477, 465, 93 ], [ 635, 579, 577, 152 ] ], "categories": [ 1, 3 ] }
52
555
277
{ "bbox": [ [ 73, 87, 20, 94 ], [ 109, 78, 19, 101 ], [ 128, 229, 64, 43 ], [ 382, 79, 63, 59 ], [ 108, 140, 146, 257 ], [ 387, 134, 198, 185 ] ], "categories": [ 3, 3, 3, 3, 2, 2 ] }
52
1,237
749
{ "bbox": [ [ 743, 392, 799, 593 ] ], "categories": [ 2 ] }
52
1,043
751
{ "bbox": [ [ 241, 530, 470, 147 ], [ 266, 437, 431, 121 ] ], "categories": [ 3, 1 ] }
52
451
300
{ "bbox": [ [ 292, 107, 309, 213 ] ], "categories": [ 2 ] }
52
861
604
{ "bbox": [ [ 458, 459, 366, 289 ], [ 486, 269, 319, 60 ] ], "categories": [ 2, 1 ] }
52
1,087
616
{ "bbox": [ [ 764, 169, 139, 56 ], [ 641, 181, 176, 38 ], [ 768, 128, 380, 50 ], [ 131, 173, 216, 40 ] ], "categories": [ 0, 2, 1, 1 ] }
52
600
800
{ "bbox": [ [ 213, 456, 56, 45 ], [ 185, 420, 312, 55 ], [ 300, 445, 162, 54 ], [ 206, 511, 242, 107 ] ], "categories": [ 0, 1, 2, 3 ] }
52
375
300
{ "bbox": [ [ 264, 193, 53, 83 ], [ 178, 74, 58, 121 ], [ 168, 157, 207, 285 ] ], "categories": [ 3, 3, 2 ] }
52
800
593
{ "bbox": [ [ 414, 296, 656, 392 ] ], "categories": [ 3 ] }
52
452
300
{ "bbox": [ [ 221, 157, 106, 93 ], [ 224, 154, 180, 179 ] ], "categories": [ 3, 2 ] }
52
867
596
{ "bbox": [ [ 442, 452, 340, 287 ], [ 482, 269, 305, 57 ] ], "categories": [ 2, 1 ] }
52
405
300
{ "bbox": [ [ 290, 198, 214, 185 ], [ 163, 153, 298, 164 ], [ 295, 87, 211, 56 ] ], "categories": [ 3, 2, 1 ] }
52
1,580
790
{ "bbox": [ [ 1263, 417, 629, 507 ], [ 411, 235, 358, 254 ], [ 423, 341, 837, 470 ] ], "categories": [ 2, 3, 2 ] }
52
1,164
737
{ "bbox": [ [ 422, 218, 716, 227 ], [ 246, 435, 493, 455 ] ], "categories": [ 3, 2 ] }
52
775
440
{ "bbox": [ [ 402, 263, 285, 346 ], [ 472, 47, 381, 85 ] ], "categories": [ 3, 1 ] }
52
842
606
{ "bbox": [ [ 324, 50, 279, 74 ], [ 391, 353, 586, 494 ] ], "categories": [ 1, 2 ] }
52
813
606
{ "bbox": [ [ 387, 458, 66, 59 ], [ 382, 405, 322, 180 ], [ 414, 304, 223, 33 ] ], "categories": [ 3, 2, 1 ] }
52
1,096
623
{ "bbox": [ [ 597, 180, 123, 49 ], [ 490, 186, 138, 47 ], [ 608, 141, 352, 47 ], [ 116, 182, 218, 34 ] ], "categories": [ 0, 2, 1, 1 ] }
52
1,117
748
{ "bbox": [ [ 441, 264, 123, 115 ], [ 625, 452, 523, 526 ] ], "categories": [ 3, 2 ] }
52
640
800
{ "bbox": [ [ 487, 576, 251, 179 ], [ 324, 355, 147, 259 ], [ 190, 614, 327, 342 ] ], "categories": [ 0, 0, 3 ] }
52
979
604
{ "bbox": [ [ 450, 433, 419, 289 ], [ 342, 231, 197, 60 ] ], "categories": [ 2, 1 ] }
52
996
2,048
{ "bbox": [ [ 556, 1426, 817, 494 ], [ 665, 769, 491, 392 ], [ 324, 874, 286, 247 ], [ 544, 1093, 407, 165 ] ], "categories": [ 3, 3, 2, 2 ] }
52
1,168
735
{ "bbox": [ [ 412, 222, 707, 293 ], [ 255, 460, 488, 413 ] ], "categories": [ 3, 2 ] }
52
941
593
{ "bbox": [ [ 425, 411, 180, 136 ], [ 492, 302, 162, 122 ], [ 643, 318, 78, 120 ] ], "categories": [ 3, 2, 2 ] }
52
600
800
{ "bbox": [ [ 166, 550, 274, 353 ] ], "categories": [ 3 ] }
52
1,318
693
{ "bbox": [ [ 761, 300, 169, 164 ], [ 649, 413, 470, 552 ] ], "categories": [ 3, 2 ] }
52
800
600
{ "bbox": [ [ 477, 535, 368, 127 ], [ 293, 176, 209, 153 ], [ 374, 274, 141, 109 ], [ 375, 122, 198, 77 ] ], "categories": [ 2, 0, 3, 1 ] }
52
1,024
767
{ "bbox": [ [ 395, 373, 415, 289 ], [ 518, 499, 759, 512 ] ], "categories": [ 3, 2 ] }
52
1,600
900
{ "bbox": [ [ 820, 298, 541, 102 ], [ 823, 470, 599, 253 ] ], "categories": [ 3, 2 ] }
52
1,101
617
{ "bbox": [ [ 648, 177, 139, 48 ], [ 669, 139, 367, 33 ], [ 86, 180, 173, 33 ] ], "categories": [ 0, 1, 1 ] }
52
1,280
720
{ "bbox": [ [ 601, 172, 282, 239 ], [ 624, 358, 766, 610 ] ], "categories": [ 3, 2 ] }
52
831
597
{ "bbox": [ [ 472, 279, 213, 101 ], [ 533, 424, 298, 150 ], [ 346, 375, 419, 233 ] ], "categories": [ 3, 3, 2 ] }
52
1,101
623
{ "bbox": [ [ 580, 181, 127, 45 ], [ 455, 190, 126, 39 ], [ 593, 136, 388, 51 ], [ 92, 183, 184, 39 ] ], "categories": [ 0, 2, 1, 1 ] }
52
1,024
544
{ "bbox": [ [ 338, 241, 390, 384 ], [ 689, 129, 119, 229 ], [ 904, 130, 85, 203 ], [ 797, 126, 103, 202 ], [ 869, 419, 48, 46 ], [ 764, 408, 45, 33 ], [ 285, 272, 500, 468 ], [ 803, 148, 389, 245 ], [ 789, 414, 239, 234 ] ], "categories": [ 3, 3, 3, 3, 3, 3, 2, 2, 2 ] }
52
800
600
{ "bbox": [ [ 289, 283, 235, 118 ], [ 681, 191, 186, 126 ], [ 558, 229, 434, 217 ] ], "categories": [ 3, 3, 2 ] }
52
960
1,280
{ "bbox": [ [ 638, 507, 247, 71 ], [ 669, 567, 173, 60 ] ], "categories": [ 1, 2 ] }
52
1,096
612
{ "bbox": [ [ 674, 163, 221, 29 ], [ 715, 140, 342, 41 ], [ 144, 175, 210, 30 ] ], "categories": [ 2, 1, 1 ] }
52
756
596
{ "bbox": [ [ 385, 262, 311, 64 ], [ 348, 455, 362, 280 ] ], "categories": [ 1, 2 ] }
52
375
300
{ "bbox": [ [ 194, 236, 183, 61 ], [ 178, 157, 208, 206 ] ], "categories": [ 0, 2 ] }
52
958
601
{ "bbox": [ [ 588, 266, 309, 69 ], [ 448, 455, 359, 290 ] ], "categories": [ 1, 2 ] }
52
1,086
597
{ "bbox": [ [ 566, 452, 311, 288 ], [ 489, 269, 316, 67 ] ], "categories": [ 2, 1 ] }
52
600
443
{ "bbox": [ [ 305, 312, 182, 168 ], [ 291, 217, 360, 417 ] ], "categories": [ 3, 2 ] }
52
829
604
{ "bbox": [ [ 253, 28, 271, 50 ], [ 325, 356, 574, 495 ] ], "categories": [ 1, 2 ] }
52
983
731
{ "bbox": [ [ 320, 507, 635, 110 ], [ 298, 416, 556, 110 ] ], "categories": [ 3, 1 ] }
52
799
533
{ "bbox": [ [ 401, 229, 194, 149 ] ], "categories": [ 3 ] }
52
590
471
{ "bbox": [ [ 222, 126, 225, 82 ], [ 283, 243, 205, 155 ], [ 366, 219, 249, 140 ] ], "categories": [ 1, 3, 2 ] }
52
1,003
741
{ "bbox": [ [ 306, 512, 610, 149 ], [ 209, 410, 416, 82 ] ], "categories": [ 3, 1 ] }
52
1,005
597
{ "bbox": [ [ 555, 459, 379, 275 ], [ 396, 271, 306, 77 ] ], "categories": [ 2, 1 ] }
52
560
447
{ "bbox": [ [ 431, 321, 110, 130 ], [ 200, 164, 138, 183 ], [ 320, 321, 151, 154 ] ], "categories": [ 3, 0, 0 ] }
52
871
598
{ "bbox": [ [ 447, 406, 595, 366 ], [ 312, 140, 425, 127 ] ], "categories": [ 2, 1 ] }
52
800
600
{ "bbox": [ [ 517, 151, 440, 106 ], [ 409, 251, 320, 249 ], [ 524, 428, 232, 147 ] ], "categories": [ 1, 0, 3 ] }
52
825
602
{ "bbox": [ [ 363, 268, 309, 70 ], [ 364, 454, 322, 295 ] ], "categories": [ 1, 2 ] }
52
857
540
{ "bbox": [ [ 434, 270, 725, 426 ] ], "categories": [ 2 ] }
52
1,280
960
{ "bbox": [ [ 687, 521, 492, 114 ], [ 707, 607, 220, 97 ] ], "categories": [ 1, 3 ] }
52
764
505
{ "bbox": [ [ 221, 318, 436, 300 ], [ 334, 203, 636, 165 ] ], "categories": [ 3, 2 ] }
52
550
487
{ "bbox": [ [ 203, 162, 96, 251 ], [ 335, 86, 60, 84 ], [ 278, 239, 423, 439 ] ], "categories": [ 3, 3, 2 ] }
52
800
384
{ "bbox": [ [ 154, 166, 159, 161 ], [ 310, 185, 120, 37 ], [ 440, 139, 42, 92 ], [ 720, 233, 117, 185 ], [ 317, 161, 137, 161 ], [ 487, 163, 128, 132 ], [ 629, 164, 141, 151 ] ], "categories": [ 2, 0, 0, 3, 2, 2, 2 ] }
52
717
600
{ "bbox": [ [ 454, 301, 219, 41 ], [ 294, 476, 64, 62 ], [ 299, 418, 365, 217 ] ], "categories": [ 1, 3, 2 ] }
52
1,165
688
{ "bbox": [ [ 633, 435, 353, 152 ], [ 556, 413, 69, 127 ], [ 705, 410, 98, 132 ] ], "categories": [ 2, 3, 3 ] }
52
852
601
{ "bbox": [ [ 498, 144, 83, 85 ], [ 582, 315, 156, 199 ], [ 424, 348, 483, 500 ] ], "categories": [ 3, 3, 2 ] }
52
1,221
748
{ "bbox": [ [ 463, 298, 126, 144 ], [ 699, 463, 646, 558 ] ], "categories": [ 3, 2 ] }
52
1,300
956
{ "bbox": [ [ 445, 223, 243, 347 ], [ 682, 239, 246, 329 ], [ 922, 254, 214, 332 ], [ 435, 544, 273, 408 ], [ 702, 554, 245, 395 ], [ 959, 570, 278, 404 ] ], "categories": [ 3, 3, 3, 2, 2, 2 ] }
52
899
689
{ "bbox": [ [ 251, 353, 96, 305 ], [ 389, 349, 81, 291 ], [ 325, 378, 367, 353 ], [ 752, 369, 277, 306 ] ], "categories": [ 3, 3, 2, 2 ] }
52
800
450
{ "bbox": [ [ 353, 236, 312, 256 ] ], "categories": [ 0 ] }
52
1,363
752
{ "bbox": [ [ 572, 264, 275, 146 ], [ 432, 406, 621, 407 ] ], "categories": [ 3, 2 ] }
52
1,103
749
{ "bbox": [ [ 624, 378, 780, 605 ] ], "categories": [ 2 ] }
52
1,280
960
{ "bbox": [ [ 693, 477, 465, 93 ], [ 635, 579, 577, 152 ] ], "categories": [ 1, 3 ] }
52
1,101
617
{ "bbox": [ [ 648, 177, 139, 48 ], [ 669, 139, 367, 33 ], [ 86, 180, 173, 33 ] ], "categories": [ 0, 1, 1 ] }
52
756
596
{ "bbox": [ [ 385, 262, 311, 64 ], [ 348, 455, 362, 280 ] ], "categories": [ 1, 2 ] }
52
1,165
688
{ "bbox": [ [ 633, 435, 353, 152 ], [ 556, 413, 69, 127 ], [ 705, 410, 98, 132 ] ], "categories": [ 2, 3, 3 ] }
52
1,363
752
{ "bbox": [ [ 572, 264, 275, 146 ], [ 432, 406, 621, 407 ] ], "categories": [ 3, 2 ] }

Failures in 3D printing Dataset

This is a small dataset of images from failures in 3D print. That idea of this dataset is use for train and object detection model for failures detection on 3D printing.

In the images it detected 4 categories:

  • Error: This refer a any error in the part except the type of error known like spaghetti
  • Extrusor: The base of the extrusor
  • Part: The part is the piece that is printing
  • Spagheti: This is a type of error produced because the extrusor is printing on the air

Structure

The structure of the dataset is

  • image_id: Id of the image
  • image: Image instance in PIL format
  • width: Width of the image in pixels
  • height: Height of the image in pixels
  • objects: bounding boxes in the images
    • bbox: coordinates of the bounding box. The coordinates are [x_center, y_center, bbox width, bbox height]
    • categories: category of the bounding box. The categories are 0: error, 1: extrusor, 2: part and 3: spaghetti

Download the dataset

from datasets import load_dataset

dataset = load_dataset('Javiai/failures-3D-print')

Show the Bounding Boxes

import numpy as np
import os
from PIL import Image, ImageDraw

image = dataset["train"][0]["image"]
annotations = dataset["train"][0]["objects"]
draw = ImageDraw.Draw(image)

categories = ['error','extrusor','part','spagheti']

id2label = {index: x for index, x in enumerate(categories, start=0)}
label2id = {v: k for k, v in id2label.items()}

for i in range(len(annotations["categories"])):
    box = annotations["bbox"][i]
    class_idx = annotations["categories"][i]
    x, y, w, h = tuple(box)
    draw.rectangle((x - w/2, y - h/2, x + w/2, y + h/2), outline="red", width=1)
    draw.text((x - w/2, y - h/2), id2label[class_idx], fill="white")

image
Downloads last month
57
Edit dataset card

Models trained or fine-tuned on Javiai/failures-3D-print