wili_2018 / README.md
albertvillanova's picture
Replace YAML keys from int to str
e31db77
|
raw
history blame
11 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - found
language:
  - ace
  - af
  - als
  - am
  - an
  - ang
  - ar
  - arz
  - as
  - ast
  - av
  - ay
  - az
  - azb
  - ba
  - bar
  - bcl
  - be
  - bg
  - bho
  - bjn
  - bn
  - bo
  - bpy
  - br
  - bs
  - bxr
  - ca
  - cbk
  - cdo
  - ce
  - ceb
  - chr
  - ckb
  - co
  - crh
  - cs
  - csb
  - cv
  - cy
  - da
  - de
  - diq
  - dsb
  - dty
  - dv
  - egl
  - el
  - en
  - eo
  - es
  - et
  - eu
  - ext
  - fa
  - fi
  - fo
  - fr
  - frp
  - fur
  - fy
  - ga
  - gag
  - gd
  - gl
  - glk
  - gn
  - gu
  - gv
  - ha
  - hak
  - he
  - hi
  - hif
  - hr
  - hsb
  - ht
  - hu
  - hy
  - ia
  - id
  - ie
  - ig
  - ilo
  - io
  - is
  - it
  - ja
  - jam
  - jbo
  - jv
  - ka
  - kaa
  - kab
  - kbd
  - kk
  - km
  - kn
  - ko
  - koi
  - kok
  - krc
  - ksh
  - ku
  - kv
  - kw
  - ky
  - la
  - lad
  - lb
  - lez
  - lg
  - li
  - lij
  - lmo
  - ln
  - lo
  - lrc
  - lt
  - ltg
  - lv
  - lzh
  - mai
  - map
  - mdf
  - mg
  - mhr
  - mi
  - min
  - mk
  - ml
  - mn
  - mr
  - mrj
  - ms
  - mt
  - mwl
  - my
  - myv
  - mzn
  - nan
  - nap
  - nb
  - nci
  - nds
  - ne
  - new
  - nl
  - nn
  - nrm
  - nso
  - nv
  - oc
  - olo
  - om
  - or
  - os
  - pa
  - pag
  - pam
  - pap
  - pcd
  - pdc
  - pfl
  - pl
  - pnb
  - ps
  - pt
  - qu
  - rm
  - ro
  - roa
  - ru
  - rue
  - rup
  - rw
  - sa
  - sah
  - sc
  - scn
  - sco
  - sd
  - sgs
  - sh
  - si
  - sk
  - sl
  - sme
  - sn
  - so
  - sq
  - sr
  - srn
  - stq
  - su
  - sv
  - sw
  - szl
  - ta
  - tcy
  - te
  - tet
  - tg
  - th
  - tk
  - tl
  - tn
  - to
  - tr
  - tt
  - tyv
  - udm
  - ug
  - uk
  - ur
  - uz
  - vec
  - vep
  - vi
  - vls
  - vo
  - vro
  - wa
  - war
  - wo
  - wuu
  - xh
  - xmf
  - yi
  - yo
  - zea
  - zh
license:
  - odbl
multilinguality:
  - multilingual
size_categories:
  - 100K<n<1M
source_datasets:
  - original
task_categories:
  - text-classification
task_ids: []
paperswithcode_id: wili-2018
pretty_name: Wili2018
language_bcp47:
  - be-tarask
  - map-bms
  - nds-nl
  - roa-tara
  - zh-yue
tags:
  - language-identification
dataset_info:
  features:
    - name: sentence
      dtype: string
    - name: label
      dtype:
        class_label:
          names:
            '0': cdo
            '1': glk
            '2': jam
            '3': lug
            '4': san
            '5': rue
            '6': wol
            '7': new
            '8': mwl
            '9': bre
            '10': ara
            '11': hye
            '12': xmf
            '13': ext
            '14': cor
            '15': yor
            '16': div
            '17': asm
            '18': lat
            '19': cym
            '20': hif
            '21': ace
            '22': kbd
            '23': tgk
            '24': rus
            '25': nso
            '26': mya
            '27': msa
            '28': ava
            '29': cbk
            '30': urd
            '31': deu
            '32': swa
            '33': pus
            '34': bxr
            '35': udm
            '36': csb
            '37': yid
            '38': vro
            '39': por
            '40': pdc
            '41': eng
            '42': tha
            '43': hat
            '44': lmo
            '45': pag
            '46': jav
            '47': chv
            '48': nan
            '49': sco
            '50': kat
            '51': bho
            '52': bos
            '53': kok
            '54': oss
            '55': mri
            '56': fry
            '57': cat
            '58': azb
            '59': kin
            '60': hin
            '61': sna
            '62': dan
            '63': egl
            '64': mkd
            '65': ron
            '66': bul
            '67': hrv
            '68': som
            '69': pam
            '70': nav
            '71': ksh
            '72': nci
            '73': khm
            '74': sgs
            '75': srn
            '76': bar
            '77': cos
            '78': ckb
            '79': pfl
            '80': arz
            '81': roa-tara
            '82': fra
            '83': mai
            '84': zh-yue
            '85': guj
            '86': fin
            '87': kir
            '88': vol
            '89': hau
            '90': afr
            '91': uig
            '92': lao
            '93': swe
            '94': slv
            '95': kor
            '96': szl
            '97': srp
            '98': dty
            '99': nrm
            '100': dsb
            '101': ind
            '102': wln
            '103': pnb
            '104': ukr
            '105': bpy
            '106': vie
            '107': tur
            '108': aym
            '109': lit
            '110': zea
            '111': pol
            '112': est
            '113': scn
            '114': vls
            '115': stq
            '116': gag
            '117': grn
            '118': kaz
            '119': ben
            '120': pcd
            '121': bjn
            '122': krc
            '123': amh
            '124': diq
            '125': ltz
            '126': ita
            '127': kab
            '128': bel
            '129': ang
            '130': mhr
            '131': che
            '132': koi
            '133': glv
            '134': ido
            '135': fao
            '136': bak
            '137': isl
            '138': bcl
            '139': tet
            '140': jpn
            '141': kur
            '142': map-bms
            '143': tyv
            '144': olo
            '145': arg
            '146': ori
            '147': lim
            '148': tel
            '149': lin
            '150': roh
            '151': sqi
            '152': xho
            '153': mlg
            '154': fas
            '155': hbs
            '156': tam
            '157': aze
            '158': lad
            '159': nob
            '160': sin
            '161': gla
            '162': nap
            '163': snd
            '164': ast
            '165': mal
            '166': mdf
            '167': tsn
            '168': nds
            '169': tgl
            '170': nno
            '171': sun
            '172': lzh
            '173': jbo
            '174': crh
            '175': pap
            '176': oci
            '177': hak
            '178': uzb
            '179': zho
            '180': hsb
            '181': sme
            '182': mlt
            '183': vep
            '184': lez
            '185': nld
            '186': nds-nl
            '187': mrj
            '188': spa
            '189': ceb
            '190': ina
            '191': heb
            '192': hun
            '193': que
            '194': kaa
            '195': mar
            '196': vec
            '197': frp
            '198': ell
            '199': sah
            '200': eus
            '201': ces
            '202': slk
            '203': chr
            '204': lij
            '205': nep
            '206': srd
            '207': ilo
            '208': be-tarask
            '209': bod
            '210': orm
            '211': war
            '212': glg
            '213': mon
            '214': gle
            '215': min
            '216': ibo
            '217': ile
            '218': epo
            '219': lav
            '220': lrc
            '221': als
            '222': mzn
            '223': rup
            '224': fur
            '225': tat
            '226': myv
            '227': pan
            '228': ton
            '229': kom
            '230': wuu
            '231': tcy
            '232': tuk
            '233': kan
            '234': ltg
  config_name: WiLI-2018 dataset
  splits:
    - name: train
      num_bytes: 65408201
      num_examples: 117500
    - name: test
      num_bytes: 66491260
      num_examples: 117500
  download_size: 130516351
  dataset_size: 131899461

Dataset Card for wili_2018

Table of Contents

Dataset Description

Dataset Summary

WiLI-2018, the Wikipedia language identification benchmark dataset, contains 235000 paragraphs of 235 languages. The dataset is balanced and a train-test split is provided.

Supported Tasks and Leaderboards

[Needs More Information]

Languages

235 Different Languages

Dataset Structure

Data Instances

{
    'label': 207,
    'sentence': 'Ti Turkia ket maysa a demokrata, sekular, unitario, batay-linteg a republika nga addaan ti taga-ugma a tinawtawid a kultura. Ti Turkia ket umadadu a naipatipon iti Laud babaen ti panagkameng kadagiti organisasion a kas ti Konsilo iti Europa, NATO, OECD, OSCE ken ti G-20 a dagiti kangrunaan nga ekonomia. Ti Turkia ket nangrugi a nakitulag ti napno a panagkameng iti Kappon ti Europa idi 2005, nga isu ket maysa idin a kumaduaan a kameng iti Europeano a Komunidad ti Ekonomia manipud idi 1963 ken nakadanon ti maysa a tulagan ti kappon ti aduana idi 1995. Ti Turkia ket nagtaraken iti asideg a kultural, politikal, ekonomiko ken industria a panakibiang iti Tengnga a Daya, dagiti Turko nga estado iti Tengnga nga Asia ken dagiti pagilian ti Aprika babaen ti panagkameng kadagiti organisasion a kas ti Turko a Konsilo, Nagsaupan nga Administrasion iti Turko nga Arte ken Kultura, Organisasion iti Islamiko a Panagtitinnulong ken ti Organisasion ti Ekonomiko a Panagtitinnulong.'
}

Data Fields

[Needs More Information]

Data Splits

175000 lines of text each for train and test data.

Dataset Creation

Curation Rationale

[Needs More Information]

Source Data

Initial Data Collection and Normalization

[Needs More Information]

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

[Needs More Information]

Who are the annotators?

[Needs More Information]

Personal and Sensitive Information

[Needs More Information]

Considerations for Using the Data

Social Impact of Dataset

[Needs More Information]

Discussion of Biases

[Needs More Information]

Other Known Limitations

[Needs More Information]

Additional Information

Dataset Curators

The dataset was initially created by Thomas Martin

Licensing Information

ODC Open Database License v1.0

Citation Information

@dataset{thoma_martin_2018_841984,
  author       = {Thoma, Martin},
  title        = {{WiLI-2018 - Wikipedia Language Identification database}},
  month        = jan,
  year         = 2018,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.841984},
  url          = {https://doi.org/10.5281/zenodo.841984}
}

Contributions

Thanks to @Shubhambindal2017 for adding this dataset.