Datasets:

Languages:
English
ArXiv:
License:
big_patent / README.md
albertvillanova's picture
Reorder split names (#2)
f31a317
|
raw
history blame
8.66 kB
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: bigpatent
pretty_name: Big Patent
configs:
- a
- all
- b
- c
- d
- e
- f
- g
- h
- y
tags:
- patent-summarization
dataset_info:
- config_name: all
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 23363518650
num_examples: 1207222
- name: validation
num_bytes: 1290154487
num_examples: 67068
- name: test
num_bytes: 1296234391
num_examples: 67072
download_size: 6447221554
dataset_size: 25949907528
- config_name: a
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 3329778447
num_examples: 174134
- name: validation
num_bytes: 184116486
num_examples: 9674
- name: test
num_bytes: 185987552
num_examples: 9675
download_size: 6447221554
dataset_size: 3699882485
- config_name: b
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 2574594655
num_examples: 161520
- name: validation
num_bytes: 143029380
num_examples: 8973
- name: test
num_bytes: 140741033
num_examples: 8974
download_size: 6447221554
dataset_size: 2858365068
- config_name: c
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 2641973267
num_examples: 101042
- name: validation
num_bytes: 145441704
num_examples: 5613
- name: test
num_bytes: 149052258
num_examples: 5614
download_size: 6447221554
dataset_size: 2936467229
- config_name: d
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 160467163
num_examples: 10164
- name: validation
num_bytes: 8667961
num_examples: 565
- name: test
num_bytes: 8713720
num_examples: 565
download_size: 6447221554
dataset_size: 177848844
- config_name: e
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 535567259
num_examples: 34443
- name: validation
num_bytes: 28549964
num_examples: 1914
- name: test
num_bytes: 29843613
num_examples: 1914
download_size: 6447221554
dataset_size: 593960836
- config_name: f
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 1297707404
num_examples: 85568
- name: validation
num_bytes: 72367466
num_examples: 4754
- name: test
num_bytes: 71676041
num_examples: 4754
download_size: 6447221554
dataset_size: 1441750911
- config_name: g
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 5571186559
num_examples: 258935
- name: validation
num_bytes: 309182447
num_examples: 14385
- name: test
num_bytes: 310624265
num_examples: 14386
download_size: 6447221554
dataset_size: 6190993271
- config_name: h
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 4988365946
num_examples: 257019
- name: validation
num_bytes: 275293153
num_examples: 14279
- name: test
num_bytes: 274505113
num_examples: 14279
download_size: 6447221554
dataset_size: 5538164212
- config_name: y
features:
- name: description
dtype: string
- name: abstract
dtype: string
splits:
- name: train
num_bytes: 2263877990
num_examples: 124397
- name: validation
num_bytes: 123505958
num_examples: 6911
- name: test
num_bytes: 125090828
num_examples: 6911
download_size: 6447221554
dataset_size: 2512474776
---
# Dataset Card for Big Patent
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
- **Repository:**
- **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
- **Leaderboard:**
- **Point of Contact:** [Lu Wang](mailto:[email protected])
### Dataset Summary
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories:
- A (Human Necessities)
- B (Performing Operations; Transporting)
- C (Chemistry; Metallurgy)
- D (Textiles; Paper)
- E (Fixed Constructions)
- F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
- G (Physics)
- H (Electricity)
- Y (General tagging of new or cross-sectional technology)
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
### Data Fields
- `description`: detailed description of patent.
- `abstract`: Patent abastract.
### Data Splits
| | train | validation | test |
|:----|------------------:|-------------:|-------:|
| all | 1207222 | 67068 | 67072 |
| a | 174134 | 9674 | 9675 |
| b | 161520 | 8973 | 8974 |
| c | 101042 | 5613 | 5614 |
| d | 10164 | 565 | 565 |
| e | 34443 | 1914 | 1914 |
| f | 85568 | 4754 | 4754 |
| g | 258935 | 14385 | 14386 |
| h | 257019 | 14279 | 14279 |
| y | 124397 | 6911 | 6911 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@article{DBLP:journals/corr/abs-1906-03741,
author = {Eva Sharma and
Chen Li and
Lu Wang},
title = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
Summarization},
journal = {CoRR},
volume = {abs/1906.03741},
year = {2019},
url = {http://arxiv.org/abs/1906.03741},
eprinttype = {arXiv},
eprint = {1906.03741},
timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.