|
--- |
|
extra_gated_prompt: "Test" |
|
extra_gated_fields: |
|
Name: text |
|
PI/Advisor: text |
|
Affiliation: text |
|
Purpose: text |
|
Country: country |
|
I agree to use this dataset for non-commercial use ONLY: checkbox |
|
--- |
|
--- |
|
|
|
# Dataset Card for Dataset CrashCar |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
This is the dataset proposed in 'CrashCar101: Procedural Generation for Damage Assessment' [WACV24] |
|
<!-- Provide the basic links for the dataset. --> |
|
- **Project Page:** https://crashcar.compute.dtu.dk |
|
- **Repository:** https://github.com/JensPars/CrashCar_procedural_generation |
|
- **Paper:** https://openaccess.thecvf.com/content/WACV2024/papers/Parslov_CrashCar101_Procedural_Generation_for_Damage_Assessment_WACV_2024_paper.pdf |
|
|
|
Example dataset class in pytorch |
|
```python |
|
import os |
|
import torch |
|
from glob import glob |
|
from PIL import Image |
|
import numpy as np |
|
from pathlib import Path |
|
import pandas as pd |
|
|
|
class CarDataset(torch.utils.data.Dataset): |
|
def __init__(self, root_dir, transform=None, tgt_transform=None): |
|
img_root = os.path.join(root_dir, 'img', '*', '*.png') |
|
part_root = os.path.join(root_dir, 'parts', '*', '*.png') |
|
damage_root = os.path.join(root_dir, 'damage', '*', '*.png') |
|
self.img_root = sorted(glob(img_root)) |
|
self.part_root = sorted(glob(part_root)) |
|
self.damage_root = sorted(glob(damage_root)) |
|
self.transform = transform |
|
self.tgt_transform = tgt_transform |
|
|
|
def __len__(self): |
|
return len(self.img_root) |
|
|
|
def __getitem__(self, idx): |
|
img = Image.open(self.img_root[idx]) |
|
part_img = Image.open(self.part_root[idx]) |
|
damage_img = Image.open(self.damage_root[idx]) |
|
|
|
if self.transform: |
|
img = self.transform(img) |
|
part_img = self.transform(part_img) |
|
damage_img = self.transform(damage_img) |
|
|
|
return { |
|
'image': img, |
|
'part': part_img, |
|
'damage': damage_img |
|
} |
|
```` |
|
The following code will yield |
|
|
|
```python |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
dataset = CarDataset(root, transform=None) |
|
out = dataset[20000] |
|
|
|
fig, axs = plt.subplots(1, 3, figsize=(15, 5)) |
|
|
|
axs[0].imshow(out['image']) |
|
axs[0].axis('off') |
|
|
|
axs[1].imshow(out['image']) |
|
alpha_map = (np.array(out['damage'])!= 0).astype(float) |
|
axs[1].imshow(out['damage'], cmap="jet", alpha=alpha_map) |
|
axs[1].axis('off') |
|
|
|
axs[2].imshow(out['image']) |
|
alpha_map = (np.array(out['part'])!= 0).astype(float) |
|
axs[2].imshow(out['part'], cmap="jet", alpha=alpha_map) |
|
axs[2].axis('off') |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
```` |
|
|
|
![image](data_example.png) |
|
|
|
|