CrashCar / README.md
JensParslov's picture
Update README.md
6c791d9 verified
---
extra_gated_prompt: "Test"
extra_gated_fields:
Name: text
PI/Advisor: text
Affiliation: text
Purpose: text
Country: country
I agree to use this dataset for non-commercial use ONLY: checkbox
---
---
# Dataset Card for Dataset CrashCar
<!-- Provide a quick summary of the dataset. -->
This is the dataset proposed in 'CrashCar101: Procedural Generation for Damage Assessment' [WACV24]
<!-- Provide the basic links for the dataset. -->
- **Project Page:** https://crashcar.compute.dtu.dk
- **Repository:** https://github.com/JensPars/CrashCar_procedural_generation
- **Paper:** https://openaccess.thecvf.com/content/WACV2024/papers/Parslov_CrashCar101_Procedural_Generation_for_Damage_Assessment_WACV_2024_paper.pdf
Example dataset class in pytorch
```python
import os
import torch
from glob import glob
from PIL import Image
import numpy as np
from pathlib import Path
import pandas as pd
class CarDataset(torch.utils.data.Dataset):
def __init__(self, root_dir, transform=None, tgt_transform=None):
img_root = os.path.join(root_dir, 'img', '*', '*.png')
part_root = os.path.join(root_dir, 'parts', '*', '*.png')
damage_root = os.path.join(root_dir, 'damage', '*', '*.png')
self.img_root = sorted(glob(img_root))
self.part_root = sorted(glob(part_root))
self.damage_root = sorted(glob(damage_root))
self.transform = transform
self.tgt_transform = tgt_transform
def __len__(self):
return len(self.img_root)
def __getitem__(self, idx):
img = Image.open(self.img_root[idx])
part_img = Image.open(self.part_root[idx])
damage_img = Image.open(self.damage_root[idx])
if self.transform:
img = self.transform(img)
part_img = self.transform(part_img)
damage_img = self.transform(damage_img)
return {
'image': img,
'part': part_img,
'damage': damage_img
}
````
The following code will yield
```python
import matplotlib.pyplot as plt
import numpy as np
dataset = CarDataset(root, transform=None)
out = dataset[20000]
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
axs[0].imshow(out['image'])
axs[0].axis('off')
axs[1].imshow(out['image'])
alpha_map = (np.array(out['damage'])!= 0).astype(float)
axs[1].imshow(out['damage'], cmap="jet", alpha=alpha_map)
axs[1].axis('off')
axs[2].imshow(out['image'])
alpha_map = (np.array(out['part'])!= 0).astype(float)
axs[2].imshow(out['part'], cmap="jet", alpha=alpha_map)
axs[2].axis('off')
plt.tight_layout()
plt.show()
````
![image](data_example.png)