File size: 5,174 Bytes
a36eb47
 
 
84a6d7b
a36eb47
e012aec
8be8808
a36eb47
8be8808
e012aec
8be8808
a36eb47
 
 
 
 
 
 
 
e012aec
8be8808
 
 
 
 
e012aec
 
8be8808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e012aec
8be8808
e012aec
8be8808
e012aec
 
 
8be8808
 
e012aec
a36eb47
 
e012aec
 
 
a36eb47
e012aec
 
 
 
 
 
a36eb47
 
 
e012aec
a36eb47
 
 
e012aec
a36eb47
 
 
 
 
8be8808
e012aec
 
 
a36eb47
 
8be8808
84a6d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#### Firstly, I read specimen data from a CSV file, merges and reformats certain columns, and then converts this data into a pandas DataFrame.
#### Then, I process associated images by resizing them and saving them in a specified output directory. 
#### Next, I update the DataFrame with the paths to the processed images and save this enhanced dataset as a new CSV file.
#### Finally, I upload photos to github and replace the url to corresponding names.

import csv
import os
import cv2
import pandas as pd

# --- Initial Setup ---
initial_csv_file_path = '/Users/leozhangzaolin/Desktop/Graptolite specimens.csv'
image_dir_paths = ['/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 1', 
                   '/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 2']
output_image_dir = '/Users/leozhangzaolin/Desktop/project 1/output_images'
target_size = (256, 256)

# Ensure output directory exists
os.makedirs(output_image_dir, exist_ok=True)

# --- Read and Process CSV Data ---
with open(initial_csv_file_path, newline='', encoding='utf-8') as file:
    reader = csv.reader(file)
    data = list(reader)

header = data[0]

# Find indices for columns to merge
family_index = header.index('Family') if 'Family' in header else None
subfamily_index = header.index('Subfamily') if 'Subfamily' in header else None
locality_index = header.index('Locality') if 'Locality' in header else None
longitude_index = header.index('Longitude') if 'Longitude' in header else None
latitude_index = header.index('Latitude') if 'Latitude' in header else None
horizon_index = header.index('Horizon') if 'Horizon' in header else None

# Process rows: merge and delete columns
for row in data[1:]:
    # Merge columns
    if family_index is not None and subfamily_index is not None:
        family = row[family_index]
        subfamily = row[subfamily_index] if row[subfamily_index] else 'no subfamily'
        row[family_index] = f"{family} ({subfamily})"

    if locality_index is not None and all([longitude_index, latitude_index, horizon_index]):
        locality = row[locality_index]
        longitude = row[longitude_index]
        latitude = row[latitude_index]
        horizon = row[horizon_index]
        row[locality_index] = f"{locality} ({longitude}, {latitude}, {horizon})"

# Update header and remove unneeded columns
header[family_index] = 'Family (Subfamily)'
header[locality_index] = 'Locality (Longitude, Latitude, Horizon)'
indices_to_delete = [header.index(column) for column in columns_to_delete if column in header]
merged_indices = [subfamily_index, longitude_index, latitude_index, horizon_index]
indices_to_delete.extend(merged_indices)
indices_to_delete = list(set(indices_to_delete))
indices_to_delete.sort(reverse=True)
header = [col for i, col in enumerate(header) if i not in indices_to_delete]

for row in data[1:]:
    for index in indices_to_delete:
        del row[index]

# Convert processed data into a DataFrame
df = pd.DataFrame(data[1:], columns=header)

# Function to process and save the image, then return the file path
def process_and_save_image(image_name, max_size=target_size):
    image_base_name = os.path.splitext(image_name)[0]
    image_paths = [os.path.join(dir_path, image_base_name + suffix)
                   for dir_path in image_dir_paths
                   for suffix in ['_S.jpg', '_S.JPG']]

    image_path = next((path for path in image_paths if os.path.exists(path)), None)

    if image_path is None:
        return None

    # Read and resize the image
    img = cv2.imread(image_path, cv2.IMREAD_COLOR)
    img = cv2.resize(img, max_size, interpolation=cv2.INTER_AREA)

    # Save the image to the output directory
    output_path = os.path.join(output_image_dir, image_base_name + '.jpg')
    cv2.imwrite(output_path, img)

    return output_path

# Apply the function to process images and update the DataFrame
df['image file name'] = df['image file name'].apply(process_and_save_image)
df = df.dropna(subset=['image file name'])

# Rename the 'image file name' column to 'image'
df.rename(columns={'image file name': 'image'}, inplace=True)

# Save the DataFrame to a CSV file
final_csv_path = '/Users/leozhangzaolin/Desktop/Final_GS_with_Images5.csv'
df.to_csv(final_csv_path, index=False)

# take url path to each specimens
def update_csv_with_github_links(csv_file_path, github_repo_url, branch_name):
    updated_rows = []

    with open(csv_file_path, mode='r') as file:
        reader = csv.DictReader(file)
        for row in reader:
            image_name = row['image'].split('/')[-1] 
            row['image'] = f"{github_repo_url}/{branch_name}/{image_name}" 
            updated_rows.append(row)

    # Write updated data back to CSV
    with open(csv_file_path, mode='w', newline='') as file:
        writer = csv.DictWriter(file, fieldnames=reader.fieldnames)
        writer.writeheader()
        writer.writerows(updated_rows)

csv_file = '/Users/leozhangzaolin/Desktop/Final_GS_with_Images5.csv'
github_repo_url = 'https://raw.githubusercontent.com/LeoZhangzaolin/photos' 
branch_name = 'main' 
update_csv_with_github_links(csv_file, github_repo_url, branch_name)