Code
stringlengths
131
28.2k
Unit Test
stringlengths
40
32.1k
__index_level_0__
int64
0
2.63k
#ifndef THIRD_PARTY_CEL_CPP_BASE_KIND_H_ #define THIRD_PARTY_CEL_CPP_BASE_KIND_H_ #include "common/kind.h" #include "common/type_kind.h" #include "common/value_kind.h" #endif #include "common/kind.h" #include "absl/strings/string_view.h" namespace cel { absl::string_view KindToString(Kind kind) { switch (kind) { case Kind::kNullType: return "null_type"; case Kind::kDyn: return "dyn"; case Kind::kAny: return "any"; case Kind::kType: return "type"; case Kind::kTypeParam: return "type_param"; case Kind::kFunction: return "function"; case Kind::kBool: return "bool"; case Kind::kInt: return "int"; case Kind::kUint: return "uint"; case Kind::kDouble: return "double"; case Kind::kString: return "string"; case Kind::kBytes: return "bytes"; case Kind::kDuration: return "duration"; case Kind::kTimestamp: return "timestamp"; case Kind::kList: return "list"; case Kind::kMap: return "map"; case Kind::kStruct: return "struct"; case Kind::kUnknown: return "*unknown*"; case Kind::kOpaque: return "*opaque*"; case Kind::kBoolWrapper: return "google.protobuf.BoolValue"; case Kind::kIntWrapper: return "google.protobuf.Int64Value"; case Kind::kUintWrapper: return "google.protobuf.UInt64Value"; case Kind::kDoubleWrapper: return "google.protobuf.DoubleValue"; case Kind::kStringWrapper: return "google.protobuf.StringValue"; case Kind::kBytesWrapper: return "google.protobuf.BytesValue"; default: return "*error*"; } } }
#include "common/kind.h" #include <limits> #include <type_traits> #include "common/type_kind.h" #include "common/value_kind.h" #include "internal/testing.h" namespace cel { namespace { static_assert(std::is_same_v<std::underlying_type_t<TypeKind>, std::underlying_type_t<ValueKind>>, "TypeKind and ValueKind must have the same underlying type"); TEST(Kind, ToString) { EXPECT_EQ(KindToString(Kind::kError), "*error*"); EXPECT_EQ(KindToString(Kind::kNullType), "null_type"); EXPECT_EQ(KindToString(Kind::kDyn), "dyn"); EXPECT_EQ(KindToString(Kind::kAny), "any"); EXPECT_EQ(KindToString(Kind::kType), "type"); EXPECT_EQ(KindToString(Kind::kBool), "bool"); EXPECT_EQ(KindToString(Kind::kInt), "int"); EXPECT_EQ(KindToString(Kind::kUint), "uint"); EXPECT_EQ(KindToString(Kind::kDouble), "double"); EXPECT_EQ(KindToString(Kind::kString), "string"); EXPECT_EQ(KindToString(Kind::kBytes), "bytes"); EXPECT_EQ(KindToString(Kind::kDuration), "duration"); EXPECT_EQ(KindToString(Kind::kTimestamp), "timestamp"); EXPECT_EQ(KindToString(Kind::kList), "list"); EXPECT_EQ(KindToString(Kind::kMap), "map"); EXPECT_EQ(KindToString(Kind::kStruct), "struct"); EXPECT_EQ(KindToString(Kind::kUnknown), "*unknown*"); EXPECT_EQ(KindToString(Kind::kOpaque), "*opaque*"); EXPECT_EQ(KindToString(Kind::kBoolWrapper), "google.protobuf.BoolValue"); EXPECT_EQ(KindToString(Kind::kIntWrapper), "google.protobuf.Int64Value"); EXPECT_EQ(KindToString(Kind::kUintWrapper), "google.protobuf.UInt64Value"); EXPECT_EQ(KindToString(Kind::kDoubleWrapper), "google.protobuf.DoubleValue"); EXPECT_EQ(KindToString(Kind::kStringWrapper), "google.protobuf.StringValue"); EXPECT_EQ(KindToString(Kind::kBytesWrapper), "google.protobuf.BytesValue"); EXPECT_EQ(KindToString(static_cast<Kind>(std::numeric_limits<int>::max())), "*error*"); } TEST(Kind, TypeKindRoundtrip) { EXPECT_EQ(TypeKindToKind(KindToTypeKind(Kind::kBool)), Kind::kBool); } TEST(Kind, ValueKindRoundtrip) { EXPECT_EQ(ValueKindToKind(KindToValueKind(Kind::kBool)), Kind::kBool); } TEST(Kind, IsTypeKind) { EXPECT_TRUE(KindIsTypeKind(Kind::kBool)); EXPECT_TRUE(KindIsTypeKind(Kind::kAny)); EXPECT_TRUE(KindIsTypeKind(Kind::kDyn)); } TEST(Kind, IsValueKind) { EXPECT_TRUE(KindIsValueKind(Kind::kBool)); EXPECT_FALSE(KindIsValueKind(Kind::kAny)); EXPECT_FALSE(KindIsValueKind(Kind::kDyn)); } TEST(Kind, Equality) { EXPECT_EQ(Kind::kBool, TypeKind::kBool); EXPECT_EQ(TypeKind::kBool, Kind::kBool); EXPECT_EQ(Kind::kBool, ValueKind::kBool); EXPECT_EQ(ValueKind::kBool, Kind::kBool); EXPECT_NE(Kind::kBool, TypeKind::kInt); EXPECT_NE(TypeKind::kInt, Kind::kBool); EXPECT_NE(Kind::kBool, ValueKind::kInt); EXPECT_NE(ValueKind::kInt, Kind::kBool); } TEST(TypeKind, ToString) { EXPECT_EQ(TypeKindToString(TypeKind::kBool), KindToString(Kind::kBool)); } TEST(ValueKind, ToString) { EXPECT_EQ(ValueKindToString(ValueKind::kBool), KindToString(Kind::kBool)); } } }
0
#ifndef THIRD_PARTY_CEL_CPP_COMMON_VALUE_FACTORY_H_ #define THIRD_PARTY_CEL_CPP_COMMON_VALUE_FACTORY_H_ #include <cstdint> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "common/json.h" #include "common/type.h" #include "common/type_factory.h" #include "common/unknown.h" #include "common/value.h" namespace cel { namespace common_internal { class PiecewiseValueManager; } class ValueFactory : public virtual TypeFactory { public: Value CreateValueFromJson(Json json); ListValue CreateListValueFromJsonArray(JsonArray json); MapValue CreateMapValueFromJsonObject(JsonObject json); ListValue CreateZeroListValue(ListTypeView type); MapValue CreateZeroMapValue(MapTypeView type); OptionalValue CreateZeroOptionalValue(OptionalTypeView type); ListValueView GetZeroDynListValue(); MapValueView GetZeroDynDynMapValue(); MapValueView GetZeroStringDynMapValue(); OptionalValueView GetZeroDynOptionalValue(); NullValue GetNullValue() { return NullValue{}; } ErrorValue CreateErrorValue(absl::Status status) { return ErrorValue{std::move(status)}; } BoolValue CreateBoolValue(bool value) { return BoolValue{value}; } IntValue CreateIntValue(int64_t value) { return IntValue{value}; } UintValue CreateUintValue(uint64_t value) { return UintValue{value}; } DoubleValue CreateDoubleValue(double value) { return DoubleValue{value}; } BytesValue GetBytesValue() { return BytesValue(); } absl::StatusOr<BytesValue> CreateBytesValue(const char* value) { return CreateBytesValue(absl::string_view(value)); } absl::StatusOr<BytesValue> CreateBytesValue(absl::string_view value) { return CreateBytesValue(std::string(value)); } absl::StatusOr<BytesValue> CreateBytesValue(std::string value); absl::StatusOr<BytesValue> CreateBytesValue(absl::Cord value) { return BytesValue(std::move(value)); } template <typename Releaser> absl::StatusOr<BytesValue> CreateBytesValue(absl::string_view value, Releaser&& releaser) { return BytesValue( absl::MakeCordFromExternal(value, std::forward<Releaser>(releaser))); } StringValue GetStringValue() { return StringValue(); } absl::StatusOr<StringValue> CreateStringValue(const char* value) { return CreateStringValue(absl::string_view(value)); } absl::StatusOr<StringValue> CreateStringValue(absl::string_view value) { return CreateStringValue(std::string(value)); } absl::StatusOr<StringValue> CreateStringValue(std::string value); absl::StatusOr<StringValue> CreateStringValue(absl::Cord value); template <typename Releaser> absl::StatusOr<StringValue> CreateStringValue(absl::string_view value, Releaser&& releaser) { return StringValue( absl::MakeCordFromExternal(value, std::forward<Releaser>(releaser))); } StringValue CreateUncheckedStringValue(const char* value) { return CreateUncheckedStringValue(absl::string_view(value)); } StringValue CreateUncheckedStringValue(absl::string_view value) { return CreateUncheckedStringValue(std::string(value)); } StringValue CreateUncheckedStringValue(std::string value); StringValue CreateUncheckedStringValue(absl::Cord value) { return StringValue(std::move(value)); } template <typename Releaser> StringValue CreateUncheckedStringValue(absl::string_view value, Releaser&& releaser) { return StringValue( absl::MakeCordFromExternal(value, std::forward<Releaser>(releaser))); } absl::StatusOr<DurationValue> CreateDurationValue(absl::Duration value); DurationValue CreateUncheckedDurationValue(absl::Duration value) { return DurationValue{value}; } absl::StatusOr<TimestampValue> CreateTimestampValue(absl::Time value); TimestampValue CreateUncheckedTimestampValue(absl::Time value) { return TimestampValue{value}; } TypeValue CreateTypeValue(TypeView type) { return TypeValue{Type(type)}; } UnknownValue CreateUnknownValue() { return CreateUnknownValue(AttributeSet(), FunctionResultSet()); } UnknownValue CreateUnknownValue(AttributeSet attribute_set) { return CreateUnknownValue(std::move(attribute_set), FunctionResultSet()); } UnknownValue CreateUnknownValue(FunctionResultSet function_result_set) { return CreateUnknownValue(AttributeSet(), std::move(function_result_set)); } UnknownValue CreateUnknownValue(AttributeSet attribute_set, FunctionResultSet function_result_set) { return UnknownValue{ Unknown{std::move(attribute_set), std::move(function_result_set)}}; } protected: friend class common_internal::PiecewiseValueManager; virtual ListValue CreateZeroListValueImpl(ListTypeView type) = 0; virtual MapValue CreateZeroMapValueImpl(MapTypeView type) = 0; virtual OptionalValue CreateZeroOptionalValueImpl(OptionalTypeView type) = 0; }; } #endif #include "common/value_factory.h" #include <algorithm> #include <cstddef> #include <memory> #include <new> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/functional/overload.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "common/casting.h" #include "common/internal/arena_string.h" #include "common/internal/reference_count.h" #include "common/json.h" #include "common/memory.h" #include "common/native_type.h" #include "common/type.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/value_cache.h" #include "internal/status_macros.h" #include "internal/time.h" #include "internal/utf8.h" namespace cel { namespace { using common_internal::ProcessLocalValueCache; void JsonToValue(const Json& json, ValueFactory& value_factory, Value& result) { absl::visit( absl::Overload( [&result](JsonNull) { result = NullValue(); }, [&result](JsonBool value) { result = BoolValue(value); }, [&result](JsonNumber value) { result = DoubleValue(value); }, [&result](const JsonString& value) { result = StringValue(value); }, [&value_factory, &result](const JsonArray& value) { result = value_factory.CreateListValueFromJsonArray(value); }, [&value_factory, &result](const JsonObject& value) { result = value_factory.CreateMapValueFromJsonObject(value); }), json); } void JsonDebugString(const Json& json, std::string& out); void JsonArrayDebugString(const JsonArray& json, std::string& out) { out.push_back('['); auto element = json.begin(); if (element != json.end()) { JsonDebugString(*element, out); ++element; for (; element != json.end(); ++element) { out.append(", "); JsonDebugString(*element, out); } } out.push_back(']'); } void JsonObjectEntryDebugString(const JsonString& key, const Json& value, std::string& out) { out.append(StringValueView(key).DebugString()); out.append(": "); JsonDebugString(value, out); } void JsonObjectDebugString(const JsonObject& json, std::string& out) { std::vector<JsonString> keys; keys.reserve(json.size()); for (const auto& entry : json) { keys.push_back(entry.first); } std::stable_sort(keys.begin(), keys.end()); out.push_back('{'); auto key = keys.begin(); if (key != keys.end()) { JsonObjectEntryDebugString(*key, json.find(*key)->second, out); ++key; for (; key != keys.end(); ++key) { out.append(", "); JsonObjectEntryDebugString(*key, json.find(*key)->second, out); } } out.push_back('}'); } void JsonDebugString(const Json& json, std::string& out) { absl::visit(absl::Overload( [&out](JsonNull) -> void { out.append(NullValueView().DebugString()); }, [&out](JsonBool value) -> void { out.append(BoolValueView(value).DebugString()); }, [&out](JsonNumber value) -> void { out.append(DoubleValueView(value).DebugString()); }, [&out](const JsonString& value) -> void { out.append(StringValueView(value).DebugString()); }, [&out](const JsonArray& value) -> void { JsonArrayDebugString(value, out); }, [&out](const JsonObject& value) -> void { JsonObjectDebugString(value, out); }), json); } class JsonListValue final : public ParsedListValueInterface { public: explicit JsonListValue(JsonArray array) : array_(std::move(array)) {} std::string DebugString() const override { std::string out; JsonArrayDebugString(array_, out); return out; } bool IsEmpty() const override { return array_.empty(); } size_t Size() const override { return array_.size(); } absl::StatusOr<JsonArray> ConvertToJsonArray( AnyToJsonConverter&) const override { return array_; } private: Type GetTypeImpl(TypeManager& type_manager) const override { return ListType(type_manager.GetDynListType()); } absl::Status GetImpl(ValueManager& value_manager, size_t index, Value& result) const override { JsonToValue(array_[index], value_manager, result); return absl::OkStatus(); } NativeTypeId GetNativeTypeId() const noexcept override { return NativeTypeId::For<JsonListValue>(); } const JsonArray array_; }; class JsonMapValueKeyIterator final : public ValueIterator { public: explicit JsonMapValueKeyIterator( const JsonObject& object ABSL_ATTRIBUTE_LIFETIME_BOUND) : begin_(object.begin()), end_(object.end()) {} bool HasNext() override { return begin_ != end_; } absl::Status Next(ValueManager&, Value& result) override { if (ABSL_PREDICT_FALSE(begin_ == end_)) { return absl::FailedPreconditionError( "ValueIterator::Next() called when " "ValueIterator::HasNext() returns false"); } const auto& key = begin_->first; ++begin_; result = StringValue(key); return absl::OkStatus(); } private: typename JsonObject::const_iterator begin_; typename JsonObject::const_iterator end_; }; class JsonMapValue final : public ParsedMapValueInterface { public: explicit JsonMapValue(JsonObject object) : object_(std::move(object)) {} std::string DebugString() const override { std::string out; JsonObjectDebugString(object_, out); return out; } bool IsEmpty() const override { return object_.empty(); } size_t Size() const override { return object_.size(); } absl::Status ListKeys(ValueManager& value_manager, ListValue& result) const override { JsonArrayBuilder keys; keys.reserve(object_.size()); for (const auto& entry : object_) { keys.push_back(entry.first); } result = ParsedListValue( value_manager.GetMemoryManager().MakeShared<JsonListValue>( std::move(keys).Build())); return absl::OkStatus(); } absl::StatusOr<absl::Nonnull<ValueIteratorPtr>> NewIterator( ValueManager&) const override { return std::make_unique<JsonMapValueKeyIterator>(object_); } absl::StatusOr<JsonObject> ConvertToJsonObject( AnyToJsonConverter&) const override { return object_; } private: absl::StatusOr<bool> FindImpl(ValueManager& value_manager, ValueView key, Value& result) const override { return Cast<StringValueView>(key).NativeValue(absl::Overload( [this, &value_manager, &result](absl::string_view value) -> bool { if (auto entry = object_.find(value); entry != object_.end()) { JsonToValue(entry->second, value_manager, result); return true; } return false; }, [this, &value_manager, &result](const absl::Cord& value) -> bool { if (auto entry = object_.find(value); entry != object_.end()) { JsonToValue(entry->second, value_manager, result); return true; } return false; })); } absl::StatusOr<bool> HasImpl(ValueManager&, ValueView key) const override { return Cast<StringValueView>(key).NativeValue(absl::Overload( [this](absl::string_view value) -> bool { return object_.contains(value); }, [this](const absl::Cord& value) -> bool { return object_.contains(value); })); } Type GetTypeImpl(TypeManager& type_manager) const override { return MapType(type_manager.GetStringDynMapType()); } NativeTypeId GetNativeTypeId() const noexcept override { return NativeTypeId::For<JsonMapValue>(); } const JsonObject object_; }; } Value ValueFactory::CreateValueFromJson(Json json) { return absl::visit( absl::Overload( [](JsonNull) -> Value { return NullValue(); }, [](JsonBool value) -> Value { return BoolValue(value); }, [](JsonNumber value) -> Value { return DoubleValue(value); }, [](const JsonString& value) -> Value { return StringValue(value); }, [this](JsonArray value) -> Value { return CreateListValueFromJsonArray(std::move(value)); }, [this](JsonObject value) -> Value { return CreateMapValueFromJsonObject(std::move(value)); }), std::move(json)); } ListValue ValueFactory::CreateListValueFromJsonArray(JsonArray json) { if (json.empty()) { return ListValue(GetZeroDynListValue()); } return ParsedListValue( GetMemoryManager().MakeShared<JsonListValue>(std::move(json))); } MapValue ValueFactory::CreateMapValueFromJsonObject(JsonObject json) { if (json.empty()) { return MapValue(GetZeroStringDynMapValue()); } return ParsedMapValue( GetMemoryManager().MakeShared<JsonMapValue>(std::move(json))); } ListValue ValueFactory::CreateZeroListValue(ListTypeView type) { if (auto list_value = ProcessLocalValueCache::Get()->GetEmptyListValue(type); list_value.has_value()) { return ListValue(*list_value); } return CreateZeroListValueImpl(type); } MapValue ValueFactory::CreateZeroMapValue(MapTypeView type) { if (auto map_value = ProcessLocalValueCache::Get()->GetEmptyMapValue(type); map_value.has_value()) { return MapValue(*map_value); } return CreateZeroMapValueImpl(type); } OptionalValue ValueFactory::CreateZeroOptionalValue(OptionalTypeView type) { if (auto optional_value = ProcessLocalValueCache::Get()->GetEmptyOptionalValue(type); optional_value.has_value()) { return OptionalValue(*optional_value); } return CreateZeroOptionalValueImpl(type); } ListValueView ValueFactory::GetZeroDynListValue() { return ProcessLocalValueCache::Get()->GetEmptyDynListValue(); } MapValueView ValueFactory::GetZeroDynDynMapValue() { return ProcessLocalValueCache::Get()->GetEmptyDynDynMapValue(); } MapValueView ValueFactory::GetZeroStringDynMapValue() { return ProcessLocalValueCache::Get()->GetEmptyStringDynMapValue(); } OptionalValueView ValueFactory::GetZeroDynOptionalValue() { return ProcessLocalValueCache::Get()->GetEmptyDynOptionalValue(); } namespace { class ReferenceCountedString final : public common_internal::ReferenceCounted { public: static const ReferenceCountedString* New(std::string&& string) { return new ReferenceCountedString(std::move(string)); } const char* data() const { return std::launder(reinterpret_cast<const std::string*>(&string_[0])) ->data(); } size_t size() const { return std::launder(reinterpret_cast<const std::string*>(&string_[0])) ->size(); } private: explicit ReferenceCountedString(std::string&& robbed) : ReferenceCounted() { ::new (static_cast<void*>(&string_[0])) std::string(std::move(robbed)); } void Finalize() noexcept override { std::launder(reinterpret_cast<const std::string*>(&string_[0])) ->~basic_string(); } alignas(std::string) char string_[sizeof(std::string)]; }; } static void StringDestructor(void* string) { static_cast<std::string*>(string)->~basic_string(); } absl::StatusOr<BytesValue> ValueFactory::CreateBytesValue(std::string value) { auto memory_manager = GetMemoryManager(); switch (memory_manager.memory_management()) { case MemoryManagement::kPooling: { auto* string = ::new ( memory_manager.Allocate(sizeof(std::string), alignof(std::string))) std::string(std::move(value)); memory_manager.OwnCustomDestructor(string, &StringDestructor); return BytesValue{common_internal::ArenaString(*string)}; } case MemoryManagement::kReferenceCounting: { auto* refcount = ReferenceCountedString::New(std::move(value)); auto bytes_value = BytesValue{common_internal::SharedByteString( refcount, absl::string_view(refcount->data(), refcount->size()))}; common_internal::StrongUnref(*refcount); return bytes_value; } } } StringValue ValueFactory::CreateUncheckedStringValue(std::string value) { auto memory_manager = GetMemoryManager(); switch (memory_manager.memory_management()) { case MemoryManagement::kPooling: { auto* string = ::new ( memory_manager.Allocate(sizeof(std::string), alignof(std::string))) std::string(std::move(value)); memory_manager.OwnCustomDestructor(string, &StringDestructor); return StringValue{common_internal::ArenaString(*string)}; } case MemoryManagement::kReferenceCounting: { auto* refcount = ReferenceCountedString::New(std::move(value)); auto string_value = StringValue{common_internal::SharedByteString( refcount, absl::string_view(refcount->data(), refcount->size()))}; common_internal::StrongUnref(*refcount); return string_value; } } } absl::StatusOr<StringValue> ValueFactory::CreateStringValue(std::string value) { auto [count, ok] = internal::Utf8Validate(value); if (ABSL_PREDICT_FALSE(!ok)) { return absl::InvalidArgumentError( "Illegal byte sequence in UTF-8 encoded string"); } return CreateUncheckedStringValue(std::move(value)); } absl::StatusOr<StringValue> ValueFactory::CreateStringValue(absl::Cord value) { auto [count, ok] = internal::Utf8Validate(value); if (ABSL_PREDICT_FALSE(!ok)) { return absl::InvalidArgumentError( "Illegal byte sequence in UTF-8 encoded string"); } return StringValue(std::move(value)); } absl::StatusOr<DurationValue> ValueFactory::CreateDurationValue( absl::Duration value) { CEL_RETURN_IF_ERROR(internal::ValidateDuration(value)); return DurationValue{value}; } absl::StatusOr<TimestampValue> ValueFactory::CreateTimestampValue( absl::Time value) { CEL_RETURN_IF_ERROR(internal::ValidateTimestamp(value)); return TimestampValue{value}; } }
#include "common/value_factory.h" #include <ostream> #include <sstream> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/strings/cord.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/json.h" #include "common/memory.h" #include "common/memory_testing.h" #include "common/type.h" #include "common/type_factory.h" #include "common/type_reflector.h" #include "common/types/type_cache.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/testing.h" namespace cel { namespace { using common_internal::ProcessLocalTypeCache; using testing::TestParamInfo; using testing::TestWithParam; using testing::UnorderedElementsAreArray; using cel::internal::IsOkAndHolds; enum class ThreadSafety { kCompatible, kSafe, }; std::ostream& operator<<(std::ostream& out, ThreadSafety thread_safety) { switch (thread_safety) { case ThreadSafety::kCompatible: return out << "THREAD_SAFE"; case ThreadSafety::kSafe: return out << "THREAD_COMPATIBLE"; } } class ValueFactoryTest : public common_internal::ThreadCompatibleMemoryTest<ThreadSafety> { public: void SetUp() override { switch (thread_safety()) { case ThreadSafety::kCompatible: value_manager_ = NewThreadCompatibleValueManager( memory_manager(), NewThreadCompatibleTypeReflector(memory_manager())); break; case ThreadSafety::kSafe: value_manager_ = NewThreadSafeValueManager( memory_manager(), NewThreadSafeTypeReflector(memory_manager())); break; } } void TearDown() override { Finish(); } void Finish() { value_manager_.reset(); ThreadCompatibleMemoryTest::Finish(); } TypeFactory& type_factory() const { return value_manager(); } TypeManager& type_manager() const { return value_manager(); } ValueFactory& value_factory() const { return value_manager(); } ValueManager& value_manager() const { return **value_manager_; } ThreadSafety thread_safety() const { return std::get<1>(GetParam()); } static std::string ToString( TestParamInfo<std::tuple<MemoryManagement, ThreadSafety>> param) { std::ostringstream out; out << std::get<0>(param.param) << "_" << std::get<1>(param.param); return out.str(); } private: absl::optional<Shared<ValueManager>> value_manager_; }; TEST_P(ValueFactoryTest, JsonValueNull) { auto value = value_factory().CreateValueFromJson(kJsonNull); EXPECT_TRUE(InstanceOf<NullValue>(value)); } TEST_P(ValueFactoryTest, JsonValueBool) { auto value = value_factory().CreateValueFromJson(true); ASSERT_TRUE(InstanceOf<BoolValue>(value)); EXPECT_TRUE(Cast<BoolValue>(value).NativeValue()); } TEST_P(ValueFactoryTest, JsonValueNumber) { auto value = value_factory().CreateValueFromJson(1.0); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); EXPECT_EQ(Cast<DoubleValue>(value).NativeValue(), 1.0); } TEST_P(ValueFactoryTest, JsonValueString) { auto value = value_factory().CreateValueFromJson(absl::Cord("foo")); ASSERT_TRUE(InstanceOf<StringValue>(value)); EXPECT_EQ(Cast<StringValue>(value).NativeString(), "foo"); } JsonObject NewJsonObjectForTesting(bool with_array = true, bool with_nested_object = true); JsonArray NewJsonArrayForTesting(bool with_nested_array = true, bool with_object = true) { JsonArrayBuilder builder; builder.push_back(kJsonNull); builder.push_back(true); builder.push_back(1.0); builder.push_back(absl::Cord("foo")); if (with_nested_array) { builder.push_back(NewJsonArrayForTesting(false, false)); } if (with_object) { builder.push_back(NewJsonObjectForTesting(false, false)); } return std::move(builder).Build(); } JsonObject NewJsonObjectForTesting(bool with_array, bool with_nested_object) { JsonObjectBuilder builder; builder.insert_or_assign(absl::Cord("a"), kJsonNull); builder.insert_or_assign(absl::Cord("b"), true); builder.insert_or_assign(absl::Cord("c"), 1.0); builder.insert_or_assign(absl::Cord("d"), absl::Cord("foo")); if (with_array) { builder.insert_or_assign(absl::Cord("e"), NewJsonArrayForTesting(false, false)); } if (with_nested_object) { builder.insert_or_assign(absl::Cord("f"), NewJsonObjectForTesting(false, false)); } return std::move(builder).Build(); } TEST_P(ValueFactoryTest, JsonValueArray) { auto value = value_factory().CreateValueFromJson(NewJsonArrayForTesting()); ASSERT_TRUE(InstanceOf<ListValue>(value)); EXPECT_EQ(TypeView(value.GetType(type_manager())), type_factory().GetDynListType()); auto list_value = Cast<ListValue>(value); EXPECT_THAT(list_value.IsEmpty(), IsOkAndHolds(false)); EXPECT_THAT(list_value.Size(), IsOkAndHolds(6)); EXPECT_EQ(list_value.DebugString(), "[null, true, 1.0, \"foo\", [null, true, 1.0, \"foo\"], {\"a\": " "null, \"b\": true, \"c\": 1.0, \"d\": \"foo\"}]"); ASSERT_OK_AND_ASSIGN(auto element, list_value.Get(value_manager(), 0)); EXPECT_TRUE(InstanceOf<NullValue>(element)); } TEST_P(ValueFactoryTest, JsonValueObject) { auto value = value_factory().CreateValueFromJson(NewJsonObjectForTesting()); ASSERT_TRUE(InstanceOf<MapValue>(value)); EXPECT_EQ(TypeView(value.GetType(type_manager())), type_factory().GetStringDynMapType()); auto map_value = Cast<MapValue>(value); EXPECT_THAT(map_value.IsEmpty(), IsOkAndHolds(false)); EXPECT_THAT(map_value.Size(), IsOkAndHolds(6)); EXPECT_EQ(map_value.DebugString(), "{\"a\": null, \"b\": true, \"c\": 1.0, \"d\": \"foo\", \"e\": " "[null, true, 1.0, \"foo\"], \"f\": {\"a\": null, \"b\": true, " "\"c\": 1.0, \"d\": \"foo\"}}"); ASSERT_OK_AND_ASSIGN(auto keys, map_value.ListKeys(value_manager())); EXPECT_THAT(keys.Size(), IsOkAndHolds(6)); ASSERT_OK_AND_ASSIGN(auto keys_iterator, map_value.NewIterator(value_manager())); std::vector<StringValue> string_keys; while (keys_iterator->HasNext()) { ASSERT_OK_AND_ASSIGN(auto key, keys_iterator->Next(value_manager())); string_keys.push_back(StringValue(Cast<StringValue>(key))); } EXPECT_THAT(string_keys, UnorderedElementsAreArray( {StringValueView("a"), StringValueView("b"), StringValueView("c"), StringValueView("d"), StringValueView("e"), StringValueView("f")})); ASSERT_OK_AND_ASSIGN(auto has, map_value.Has(value_manager(), StringValueView("a"))); ASSERT_TRUE(InstanceOf<BoolValue>(has)); EXPECT_TRUE(Cast<BoolValue>(has).NativeValue()); ASSERT_OK_AND_ASSIGN( has, map_value.Has(value_manager(), StringValueView(absl::Cord("a")))); ASSERT_TRUE(InstanceOf<BoolValue>(has)); EXPECT_TRUE(Cast<BoolValue>(has).NativeValue()); ASSERT_OK_AND_ASSIGN(auto get, map_value.Get(value_manager(), StringValueView("a"))); ASSERT_TRUE(InstanceOf<NullValue>(get)); ASSERT_OK_AND_ASSIGN( get, map_value.Get(value_manager(), StringValueView(absl::Cord("a")))); ASSERT_TRUE(InstanceOf<NullValue>(get)); } TEST_P(ValueFactoryTest, ListValue) { auto list_value1 = value_factory().CreateZeroListValue( type_factory().CreateListType(StringTypeView())); EXPECT_TRUE( Is(list_value1, value_factory().CreateZeroListValue( type_factory().CreateListType(StringTypeView())))); EXPECT_FALSE( Is(list_value1, value_factory().CreateZeroListValue( type_factory().CreateListType(BoolTypeView())))); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto list_value2 = value_factory().CreateZeroListValue( type_factory().CreateListType(struct_type1)); EXPECT_TRUE( Is(list_value2, value_factory().CreateZeroListValue( type_factory().CreateListType(struct_type1)))); EXPECT_FALSE( Is(list_value2, value_factory().CreateZeroListValue( type_factory().CreateListType(struct_type2)))); auto zero_list_value = value_factory().GetZeroDynListValue(); EXPECT_THAT(zero_list_value.IsEmpty(), IsOkAndHolds(true)); EXPECT_THAT(zero_list_value.Size(), IsOkAndHolds(0)); EXPECT_EQ(zero_list_value.GetType(type_manager()), ProcessLocalTypeCache::Get()->GetDynListType()); } TEST_P(ValueFactoryTest, MapValue) { auto map_value1 = value_factory().CreateZeroMapValue( type_factory().CreateMapType(StringTypeView(), IntTypeView())); EXPECT_TRUE(Is(map_value1, value_factory().CreateZeroMapValue( type_factory().CreateMapType(StringTypeView(), IntTypeView())))); EXPECT_FALSE(Is(map_value1, value_factory().CreateZeroMapValue( type_factory().CreateMapType( StringTypeView(), BoolTypeView())))); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto map_value2 = value_factory().CreateZeroMapValue( type_factory().CreateMapType(StringTypeView(), struct_type1)); EXPECT_TRUE(Is(map_value2, value_factory().CreateZeroMapValue( type_factory().CreateMapType(StringTypeView(), struct_type1)))); EXPECT_FALSE(Is(map_value2, value_factory().CreateZeroMapValue( type_factory().CreateMapType(StringTypeView(), struct_type2)))); auto zero_map_value = value_factory().GetZeroDynDynMapValue(); EXPECT_THAT(zero_map_value.IsEmpty(), IsOkAndHolds(true)); EXPECT_THAT(zero_map_value.Size(), IsOkAndHolds(0)); EXPECT_EQ(zero_map_value.GetType(type_manager()), ProcessLocalTypeCache::Get()->GetDynDynMapType()); zero_map_value = value_factory().GetZeroStringDynMapValue(); EXPECT_THAT(zero_map_value.IsEmpty(), IsOkAndHolds(true)); EXPECT_THAT(zero_map_value.Size(), IsOkAndHolds(0)); EXPECT_EQ(zero_map_value.GetType(type_manager()), ProcessLocalTypeCache::Get()->GetStringDynMapType()); } TEST_P(ValueFactoryTest, OptionalType) { auto optional_value1 = value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(StringTypeView())); EXPECT_TRUE(Is(optional_value1, value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(StringTypeView())))); EXPECT_FALSE(Is(optional_value1, value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(BoolTypeView())))); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto optional_value2 = value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(struct_type1)); EXPECT_TRUE(Is(optional_value2, value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(struct_type1)))); EXPECT_FALSE(Is(optional_value2, value_factory().CreateZeroOptionalValue( type_factory().CreateOptionalType(struct_type2)))); auto zero_optional_value = value_factory().GetZeroDynOptionalValue(); EXPECT_FALSE(zero_optional_value.HasValue()); EXPECT_EQ(zero_optional_value.GetType(type_manager()), ProcessLocalTypeCache::Get()->GetDynOptionalType()); } INSTANTIATE_TEST_SUITE_P( ValueFactoryTest, ValueFactoryTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ::testing::Values(ThreadSafety::kCompatible, ThreadSafety::kSafe)), ValueFactoryTest::ToString); } }
1
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_VALUE_TESTING_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_VALUE_TESTING_H_ #include <ostream> #include "absl/status/status.h" #include "common/value.h" #include "extensions/protobuf/internal/message.h" #include "extensions/protobuf/value.h" #include "internal/testing.h" namespace cel::extensions::test { template <typename MessageType> class StructValueAsProtoMatcher { public: using is_gtest_matcher = void; explicit StructValueAsProtoMatcher(testing::Matcher<MessageType>&& m) : m_(std::move(m)) {} bool MatchAndExplain(cel::Value v, testing::MatchResultListener* result_listener) const { MessageType msg; absl::Status s = ProtoMessageFromValue(v, msg); if (!s.ok()) { *result_listener << "cannot convert to " << MessageType::descriptor()->full_name() << ": " << s; return false; } return m_.MatchAndExplain(msg, result_listener); } void DescribeTo(std::ostream* os) const { *os << "matches proto message " << m_; } void DescribeNegationTo(std::ostream* os) const { *os << "does not match proto message " << m_; } private: testing::Matcher<MessageType> m_; }; template <typename MessageType> inline StructValueAsProtoMatcher<MessageType> StructValueAsProto( testing::Matcher<MessageType>&& m) { static_assert( cel::extensions::protobuf_internal::IsProtoMessage<MessageType>); return StructValueAsProtoMatcher<MessageType>(std::move(m)); } } #endif #include "common/value_testing.h" #include <cstdint> #include <ostream> #include <string> #include <utility> #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "common/casting.h" #include "common/value.h" #include "common/value_kind.h" #include "internal/testing.h" namespace cel { void PrintTo(const Value& value, std::ostream* os) { *os << value << "\n"; } namespace test { namespace { using testing::Matcher; template <typename Type> constexpr ValueKind ToValueKind() { if constexpr (std::is_same_v<Type, BoolValue>) { return ValueKind::kBool; } else if constexpr (std::is_same_v<Type, IntValue>) { return ValueKind::kInt; } else if constexpr (std::is_same_v<Type, UintValue>) { return ValueKind::kUint; } else if constexpr (std::is_same_v<Type, DoubleValue>) { return ValueKind::kDouble; } else if constexpr (std::is_same_v<Type, StringValue>) { return ValueKind::kString; } else if constexpr (std::is_same_v<Type, BytesValue>) { return ValueKind::kBytes; } else if constexpr (std::is_same_v<Type, DurationValue>) { return ValueKind::kDuration; } else if constexpr (std::is_same_v<Type, TimestampValue>) { return ValueKind::kTimestamp; } else if constexpr (std::is_same_v<Type, ErrorValue>) { return ValueKind::kError; } else if constexpr (std::is_same_v<Type, MapValue>) { return ValueKind::kMap; } else if constexpr (std::is_same_v<Type, ListValue>) { return ValueKind::kList; } else if constexpr (std::is_same_v<Type, StructValue>) { return ValueKind::kStruct; } else if constexpr (std::is_same_v<Type, OpaqueValue>) { return ValueKind::kOpaque; } else { return ValueKind::kError; } } template <typename Type, typename NativeType> class SimpleTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<NativeType>; explicit SimpleTypeMatcherImpl(MatcherType&& matcher) : matcher_(std::forward<MatcherType>(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return InstanceOf<Type>(v) && matcher_.MatchAndExplain(Cast<Type>(v).NativeValue(), listener); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; template <typename Type> class StringTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<std::string>; explicit StringTypeMatcherImpl(MatcherType matcher) : matcher_((std::move(matcher))) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return InstanceOf<Type>(v) && matcher_.Matches(Cast<Type>(v).ToString()); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; template <typename Type> class AbstractTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<Type>; explicit AbstractTypeMatcherImpl(MatcherType&& matcher) : matcher_(std::forward<MatcherType>(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return InstanceOf<Type>(v) && matcher_.Matches(Cast<Type>(v)); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; class OptionalValueMatcherImpl : public testing::MatcherInterface<const Value&> { public: explicit OptionalValueMatcherImpl(ValueMatcher matcher) : matcher_(std::move(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { if (!InstanceOf<OptionalValue>(v)) { *listener << "wanted OptionalValue, got " << ValueKindToString(v.kind()); return false; } const auto& optional_value = Cast<OptionalValue>(v); if (!optional_value->HasValue()) { *listener << "OptionalValue is not engaged"; return false; } return matcher_.MatchAndExplain(optional_value->Value(), listener); } void DescribeTo(std::ostream* os) const override { *os << "is OptionalValue that is engaged with value whose "; matcher_.DescribeTo(os); } private: ValueMatcher matcher_; }; MATCHER(OptionalValueIsEmptyImpl, "is empty OptionalValue") { const Value& v = arg; if (!InstanceOf<OptionalValue>(v)) { *result_listener << "wanted OptionalValue, got " << ValueKindToString(v.kind()); return false; } const auto& optional_value = Cast<OptionalValue>(v); *result_listener << (optional_value.HasValue() ? "is not empty" : "is empty"); return !optional_value->HasValue(); } } ValueMatcher BoolValueIs(Matcher<bool> m) { return ValueMatcher(new SimpleTypeMatcherImpl<BoolValue, bool>(std::move(m))); } ValueMatcher IntValueIs(Matcher<int64_t> m) { return ValueMatcher( new SimpleTypeMatcherImpl<IntValue, int64_t>(std::move(m))); } ValueMatcher UintValueIs(Matcher<uint64_t> m) { return ValueMatcher( new SimpleTypeMatcherImpl<UintValue, uint64_t>(std::move(m))); } ValueMatcher DoubleValueIs(Matcher<double> m) { return ValueMatcher( new SimpleTypeMatcherImpl<DoubleValue, double>(std::move(m))); } ValueMatcher TimestampValueIs(Matcher<absl::Time> m) { return ValueMatcher( new SimpleTypeMatcherImpl<TimestampValue, absl::Time>(std::move(m))); } ValueMatcher DurationValueIs(Matcher<absl::Duration> m) { return ValueMatcher( new SimpleTypeMatcherImpl<DurationValue, absl::Duration>(std::move(m))); } ValueMatcher ErrorValueIs(Matcher<absl::Status> m) { return ValueMatcher( new SimpleTypeMatcherImpl<ErrorValue, absl::Status>(std::move(m))); } ValueMatcher StringValueIs(Matcher<std::string> m) { return ValueMatcher(new StringTypeMatcherImpl<StringValue>(std::move(m))); } ValueMatcher BytesValueIs(Matcher<std::string> m) { return ValueMatcher(new StringTypeMatcherImpl<BytesValue>(std::move(m))); } ValueMatcher MapValueIs(Matcher<MapValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<MapValue>(std::move(m))); } ValueMatcher ListValueIs(Matcher<ListValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<ListValue>(std::move(m))); } ValueMatcher StructValueIs(Matcher<StructValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<StructValue>(std::move(m))); } ValueMatcher OptionalValueIs(ValueMatcher m) { return ValueMatcher(new OptionalValueMatcherImpl(std::move(m))); } ValueMatcher OptionalValueIsEmpty() { return OptionalValueIsEmptyImpl(); } } }
#include "extensions/protobuf/value_testing.h" #include "common/memory.h" #include "common/value.h" #include "common/value_testing.h" #include "extensions/protobuf/memory_manager.h" #include "extensions/protobuf/value.h" #include "internal/proto_matchers.h" #include "internal/testing.h" #include "proto/test/v1/proto2/test_all_types.pb.h" #include "google/protobuf/arena.h" namespace cel::extensions::test { namespace { using ::cel::extensions::ProtoMessageToValue; using ::cel::internal::test::EqualsProto; using ::google::api::expr::test::v1::proto2::TestAllTypes; class ProtoValueTesting : public common_internal::ThreadCompatibleValueTest<> { protected: MemoryManager NewThreadCompatiblePoolingMemoryManager() override { return cel::extensions::ProtoMemoryManager(&arena_); } private: google::protobuf::Arena arena_; }; class ProtoValueTestingTest : public ProtoValueTesting {}; TEST_P(ProtoValueTestingTest, StructValueAsProtoSimple) { TestAllTypes test_proto; test_proto.set_single_int32(42); test_proto.set_single_string("foo"); ASSERT_OK_AND_ASSIGN(cel::Value v, ProtoMessageToValue(value_manager(), test_proto)); EXPECT_THAT(v, StructValueAsProto<TestAllTypes>(EqualsProto(R"pb( single_int32: 42 single_string: "foo" )pb"))); } INSTANTIATE_TEST_SUITE_P(ProtoValueTesting, ProtoValueTestingTest, testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ProtoValueTestingTest::ToString); } }
2
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_TYPE_INTROSPECTOR_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_TYPE_INTROSPECTOR_H_ #include "absl/base/nullability.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/type.h" #include "common/type_factory.h" #include "common/type_introspector.h" #include "google/protobuf/descriptor.h" namespace cel::extensions { class ProtoTypeIntrospector : public virtual TypeIntrospector { public: ProtoTypeIntrospector() : ProtoTypeIntrospector(google::protobuf::DescriptorPool::generated_pool()) {} explicit ProtoTypeIntrospector( absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool) : descriptor_pool_(descriptor_pool) {} absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool() const { return descriptor_pool_; } protected: absl::StatusOr<absl::optional<TypeView>> FindTypeImpl( TypeFactory& type_factory, absl::string_view name, Type& scratch) const final; absl::StatusOr<absl::optional<StructTypeFieldView>> FindStructTypeFieldByNameImpl(TypeFactory& type_factory, absl::string_view type, absl::string_view name, StructTypeField& scratch) const final; private: absl::Nonnull<const google::protobuf::DescriptorPool*> const descriptor_pool_; }; } #endif #include "extensions/protobuf/type_introspector.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/type.h" #include "common/type_factory.h" #include "common/type_introspector.h" #include "extensions/protobuf/type.h" #include "internal/status_macros.h" namespace cel::extensions { absl::StatusOr<absl::optional<TypeView>> ProtoTypeIntrospector::FindTypeImpl( TypeFactory& type_factory, absl::string_view name, Type& scratch) const { const auto* desc = descriptor_pool()->FindMessageTypeByName(name); if (desc == nullptr) { return absl::nullopt; } scratch = type_factory.CreateStructType(desc->full_name()); return scratch; } absl::StatusOr<absl::optional<StructTypeFieldView>> ProtoTypeIntrospector::FindStructTypeFieldByNameImpl( TypeFactory& type_factory, absl::string_view type, absl::string_view name, StructTypeField& scratch) const { const auto* desc = descriptor_pool()->FindMessageTypeByName(type); if (desc == nullptr) { return absl::nullopt; } const auto* field_desc = desc->FindFieldByName(name); if (field_desc == nullptr) { field_desc = descriptor_pool()->FindExtensionByPrintableName(desc, name); if (field_desc == nullptr) { return absl::nullopt; } } StructTypeFieldView result; CEL_ASSIGN_OR_RETURN( result.type, ProtoFieldTypeToType(type_factory, field_desc, scratch.type)); result.name = field_desc->name(); result.number = field_desc->number(); return result; } }
#include "extensions/protobuf/type_introspector.h" #include "absl/types/optional.h" #include "common/type.h" #include "common/type_testing.h" #include "internal/testing.h" #include "proto/test/v1/proto2/test_all_types.pb.h" #include "google/protobuf/descriptor.h" namespace cel::extensions { namespace { using ::google::api::expr::test::v1::proto2::TestAllTypes; using testing::Eq; using testing::Optional; using cel::internal::IsOkAndHolds; class ProtoTypeIntrospectorTest : public common_internal::ThreadCompatibleTypeTest<> { private: Shared<TypeIntrospector> NewTypeIntrospector( MemoryManagerRef memory_manager) override { return memory_manager.MakeShared<ProtoTypeIntrospector>(); } }; TEST_P(ProtoTypeIntrospectorTest, FindType) { EXPECT_THAT( type_manager().FindType(TestAllTypes::descriptor()->full_name()), IsOkAndHolds(Optional(Eq(StructType( memory_manager(), TestAllTypes::GetDescriptor()->full_name()))))); EXPECT_THAT(type_manager().FindType("type.that.does.not.Exist"), IsOkAndHolds(Eq(absl::nullopt))); } TEST_P(ProtoTypeIntrospectorTest, FindStructTypeFieldByName) { ASSERT_OK_AND_ASSIGN( auto field, type_manager().FindStructTypeFieldByName( TestAllTypes::descriptor()->full_name(), "single_int32")); ASSERT_TRUE(field.has_value()); EXPECT_THAT(field->name, Eq("single_int32")); EXPECT_THAT(field->number, Eq(1)); EXPECT_THAT(field->type, Eq(IntType{})); EXPECT_THAT( type_manager().FindStructTypeFieldByName( TestAllTypes::descriptor()->full_name(), "field_that_does_not_exist"), IsOkAndHolds(Eq(absl::nullopt))); EXPECT_THAT(type_manager().FindStructTypeFieldByName( "type.that.does.not.Exist", "does_not_matter"), IsOkAndHolds(Eq(absl::nullopt))); } INSTANTIATE_TEST_SUITE_P( ProtoTypeIntrospectorTest, ProtoTypeIntrospectorTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ProtoTypeIntrospectorTest::ToString); } }
3
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_INTERNAL_CONSTANT_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_INTERNAL_CONSTANT_H_ #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/base/nullability.h" #include "absl/status/status.h" #include "common/constant.h" namespace cel::extensions::protobuf_internal { absl::Status ConstantToProto(const Constant& constant, absl::Nonnull<google::api::expr::v1alpha1::Constant*> proto); absl::Status ConstantFromProto(const google::api::expr::v1alpha1::Constant& proto, Constant& constant); } #endif #include "extensions/protobuf/internal/constant.h" #include <cstddef> #include <cstdint> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/struct.pb.h" #include "absl/base/nullability.h" #include "absl/functional/overload.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "absl/types/variant.h" #include "common/constant.h" #include "internal/proto_time_encoding.h" namespace cel::extensions::protobuf_internal { using ConstantProto = google::api::expr::v1alpha1::Constant; absl::Status ConstantToProto(const Constant& constant, absl::Nonnull<ConstantProto*> proto) { return absl::visit(absl::Overload( [proto](absl::monostate) -> absl::Status { proto->clear_constant_kind(); return absl::OkStatus(); }, [proto](std::nullptr_t) -> absl::Status { proto->set_null_value(google::protobuf::NULL_VALUE); return absl::OkStatus(); }, [proto](bool value) -> absl::Status { proto->set_bool_value(value); return absl::OkStatus(); }, [proto](int64_t value) -> absl::Status { proto->set_int64_value(value); return absl::OkStatus(); }, [proto](uint64_t value) -> absl::Status { proto->set_uint64_value(value); return absl::OkStatus(); }, [proto](double value) -> absl::Status { proto->set_double_value(value); return absl::OkStatus(); }, [proto](const BytesConstant& value) -> absl::Status { proto->set_bytes_value(value); return absl::OkStatus(); }, [proto](const StringConstant& value) -> absl::Status { proto->set_string_value(value); return absl::OkStatus(); }, [proto](absl::Duration value) -> absl::Status { return internal::EncodeDuration( value, proto->mutable_duration_value()); }, [proto](absl::Time value) -> absl::Status { return internal::EncodeTime( value, proto->mutable_timestamp_value()); }), constant.kind()); } absl::Status ConstantFromProto(const ConstantProto& proto, Constant& constant) { switch (proto.constant_kind_case()) { case ConstantProto::CONSTANT_KIND_NOT_SET: constant = Constant{}; break; case ConstantProto::kNullValue: constant.set_null_value(); break; case ConstantProto::kBoolValue: constant.set_bool_value(proto.bool_value()); break; case ConstantProto::kInt64Value: constant.set_int_value(proto.int64_value()); break; case ConstantProto::kUint64Value: constant.set_uint_value(proto.uint64_value()); break; case ConstantProto::kDoubleValue: constant.set_double_value(proto.double_value()); break; case ConstantProto::kStringValue: constant.set_string_value(proto.string_value()); break; case ConstantProto::kBytesValue: constant.set_bytes_value(proto.bytes_value()); break; case ConstantProto::kDurationValue: constant.set_duration_value( internal::DecodeDuration(proto.duration_value())); break; case ConstantProto::kTimestampValue: constant.set_timestamp_value( internal::DecodeTime(proto.timestamp_value())); break; default: return absl::InvalidArgumentError( absl::StrCat("unexpected ConstantKindCase: ", static_cast<int>(proto.constant_kind_case()))); } return absl::OkStatus(); } }
#include "common/constant.h" #include <cmath> #include <string> #include "absl/strings/has_absl_stringify.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "internal/testing.h" namespace cel { namespace { using testing::IsEmpty; using testing::IsFalse; using testing::IsTrue; TEST(Constant, NullValue) { Constant const_expr; EXPECT_THAT(const_expr.has_null_value(), IsFalse()); const_expr.set_null_value(); EXPECT_THAT(const_expr.has_null_value(), IsTrue()); } TEST(Constant, BoolValue) { Constant const_expr; EXPECT_THAT(const_expr.has_bool_value(), IsFalse()); EXPECT_EQ(const_expr.bool_value(), false); const_expr.set_bool_value(false); EXPECT_THAT(const_expr.has_bool_value(), IsTrue()); EXPECT_EQ(const_expr.bool_value(), false); } TEST(Constant, IntValue) { Constant const_expr; EXPECT_THAT(const_expr.has_int_value(), IsFalse()); EXPECT_EQ(const_expr.int_value(), 0); const_expr.set_int_value(0); EXPECT_THAT(const_expr.has_int_value(), IsTrue()); EXPECT_EQ(const_expr.int_value(), 0); } TEST(Constant, UintValue) { Constant const_expr; EXPECT_THAT(const_expr.has_uint_value(), IsFalse()); EXPECT_EQ(const_expr.uint_value(), 0); const_expr.set_uint_value(0); EXPECT_THAT(const_expr.has_uint_value(), IsTrue()); EXPECT_EQ(const_expr.uint_value(), 0); } TEST(Constant, DoubleValue) { Constant const_expr; EXPECT_THAT(const_expr.has_double_value(), IsFalse()); EXPECT_EQ(const_expr.double_value(), 0); const_expr.set_double_value(0); EXPECT_THAT(const_expr.has_double_value(), IsTrue()); EXPECT_EQ(const_expr.double_value(), 0); } TEST(Constant, BytesValue) { Constant const_expr; EXPECT_THAT(const_expr.has_bytes_value(), IsFalse()); EXPECT_THAT(const_expr.bytes_value(), IsEmpty()); const_expr.set_bytes_value("foo"); EXPECT_THAT(const_expr.has_bytes_value(), IsTrue()); EXPECT_EQ(const_expr.bytes_value(), "foo"); } TEST(Constant, StringValue) { Constant const_expr; EXPECT_THAT(const_expr.has_string_value(), IsFalse()); EXPECT_THAT(const_expr.string_value(), IsEmpty()); const_expr.set_string_value("foo"); EXPECT_THAT(const_expr.has_string_value(), IsTrue()); EXPECT_EQ(const_expr.string_value(), "foo"); } TEST(Constant, DurationValue) { Constant const_expr; EXPECT_THAT(const_expr.has_duration_value(), IsFalse()); EXPECT_EQ(const_expr.duration_value(), absl::ZeroDuration()); const_expr.set_duration_value(absl::ZeroDuration()); EXPECT_THAT(const_expr.has_duration_value(), IsTrue()); EXPECT_EQ(const_expr.duration_value(), absl::ZeroDuration()); } TEST(Constant, TimestampValue) { Constant const_expr; EXPECT_THAT(const_expr.has_timestamp_value(), IsFalse()); EXPECT_EQ(const_expr.timestamp_value(), absl::UnixEpoch()); const_expr.set_timestamp_value(absl::UnixEpoch()); EXPECT_THAT(const_expr.has_timestamp_value(), IsTrue()); EXPECT_EQ(const_expr.timestamp_value(), absl::UnixEpoch()); } TEST(Constant, Equality) { EXPECT_EQ(Constant{}, Constant{}); Constant lhs_const_expr; Constant rhs_const_expr; lhs_const_expr.set_null_value(); rhs_const_expr.set_null_value(); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_bool_value(false); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_bool_value(false); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_int_value(0); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_int_value(0); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_uint_value(0); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_uint_value(0); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_double_value(0); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_double_value(0); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_bytes_value("foo"); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_bytes_value("foo"); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_string_value("foo"); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_string_value("foo"); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_duration_value(absl::ZeroDuration()); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_duration_value(absl::ZeroDuration()); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); lhs_const_expr.set_timestamp_value(absl::UnixEpoch()); rhs_const_expr.set_null_value(); EXPECT_NE(lhs_const_expr, rhs_const_expr); EXPECT_NE(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); rhs_const_expr.set_timestamp_value(absl::UnixEpoch()); EXPECT_EQ(lhs_const_expr, rhs_const_expr); EXPECT_EQ(rhs_const_expr, lhs_const_expr); EXPECT_NE(lhs_const_expr, Constant{}); EXPECT_NE(Constant{}, rhs_const_expr); } std::string Stringify(const Constant& constant) { return absl::StrFormat("%v", constant); } TEST(Constant, HasAbslStringify) { EXPECT_TRUE(absl::HasAbslStringify<Constant>::value); } TEST(Constant, AbslStringify) { Constant constant; EXPECT_EQ(Stringify(constant), "<unspecified>"); constant.set_null_value(); EXPECT_EQ(Stringify(constant), "null"); constant.set_bool_value(true); EXPECT_EQ(Stringify(constant), "true"); constant.set_int_value(1); EXPECT_EQ(Stringify(constant), "1"); constant.set_uint_value(1); EXPECT_EQ(Stringify(constant), "1u"); constant.set_double_value(1); EXPECT_EQ(Stringify(constant), "1.0"); constant.set_double_value(1.1); EXPECT_EQ(Stringify(constant), "1.1"); constant.set_double_value(NAN); EXPECT_EQ(Stringify(constant), "nan"); constant.set_double_value(INFINITY); EXPECT_EQ(Stringify(constant), "+infinity"); constant.set_double_value(-INFINITY); EXPECT_EQ(Stringify(constant), "-infinity"); constant.set_bytes_value("foo"); EXPECT_EQ(Stringify(constant), "b\"foo\""); constant.set_string_value("foo"); EXPECT_EQ(Stringify(constant), "\"foo\""); constant.set_duration_value(absl::Seconds(1)); EXPECT_EQ(Stringify(constant), "duration(\"1s\")"); constant.set_timestamp_value(absl::UnixEpoch() + absl::Seconds(1)); EXPECT_EQ(Stringify(constant), "timestamp(\"1970-01-01T00:00:01Z\")"); } } }
4
#ifndef THIRD_PARTY_CEL_CPP_BASE_AST_INTERNAL_EXPR_H_ #define THIRD_PARTY_CEL_CPP_BASE_AST_INTERNAL_EXPR_H_ #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "common/ast.h" #include "common/constant.h" #include "common/expr.h" namespace cel::ast_internal { using NullValue = std::nullptr_t; using Bytes = cel::BytesConstant; using Constant = cel::Constant; using ConstantKind = cel::ConstantKind; using Ident = cel::IdentExpr; using Expr = cel::Expr; using ExprKind = cel::ExprKind; using Select = cel::SelectExpr; using Call = cel::CallExpr; using CreateList = cel::ListExpr; using CreateStruct = cel::StructExpr; using Comprehension = cel::ComprehensionExpr; class Extension { public: class Version { public: Version() : major_(0), minor_(0) {} Version(int64_t major, int64_t minor) : major_(major), minor_(minor) {} Version(const Version& other) = default; Version(Version&& other) = default; Version& operator=(const Version& other) = default; Version& operator=(Version&& other) = default; static const Version& DefaultInstance(); int64_t major() const { return major_; } void set_major(int64_t val) { major_ = val; } int64_t minor() const { return minor_; } void set_minor(int64_t val) { minor_ = val; } bool operator==(const Version& other) const { return major_ == other.major_ && minor_ == other.minor_; } bool operator!=(const Version& other) const { return !operator==(other); } private: int64_t major_; int64_t minor_; }; enum class Component { kUnspecified, kParser, kTypeChecker, kRuntime }; static const Extension& DefaultInstance(); Extension() = default; Extension(std::string id, std::unique_ptr<Version> version, std::vector<Component> affected_components) : id_(std::move(id)), affected_components_(std::move(affected_components)), version_(std::move(version)) {} Extension(const Extension& other); Extension(Extension&& other) = default; Extension& operator=(const Extension& other); Extension& operator=(Extension&& other) = default; const std::string& id() const { return id_; } void set_id(std::string id) { id_ = std::move(id); } const std::vector<Component>& affected_components() const { return affected_components_; } std::vector<Component>& mutable_affected_components() { return affected_components_; } const Version& version() const { if (version_ == nullptr) { return Version::DefaultInstance(); } return *version_; } Version& mutable_version() { if (version_ == nullptr) { version_ = std::make_unique<Version>(); } return *version_; } void set_version(std::unique_ptr<Version> version) { version_ = std::move(version); } bool operator==(const Extension& other) const { return id_ == other.id_ && affected_components_ == other.affected_components_ && version() == other.version(); } bool operator!=(const Extension& other) const { return !operator==(other); } private: std::string id_; std::vector<Component> affected_components_; std::unique_ptr<Version> version_; }; class SourceInfo { public: SourceInfo() = default; SourceInfo(std::string syntax_version, std::string location, std::vector<int32_t> line_offsets, absl::flat_hash_map<int64_t, int32_t> positions, absl::flat_hash_map<int64_t, Expr> macro_calls, std::vector<Extension> extensions) : syntax_version_(std::move(syntax_version)), location_(std::move(location)), line_offsets_(std::move(line_offsets)), positions_(std::move(positions)), macro_calls_(std::move(macro_calls)), extensions_(std::move(extensions)) {} void set_syntax_version(std::string syntax_version) { syntax_version_ = std::move(syntax_version); } void set_location(std::string location) { location_ = std::move(location); } void set_line_offsets(std::vector<int32_t> line_offsets) { line_offsets_ = std::move(line_offsets); } void set_positions(absl::flat_hash_map<int64_t, int32_t> positions) { positions_ = std::move(positions); } void set_macro_calls(absl::flat_hash_map<int64_t, Expr> macro_calls) { macro_calls_ = std::move(macro_calls); } const std::string& syntax_version() const { return syntax_version_; } const std::string& location() const { return location_; } const std::vector<int32_t>& line_offsets() const { return line_offsets_; } std::vector<int32_t>& mutable_line_offsets() { return line_offsets_; } const absl::flat_hash_map<int64_t, int32_t>& positions() const { return positions_; } absl::flat_hash_map<int64_t, int32_t>& mutable_positions() { return positions_; } const absl::flat_hash_map<int64_t, Expr>& macro_calls() const { return macro_calls_; } absl::flat_hash_map<int64_t, Expr>& mutable_macro_calls() { return macro_calls_; } bool operator==(const SourceInfo& other) const { return syntax_version_ == other.syntax_version_ && location_ == other.location_ && line_offsets_ == other.line_offsets_ && positions_ == other.positions_ && macro_calls_ == other.macro_calls_ && extensions_ == other.extensions_; } bool operator!=(const SourceInfo& other) const { return !operator==(other); } const std::vector<Extension>& extensions() const { return extensions_; } std::vector<Extension>& mutable_extensions() { return extensions_; } private: std::string syntax_version_; std::string location_; std::vector<int32_t> line_offsets_; absl::flat_hash_map<int64_t, int32_t> positions_; absl::flat_hash_map<int64_t, Expr> macro_calls_; std::vector<Extension> extensions_; }; class ParsedExpr { public: ParsedExpr() = default; ParsedExpr(Expr expr, SourceInfo source_info) : expr_(std::move(expr)), source_info_(std::move(source_info)) {} ParsedExpr(ParsedExpr&& rhs) = default; ParsedExpr& operator=(ParsedExpr&& rhs) = default; void set_expr(Expr expr) { expr_ = std::move(expr); } void set_source_info(SourceInfo source_info) { source_info_ = std::move(source_info); } const Expr& expr() const { return expr_; } Expr& mutable_expr() { return expr_; } const SourceInfo& source_info() const { return source_info_; } SourceInfo& mutable_source_info() { return source_info_; } private: Expr expr_; SourceInfo source_info_; }; enum class PrimitiveType { kPrimitiveTypeUnspecified = 0, kBool = 1, kInt64 = 2, kUint64 = 3, kDouble = 4, kString = 5, kBytes = 6, }; enum class WellKnownType { kWellKnownTypeUnspecified = 0, kAny = 1, kTimestamp = 2, kDuration = 3, }; class Type; class ListType { public: ListType() = default; ListType(const ListType& rhs) : elem_type_(std::make_unique<Type>(rhs.elem_type())) {} ListType& operator=(const ListType& rhs) { elem_type_ = std::make_unique<Type>(rhs.elem_type()); return *this; } ListType(ListType&& rhs) = default; ListType& operator=(ListType&& rhs) = default; explicit ListType(std::unique_ptr<Type> elem_type) : elem_type_(std::move(elem_type)) {} void set_elem_type(std::unique_ptr<Type> elem_type) { elem_type_ = std::move(elem_type); } bool has_elem_type() const { return elem_type_ != nullptr; } const Type& elem_type() const; Type& mutable_elem_type() { if (elem_type_ == nullptr) { elem_type_ = std::make_unique<Type>(); } return *elem_type_; } bool operator==(const ListType& other) const; private: std::unique_ptr<Type> elem_type_; }; class MapType { public: MapType() = default; MapType(std::unique_ptr<Type> key_type, std::unique_ptr<Type> value_type) : key_type_(std::move(key_type)), value_type_(std::move(value_type)) {} MapType(const MapType& rhs) : key_type_(std::make_unique<Type>(rhs.key_type())), value_type_(std::make_unique<Type>(rhs.value_type())) {} MapType& operator=(const MapType& rhs) { key_type_ = std::make_unique<Type>(rhs.key_type()); value_type_ = std::make_unique<Type>(rhs.value_type()); return *this; } MapType(MapType&& rhs) = default; MapType& operator=(MapType&& rhs) = default; void set_key_type(std::unique_ptr<Type> key_type) { key_type_ = std::move(key_type); } void set_value_type(std::unique_ptr<Type> value_type) { value_type_ = std::move(value_type); } bool has_key_type() const { return key_type_ != nullptr; } bool has_value_type() const { return value_type_ != nullptr; } const Type& key_type() const; const Type& value_type() const; bool operator==(const MapType& other) const; Type& mutable_key_type() { if (key_type_ == nullptr) { key_type_ = std::make_unique<Type>(); } return *key_type_; } Type& mutable_value_type() { if (value_type_ == nullptr) { value_type_ = std::make_unique<Type>(); } return *value_type_; } private: std::unique_ptr<Type> key_type_; std::unique_ptr<Type> value_type_; }; class FunctionType { public: FunctionType() = default; FunctionType(std::unique_ptr<Type> result_type, std::vector<Type> arg_types); FunctionType(const FunctionType& other); FunctionType& operator=(const FunctionType& other); FunctionType(FunctionType&&) = default; FunctionType& operator=(FunctionType&&) = default; void set_result_type(std::unique_ptr<Type> result_type) { result_type_ = std::move(result_type); } void set_arg_types(std::vector<Type> arg_types); bool has_result_type() const { return result_type_ != nullptr; } const Type& result_type() const; Type& mutable_result_type() { if (result_type_ == nullptr) { result_type_ = std::make_unique<Type>(); } return *result_type_; } const std::vector<Type>& arg_types() const { return arg_types_; } std::vector<Type>& mutable_arg_types() { return arg_types_; } bool operator==(const FunctionType& other) const; private: std::unique_ptr<Type> result_type_; std::vector<Type> arg_types_; }; class AbstractType { public: AbstractType() = default; AbstractType(std::string name, std::vector<Type> parameter_types); void set_name(std::string name) { name_ = std::move(name); } void set_parameter_types(std::vector<Type> parameter_types); const std::string& name() const { return name_; } const std::vector<Type>& parameter_types() const { return parameter_types_; } std::vector<Type>& mutable_parameter_types() { return parameter_types_; } bool operator==(const AbstractType& other) const; private: std::string name_; std::vector<Type> parameter_types_; }; class PrimitiveTypeWrapper { public: explicit PrimitiveTypeWrapper(PrimitiveType type) : type_(std::move(type)) {} void set_type(PrimitiveType type) { type_ = std::move(type); } const PrimitiveType& type() const { return type_; } PrimitiveType& mutable_type() { return type_; } bool operator==(const PrimitiveTypeWrapper& other) const { return type_ == other.type_; } private: PrimitiveType type_; }; class MessageType { public: MessageType() = default; explicit MessageType(std::string type) : type_(std::move(type)) {} void set_type(std::string type) { type_ = std::move(type); } const std::string& type() const { return type_; } bool operator==(const MessageType& other) const { return type_ == other.type_; } private: std::string type_; }; class ParamType { public: ParamType() = default; explicit ParamType(std::string type) : type_(std::move(type)) {} void set_type(std::string type) { type_ = std::move(type); } const std::string& type() const { return type_; } bool operator==(const ParamType& other) const { return type_ == other.type_; } private: std::string type_; }; enum class ErrorType { kErrorTypeValue = 0 }; using DynamicType = absl::monostate; using TypeKind = absl::variant<DynamicType, NullValue, PrimitiveType, PrimitiveTypeWrapper, WellKnownType, ListType, MapType, FunctionType, MessageType, ParamType, std::unique_ptr<Type>, ErrorType, AbstractType>; class Type { public: Type() = default; explicit Type(TypeKind type_kind) : type_kind_(std::move(type_kind)) {} Type(const Type& other); Type& operator=(const Type& other); Type(Type&&) = default; Type& operator=(Type&&) = default; void set_type_kind(TypeKind type_kind) { type_kind_ = std::move(type_kind); } const TypeKind& type_kind() const { return type_kind_; } TypeKind& mutable_type_kind() { return type_kind_; } bool has_dyn() const { return absl::holds_alternative<DynamicType>(type_kind_); } bool has_null() const { return absl::holds_alternative<NullValue>(type_kind_); } bool has_primitive() const { return absl::holds_alternative<PrimitiveType>(type_kind_); } bool has_wrapper() const { return absl::holds_alternative<PrimitiveTypeWrapper>(type_kind_); } bool has_well_known() const { return absl::holds_alternative<WellKnownType>(type_kind_); } bool has_list_type() const { return absl::holds_alternative<ListType>(type_kind_); } bool has_map_type() const { return absl::holds_alternative<MapType>(type_kind_); } bool has_function() const { return absl::holds_alternative<FunctionType>(type_kind_); } bool has_message_type() const { return absl::holds_alternative<MessageType>(type_kind_); } bool has_type_param() const { return absl::holds_alternative<ParamType>(type_kind_); } bool has_type() const { return absl::holds_alternative<std::unique_ptr<Type>>(type_kind_); } bool has_error() const { return absl::holds_alternative<ErrorType>(type_kind_); } bool has_abstract_type() const { return absl::holds_alternative<AbstractType>(type_kind_); } NullValue null() const { auto* value = absl::get_if<NullValue>(&type_kind_); if (value != nullptr) { return *value; } return nullptr; } PrimitiveType primitive() const { auto* value = absl::get_if<PrimitiveType>(&type_kind_); if (value != nullptr) { return *value; } return PrimitiveType::kPrimitiveTypeUnspecified; } PrimitiveType wrapper() const { auto* value = absl::get_if<PrimitiveTypeWrapper>(&type_kind_); if (value != nullptr) { return value->type(); } return PrimitiveType::kPrimitiveTypeUnspecified; } WellKnownType well_known() const { auto* value = absl::get_if<WellKnownType>(&type_kind_); if (value != nullptr) { return *value; } return WellKnownType::kWellKnownTypeUnspecified; } const ListType& list_type() const { auto* value = absl::get_if<ListType>(&type_kind_); if (value != nullptr) { return *value; } static const ListType* default_list_type = new ListType(); return *default_list_type; } const MapType& map_type() const { auto* value = absl::get_if<MapType>(&type_kind_); if (value != nullptr) { return *value; } static const MapType* default_map_type = new MapType(); return *default_map_type; } const FunctionType& function() const { auto* value = absl::get_if<FunctionType>(&type_kind_); if (value != nullptr) { return *value; } static const FunctionType* default_function_type = new FunctionType(); return *default_function_type; } const MessageType& message_type() const { auto* value = absl::get_if<MessageType>(&type_kind_); if (value != nullptr) { return *value; } static const MessageType* default_message_type = new MessageType(); return *default_message_type; } const ParamType& type_param() const { auto* value = absl::get_if<ParamType>(&type_kind_); if (value != nullptr) { return *value; } static const ParamType* default_param_type = new ParamType(); return *default_param_type; } const Type& type() const; ErrorType error_type() const { auto* value = absl::get_if<ErrorType>(&type_kind_); if (value != nullptr) { return *value; } return ErrorType::kErrorTypeValue; } const AbstractType& abstract_type() const { auto* value = absl::get_if<AbstractType>(&type_kind_); if (value != nullptr) { return *value; } static const AbstractType* default_abstract_type = new AbstractType(); return *default_abstract_type; } bool operator==(const Type& other) const { return type_kind_ == other.type_kind_; } private: TypeKind type_kind_; }; class Reference { public: Reference() = default; Reference(std::string name, std::vector<std::string> overload_id, Constant value) : name_(std::move(name)), overload_id_(std::move(overload_id)), value_(std::move(value)) {} void set_name(std::string name) { name_ = std::move(name); } void set_overload_id(std::vector<std::string> overload_id) { overload_id_ = std::move(overload_id); } void set_value(Constant value) { value_ = std::move(value); } const std::string& name() const { return name_; } const std::vector<std::string>& overload_id() const { return overload_id_; } const Constant& value() const { if (value_.has_value()) { return value_.value(); } static const Constant* default_constant = new Constant; return *default_constant; } std::vector<std::string>& mutable_overload_id() { return overload_id_; } Constant& mutable_value() { if (!value_.has_value()) { value_.emplace(); } return *value_; } bool has_value() const { return value_.has_value(); } bool operator==(const Reference& other) const { return name_ == other.name_ && overload_id_ == other.overload_id_ && value() == other.value(); } private: std::string name_; std::vector<std::string> overload_id_; absl::optional<Constant> value_; }; class CheckedExpr { public: CheckedExpr() = default; CheckedExpr(absl::flat_hash_map<int64_t, Reference> reference_map, absl::flat_hash_map<int64_t, Type> type_map, SourceInfo source_info, std::string expr_version, Expr expr) : reference_map_(std::move(reference_map)), type_map_(std::move(type_map)), source_info_(std::move(source_info)), expr_version_(std::move(expr_version)), expr_(std::move(expr)) {} CheckedExpr(CheckedExpr&& rhs) = default; CheckedExpr& operator=(CheckedExpr&& rhs) = default; void set_reference_map( absl::flat_hash_map<int64_t, Reference> reference_map) { reference_map_ = std::move(reference_map); } void set_type_map(absl::flat_hash_map<int64_t, Type> type_map) { type_map_ = std::move(type_map); } void set_source_info(SourceInfo source_info) { source_info_ = std::move(source_info); } void set_expr_version(std::string expr_version) { expr_version_ = std::move(expr_version); } void set_expr(Expr expr) { expr_ = std::move(expr); } const absl::flat_hash_map<int64_t, Reference>& reference_map() const { return reference_map_; } absl::flat_hash_map<int64_t, Reference>& mutable_reference_map() { return reference_map_; } const absl::flat_hash_map<int64_t, Type>& type_map() const { return type_map_; } absl::flat_hash_map<int64_t, Type>& mutable_type_map() { return type_map_; } const SourceInfo& source_info() const { return source_info_; } SourceInfo& mutable_source_info() { return source_info_; } const std::string& expr_version() const { return expr_version_; } std::string& mutable_expr_version() { return expr_version_; } const Expr& expr() const { return expr_; } Expr& mutable_expr() { return expr_; } private: absl::flat_hash_map<int64_t, Reference> reference_map_; absl::flat_hash_map<int64_t, Type> type_map_; SourceInfo source_info_; std::string expr_version_; Expr expr_; }; inline FunctionType::FunctionType(std::unique_ptr<Type> result_type, std::vector<Type> arg_types) : result_type_(std::move(result_type)), arg_types_(std::move(arg_types)) {} inline void FunctionType::set_arg_types(std::vector<Type> arg_types) { arg_types_ = std::move(arg_types); } inline AbstractType::AbstractType(std::string name, std::vector<Type> parameter_types) : name_(std::move(name)), parameter_types_(std::move(parameter_types)) {} inline void AbstractType::set_parameter_types( std::vector<Type> parameter_types) { parameter_types_ = std::move(parameter_types); } inline bool AbstractType::operator==(const AbstractType& other) const { return name_ == other.name_ && parameter_types_ == other.parameter_types_; } } #endif #include "base/ast_internal/expr.h" #include <memory> #include <vector> #include "absl/base/no_destructor.h" #include "absl/functional/overload.h" #include "absl/types/variant.h" namespace cel::ast_internal { namespace { const Type& default_type() { static absl::NoDestructor<Type> type; return *type; } TypeKind CopyImpl(const TypeKind& other) { return absl::visit(absl::Overload( [](const std::unique_ptr<Type>& other) -> TypeKind { return std::make_unique<Type>(*other); }, [](const auto& other) -> TypeKind { return other; }), other); } } const Extension::Version& Extension::Version::DefaultInstance() { static absl::NoDestructor<Version> instance; return *instance; } const Extension& Extension::DefaultInstance() { static absl::NoDestructor<Extension> instance; return *instance; } Extension::Extension(const Extension& other) : id_(other.id_), affected_components_(other.affected_components_), version_(std::make_unique<Version>(*other.version_)) {} Extension& Extension::operator=(const Extension& other) { id_ = other.id_; affected_components_ = other.affected_components_; version_ = std::make_unique<Version>(*other.version_); return *this; } const Type& ListType::elem_type() const { if (elem_type_ != nullptr) { return *elem_type_; } return default_type(); } bool ListType::operator==(const ListType& other) const { return elem_type() == other.elem_type(); } const Type& MapType::key_type() const { if (key_type_ != nullptr) { return *key_type_; } return default_type(); } const Type& MapType::value_type() const { if (value_type_ != nullptr) { return *value_type_; } return default_type(); } bool MapType::operator==(const MapType& other) const { return key_type() == other.key_type() && value_type() == other.value_type(); } const Type& FunctionType::result_type() const { if (result_type_ != nullptr) { return *result_type_; } return default_type(); } bool FunctionType::operator==(const FunctionType& other) const { return result_type() == other.result_type() && arg_types_ == other.arg_types_; } const Type& Type::type() const { auto* v
#include "base/ast_internal/expr.h" #include <memory> #include <string> #include <utility> #include "absl/types/variant.h" #include "common/ast.h" #include "internal/testing.h" namespace cel { namespace ast_internal { namespace { TEST(AstTest, ParsedExpr) { ParsedExpr parsed_expr; auto& expr = parsed_expr.mutable_expr(); expr.set_id(1); expr.mutable_ident_expr().set_name("name"); auto& source_info = parsed_expr.mutable_source_info(); source_info.set_syntax_version("syntax_version"); source_info.set_location("location"); source_info.set_line_offsets({1, 2, 3}); source_info.set_positions({{1, 1}, {2, 2}}); ASSERT_TRUE(absl::holds_alternative<Ident>(parsed_expr.expr().kind())); ASSERT_EQ(absl::get<Ident>(parsed_expr.expr().kind()).name(), "name"); ASSERT_EQ(parsed_expr.source_info().syntax_version(), "syntax_version"); ASSERT_EQ(parsed_expr.source_info().location(), "location"); EXPECT_THAT(parsed_expr.source_info().line_offsets(), testing::UnorderedElementsAre(1, 2, 3)); EXPECT_THAT( parsed_expr.source_info().positions(), testing::UnorderedElementsAre(testing::Pair(1, 1), testing::Pair(2, 2))); } TEST(AstTest, ListTypeMutableConstruction) { ListType type; type.mutable_elem_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.elem_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, MapTypeMutableConstruction) { MapType type; type.mutable_key_type() = Type(PrimitiveType::kBool); type.mutable_value_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.key_type().type_kind()), PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.value_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, MapTypeComparatorKeyType) { MapType type; type.mutable_key_type() = Type(PrimitiveType::kBool); EXPECT_FALSE(type == MapType()); } TEST(AstTest, MapTypeComparatorValueType) { MapType type; type.mutable_value_type() = Type(PrimitiveType::kBool); EXPECT_FALSE(type == MapType()); } TEST(AstTest, FunctionTypeMutableConstruction) { FunctionType type; type.mutable_result_type() = Type(PrimitiveType::kBool); EXPECT_EQ(absl::get<PrimitiveType>(type.result_type().type_kind()), PrimitiveType::kBool); } TEST(AstTest, FunctionTypeComparatorArgTypes) { FunctionType type; type.mutable_arg_types().emplace_back(Type()); EXPECT_FALSE(type == FunctionType()); } TEST(AstTest, CheckedExpr) { CheckedExpr checked_expr; auto& expr = checked_expr.mutable_expr(); expr.set_id(1); expr.mutable_ident_expr().set_name("name"); auto& source_info = checked_expr.mutable_source_info(); source_info.set_syntax_version("syntax_version"); source_info.set_location("location"); source_info.set_line_offsets({1, 2, 3}); source_info.set_positions({{1, 1}, {2, 2}}); checked_expr.set_expr_version("expr_version"); checked_expr.mutable_type_map().insert( {1, Type(PrimitiveType(PrimitiveType::kBool))}); ASSERT_TRUE(absl::holds_alternative<Ident>(checked_expr.expr().kind())); ASSERT_EQ(absl::get<Ident>(checked_expr.expr().kind()).name(), "name"); ASSERT_EQ(checked_expr.source_info().syntax_version(), "syntax_version"); ASSERT_EQ(checked_expr.source_info().location(), "location"); EXPECT_THAT(checked_expr.source_info().line_offsets(), testing::UnorderedElementsAre(1, 2, 3)); EXPECT_THAT( checked_expr.source_info().positions(), testing::UnorderedElementsAre(testing::Pair(1, 1), testing::Pair(2, 2))); EXPECT_EQ(checked_expr.expr_version(), "expr_version"); } TEST(AstTest, ListTypeDefaults) { EXPECT_EQ(ListType().elem_type(), Type()); } TEST(AstTest, MapTypeDefaults) { EXPECT_EQ(MapType().key_type(), Type()); EXPECT_EQ(MapType().value_type(), Type()); } TEST(AstTest, FunctionTypeDefaults) { EXPECT_EQ(FunctionType().result_type(), Type()); } TEST(AstTest, TypeDefaults) { EXPECT_EQ(Type().null(), nullptr); EXPECT_EQ(Type().primitive(), PrimitiveType::kPrimitiveTypeUnspecified); EXPECT_EQ(Type().wrapper(), PrimitiveType::kPrimitiveTypeUnspecified); EXPECT_EQ(Type().well_known(), WellKnownType::kWellKnownTypeUnspecified); EXPECT_EQ(Type().list_type(), ListType()); EXPECT_EQ(Type().map_type(), MapType()); EXPECT_EQ(Type().function(), FunctionType()); EXPECT_EQ(Type().message_type(), MessageType()); EXPECT_EQ(Type().type_param(), ParamType()); EXPECT_EQ(Type().type(), Type()); EXPECT_EQ(Type().error_type(), ErrorType()); EXPECT_EQ(Type().abstract_type(), AbstractType()); } TEST(AstTest, TypeComparatorTest) { Type type; type.set_type_kind(std::make_unique<Type>(PrimitiveType::kBool)); EXPECT_FALSE(type.type() == Type()); } TEST(AstTest, ExprMutableConstruction) { Expr expr; expr.mutable_const_expr().set_bool_value(true); ASSERT_TRUE(expr.has_const_expr()); EXPECT_TRUE(expr.const_expr().bool_value()); expr.mutable_ident_expr().set_name("expr"); ASSERT_TRUE(expr.has_ident_expr()); EXPECT_FALSE(expr.has_const_expr()); EXPECT_EQ(expr.ident_expr().name(), "expr"); expr.mutable_select_expr().set_field("field"); ASSERT_TRUE(expr.has_select_expr()); EXPECT_FALSE(expr.has_ident_expr()); EXPECT_EQ(expr.select_expr().field(), "field"); expr.mutable_call_expr().set_function("function"); ASSERT_TRUE(expr.has_call_expr()); EXPECT_FALSE(expr.has_select_expr()); EXPECT_EQ(expr.call_expr().function(), "function"); expr.mutable_list_expr(); EXPECT_TRUE(expr.has_list_expr()); EXPECT_FALSE(expr.has_call_expr()); expr.mutable_struct_expr().set_name("name"); ASSERT_TRUE(expr.has_struct_expr()); EXPECT_EQ(expr.struct_expr().name(), "name"); EXPECT_FALSE(expr.has_list_expr()); expr.mutable_comprehension_expr().set_accu_var("accu_var"); ASSERT_TRUE(expr.has_comprehension_expr()); EXPECT_FALSE(expr.has_list_expr()); EXPECT_EQ(expr.comprehension_expr().accu_var(), "accu_var"); } TEST(AstTest, ReferenceConstantDefaultValue) { Reference reference; EXPECT_EQ(reference.value(), Constant()); } TEST(AstTest, TypeCopyable) { Type type = Type(PrimitiveType::kBool); Type type2 = type; EXPECT_TRUE(type2.has_primitive()); EXPECT_EQ(type2, type); type = Type(ListType(std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; EXPECT_TRUE(type2.has_list_type()); EXPECT_EQ(type2, type); type = Type(MapType(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; EXPECT_TRUE(type2.has_map_type()); EXPECT_EQ(type2, type); type = Type(FunctionType(std::make_unique<Type>(PrimitiveType::kBool), {})); type2 = type; EXPECT_TRUE(type2.has_function()); EXPECT_EQ(type2, type); type = Type(AbstractType("optional", {Type(PrimitiveType::kBool)})); type2 = type; EXPECT_TRUE(type2.has_abstract_type()); EXPECT_EQ(type2, type); } TEST(AstTest, TypeMoveable) { Type type = Type(PrimitiveType::kBool); Type type2 = type; Type type3 = std::move(type); EXPECT_TRUE(type2.has_primitive()); EXPECT_EQ(type2, type3); type = Type(ListType(std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_list_type()); EXPECT_EQ(type2, type3); type = Type(MapType(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool))); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_map_type()); EXPECT_EQ(type2, type3); type = Type(FunctionType(std::make_unique<Type>(PrimitiveType::kBool), {})); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_function()); EXPECT_EQ(type2, type3); type = Type(AbstractType("optional", {Type(PrimitiveType::kBool)})); type2 = type; type3 = std::move(type); EXPECT_TRUE(type2.has_abstract_type()); EXPECT_EQ(type2, type3); } TEST(AstTest, NestedTypeKindCopyAssignable) { ListType list_type(std::make_unique<Type>(PrimitiveType::kBool)); ListType list_type2; list_type2 = list_type; EXPECT_EQ(list_type2, list_type); MapType map_type(std::make_unique<Type>(PrimitiveType::kBool), std::make_unique<Type>(PrimitiveType::kBool)); MapType map_type2; map_type2 = map_type; AbstractType abstract_type( "abstract", {Type(PrimitiveType::kBool), Type(PrimitiveType::kBool)}); AbstractType abstract_type2; abstract_type2 = abstract_type; EXPECT_EQ(abstract_type2, abstract_type); FunctionType function_type( std::make_unique<Type>(PrimitiveType::kBool), {Type(PrimitiveType::kBool), Type(PrimitiveType::kBool)}); FunctionType function_type2; function_type2 = function_type; EXPECT_EQ(function_type2, function_type); } TEST(AstTest, ExtensionSupported) { SourceInfo source_info; source_info.mutable_extensions().push_back( Extension("constant_folding", nullptr, {})); EXPECT_EQ(source_info.extensions()[0], Extension("constant_folding", nullptr, {})); } TEST(AstTest, ExtensionEquality) { Extension extension1("constant_folding", nullptr, {}); EXPECT_EQ(extension1, Extension("constant_folding", nullptr, {})); EXPECT_NE(extension1, Extension("constant_folding", std::make_unique<Extension::Version>(1, 0), {})); EXPECT_NE(extension1, Extension("constant_folding", nullptr, {Extension::Component::kRuntime})); EXPECT_EQ(extension1, Extension("constant_folding", std::make_unique<Extension::Version>(0, 0), {})); } } } }
5
#ifndef THIRD_PARTY_CEL_CPP_COMMON_DECL_H_ #define THIRD_PARTY_CEL_CPP_COMMON_DECL_H_ #include <cstddef> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/constant.h" #include "common/type.h" #include "internal/status_macros.h" namespace cel { class VariableDecl; class OverloadDecl; class FunctionDecl; class VariableDecl final { public: VariableDecl() = default; VariableDecl(const VariableDecl&) = default; VariableDecl(VariableDecl&&) = default; VariableDecl& operator=(const VariableDecl&) = default; VariableDecl& operator=(VariableDecl&&) = default; ABSL_MUST_USE_RESULT const std::string& name() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return name_; } void set_name(std::string name) { name_ = std::move(name); } void set_name(absl::string_view name) { name_.assign(name.data(), name.size()); } void set_name(const char* name) { set_name(absl::NullSafeStringView(name)); } ABSL_MUST_USE_RESULT std::string release_name() { std::string released; released.swap(name_); return released; } ABSL_MUST_USE_RESULT const Type& type() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return type_; } ABSL_MUST_USE_RESULT Type& mutable_type() ABSL_ATTRIBUTE_LIFETIME_BOUND { return type_; } void set_type(Type type) { mutable_type() = std::move(type); } ABSL_MUST_USE_RESULT bool has_value() const { return value_.has_value(); } ABSL_MUST_USE_RESULT const Constant& value() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return has_value() ? *value_ : Constant::default_instance(); } Constant& mutable_value() ABSL_ATTRIBUTE_LIFETIME_BOUND { if (!has_value()) { value_.emplace(); } return *value_; } void set_value(absl::optional<Constant> value) { value_ = std::move(value); } void set_value(Constant value) { mutable_value() = std::move(value); } ABSL_MUST_USE_RESULT Constant release_value() { absl::optional<Constant> released; released.swap(value_); return std::move(released).value_or(Constant{}); } private: std::string name_; Type type_ = DynType{}; absl::optional<Constant> value_; }; inline VariableDecl MakeVariableDecl(std::string name, Type type) { VariableDecl variable_decl; variable_decl.set_name(std::move(name)); variable_decl.set_type(std::move(type)); return variable_decl; } inline VariableDecl MakeConstantVariableDecl(std::string name, Type type, Constant value) { VariableDecl variable_decl; variable_decl.set_name(std::move(name)); variable_decl.set_type(std::move(type)); variable_decl.set_value(std::move(value)); return variable_decl; } inline bool operator==(const VariableDecl& lhs, const VariableDecl& rhs) { return lhs.name() == rhs.name() && lhs.type() == rhs.type() && lhs.has_value() == rhs.has_value() && lhs.value() == rhs.value(); } inline bool operator!=(const VariableDecl& lhs, const VariableDecl& rhs) { return !operator==(lhs, rhs); } class OverloadDecl final { public: OverloadDecl() = default; OverloadDecl(const OverloadDecl&) = default; OverloadDecl(OverloadDecl&&) = default; OverloadDecl& operator=(const OverloadDecl&) = default; OverloadDecl& operator=(OverloadDecl&&) = default; ABSL_MUST_USE_RESULT const std::string& id() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return id_; } void set_id(std::string id) { id_ = std::move(id); } void set_id(absl::string_view id) { id_.assign(id.data(), id.size()); } void set_id(const char* id) { set_id(absl::NullSafeStringView(id)); } ABSL_MUST_USE_RESULT std::string release_id() { std::string released; released.swap(id_); return released; } ABSL_MUST_USE_RESULT const std::vector<Type>& args() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return args_; } ABSL_MUST_USE_RESULT std::vector<Type>& mutable_args() ABSL_ATTRIBUTE_LIFETIME_BOUND { return args_; } ABSL_MUST_USE_RESULT std::vector<Type> release_args() { std::vector<Type> released; released.swap(mutable_args()); return released; } ABSL_MUST_USE_RESULT const Type& result() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return result_; } ABSL_MUST_USE_RESULT Type& mutable_result() ABSL_ATTRIBUTE_LIFETIME_BOUND { return result_; } void set_result(Type result) { mutable_result() = std::move(result); } ABSL_MUST_USE_RESULT bool member() const { return member_; } void set_member(bool member) { member_ = member; } absl::flat_hash_set<std::string> GetTypeParams() const; private: std::string id_; std::vector<Type> args_; Type result_ = DynType{}; bool member_ = false; }; inline bool operator==(const OverloadDecl& lhs, const OverloadDecl& rhs) { return lhs.id() == rhs.id() && absl::c_equal(lhs.args(), rhs.args()) && lhs.result() == rhs.result() && lhs.member() == rhs.member(); } inline bool operator!=(const OverloadDecl& lhs, const OverloadDecl& rhs) { return !operator==(lhs, rhs); } template <typename... Args> OverloadDecl MakeOverloadDecl(std::string id, Type result, Args&&... args) { OverloadDecl overload_decl; overload_decl.set_id(std::move(id)); overload_decl.set_result(std::move(result)); overload_decl.set_member(false); auto& mutable_args = overload_decl.mutable_args(); mutable_args.reserve(sizeof...(Args)); (mutable_args.push_back(std::forward<Args>(args)), ...); return overload_decl; } template <typename... Args> OverloadDecl MakeMemberOverloadDecl(std::string id, Type result, Args&&... args) { OverloadDecl overload_decl; overload_decl.set_id(std::move(id)); overload_decl.set_result(std::move(result)); overload_decl.set_member(true); auto& mutable_args = overload_decl.mutable_args(); mutable_args.reserve(sizeof...(Args)); (mutable_args.push_back(std::forward<Args>(args)), ...); return overload_decl; } struct OverloadDeclHash { using is_transparent = void; size_t operator()(const OverloadDecl& overload_decl) const { return (*this)(overload_decl.id()); } size_t operator()(absl::string_view id) const { return absl::HashOf(id); } }; struct OverloadDeclEqualTo { using is_transparent = void; bool operator()(const OverloadDecl& lhs, const OverloadDecl& rhs) const { return (*this)(lhs.id(), rhs.id()); } bool operator()(const OverloadDecl& lhs, absl::string_view rhs) const { return (*this)(lhs.id(), rhs); } bool operator()(absl::string_view lhs, const OverloadDecl& rhs) const { return (*this)(lhs, rhs.id()); } bool operator()(absl::string_view lhs, absl::string_view rhs) const { return lhs == rhs; } }; using OverloadDeclHashSet = absl::flat_hash_set<OverloadDecl, OverloadDeclHash, OverloadDeclEqualTo>; template <typename... Overloads> absl::StatusOr<FunctionDecl> MakeFunctionDecl(std::string name, Overloads&&... overloads); class FunctionDecl final { public: FunctionDecl() = default; FunctionDecl(const FunctionDecl&) = default; FunctionDecl(FunctionDecl&&) = default; FunctionDecl& operator=(const FunctionDecl&) = default; FunctionDecl& operator=(FunctionDecl&&) = default; ABSL_MUST_USE_RESULT const std::string& name() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return name_; } void set_name(std::string name) { name_ = std::move(name); } void set_name(absl::string_view name) { name_.assign(name.data(), name.size()); } void set_name(const char* name) { set_name(absl::NullSafeStringView(name)); } ABSL_MUST_USE_RESULT std::string release_name() { std::string released; released.swap(name_); return released; } absl::Status AddOverload(const OverloadDecl& overload) { absl::Status status; AddOverloadImpl(overload, status); return status; } absl::Status AddOverload(OverloadDecl&& overload) { absl::Status status; AddOverloadImpl(std::move(overload), status); return status; } ABSL_MUST_USE_RESULT const OverloadDeclHashSet& overloads() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return overloads_; } ABSL_MUST_USE_RESULT OverloadDeclHashSet release_overloads() { OverloadDeclHashSet released; released.swap(overloads_); return released; } private: template <typename... Overloads> friend absl::StatusOr<FunctionDecl> MakeFunctionDecl( std::string name, Overloads&&... overloads); void AddOverloadImpl(const OverloadDecl& overload, absl::Status& status); void AddOverloadImpl(OverloadDecl&& overload, absl::Status& status); std::string name_; OverloadDeclHashSet overloads_; }; inline bool operator==(const FunctionDecl& lhs, const FunctionDecl& rhs) { return lhs.name() == rhs.name() && absl::c_equal(lhs.overloads(), rhs.overloads()); } inline bool operator!=(const FunctionDecl& lhs, const FunctionDecl& rhs) { return !operator==(lhs, rhs); } template <typename... Overloads> absl::StatusOr<FunctionDecl> MakeFunctionDecl(std::string name, Overloads&&... overloads) { FunctionDecl function_decl; function_decl.set_name(std::move(name)); function_decl.overloads_.reserve(sizeof...(Overloads)); absl::Status status; (function_decl.AddOverloadImpl(std::forward<Overloads>(overloads), status), ...); CEL_RETURN_IF_ERROR(status); return function_decl; } namespace common_internal { bool TypeIsAssignable(TypeView to, TypeView from); } } #endif #include "common/decl.h" #include <cstddef> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "common/casting.h" #include "common/type.h" #include "common/type_kind.h" namespace cel { namespace common_internal { bool TypeIsAssignable(TypeView to, TypeView from) { if (to == from) { return true; } const auto to_kind = to.kind(); if (to_kind == TypeKind::kDyn) { return true; } switch (to_kind) { case TypeKind::kBoolWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(BoolTypeView{}, from); case TypeKind::kIntWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(IntTypeView{}, from); case TypeKind::kUintWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(UintTypeView{}, from); case TypeKind::kDoubleWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(DoubleTypeView{}, from); case TypeKind::kBytesWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(BytesTypeView{}, from); case TypeKind::kStringWrapper: return TypeIsAssignable(NullTypeView{}, from) || TypeIsAssignable(StringTypeView{}, from); default: break; } const auto from_kind = from.kind(); if (to_kind != from_kind || to.name() != from.name()) { return false; } const auto& to_params = to.parameters(); const auto& from_params = from.parameters(); const auto params_size = to_params.size(); if (params_size != from_params.size()) { return false; } for (size_t i = 0; i < params_size; ++i) { if (!TypeIsAssignable(to_params[i], from_params[i])) { return false; } } return true; } } namespace { bool SignaturesOverlap(const OverloadDecl& lhs, const OverloadDecl& rhs) { if (lhs.member() != rhs.member()) { return false; } const auto& lhs_args = lhs.args(); const auto& rhs_args = rhs.args(); const auto args_size = lhs_args.size(); if (args_size != rhs_args.size()) { return false; } bool args_overlap = true; for (size_t i = 0; i < args_size; ++i) { args_overlap = args_overlap && (common_internal::TypeIsAssignable(lhs_args[i], rhs_args[i]) || common_internal::TypeIsAssignable(rhs_args[i], lhs_args[i])); } return args_overlap; } template <typename Overload> void AddOverloadInternal(OverloadDeclHashSet& overloads, Overload&& overload, absl::Status& status) { if (!status.ok()) { return; } if (auto it = overloads.find(overload.id()); it != overloads.end()) { status = absl::AlreadyExistsError( absl::StrCat("overload already exists: ", overload.id())); return; } for (const auto& existing : overloads) { if (SignaturesOverlap(overload, existing)) { status = absl::InvalidArgumentError( absl::StrCat("overload signature collision: ", existing.id(), " collides with ", overload.id())); return; } } const auto inserted = overloads.insert(std::forward<Overload>(overload)).second; ABSL_DCHECK(inserted); } void CollectTypeParams(absl::flat_hash_set<std::string>& type_params, TypeView type) { const auto kind = type.kind(); switch (kind) { case TypeKind::kList: { const auto& list_type = cel::Cast<ListTypeView>(type); CollectTypeParams(type_params, list_type.element()); } break; case TypeKind::kMap: { const auto& map_type = cel::Cast<MapTypeView>(type); CollectTypeParams(type_params, map_type.key()); CollectTypeParams(type_params, map_type.value()); } break; case TypeKind::kOpaque: { const auto& opaque_type = cel::Cast<OpaqueTypeView>(type); for (const auto& param : opaque_type.parameters()) { CollectTypeParams(type_params, param); } } break; case TypeKind::kFunction: { const auto& function_type = cel::Cast<FunctionTypeView>(type); CollectTypeParams(type_params, function_type.result()); for (const auto& arg : function_type.args()) { CollectTypeParams(type_params, arg); } } break; case TypeKind::kTypeParam: type_params.emplace(cel::Cast<TypeParamTypeView>(type).name()); break; default: break; } } } absl::flat_hash_set<std::string> OverloadDecl::GetTypeParams() const { absl::flat_hash_set<std::string> type_params; CollectTypeParams(type_params, result()); for (const auto& arg : args()) { CollectTypeParams(type_params, arg); } return type_params; } void FunctionDecl::AddOverloadImpl(const OverloadDecl& overload, absl::Status& status) { AddOverloadInternal(overloads_, overload, status); } void FunctionDecl::AddOverloadImpl(OverloadDecl&& overload, absl::Status& status) { AddOverloadInternal(overloads_, std::move(overload), status); } }
#include "common/decl.h" #include "absl/status/status.h" #include "common/constant.h" #include "common/memory.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { using testing::ElementsAre; using testing::IsEmpty; using testing::UnorderedElementsAre; using cel::internal::StatusIs; TEST(VariableDecl, Name) { VariableDecl variable_decl; EXPECT_THAT(variable_decl.name(), IsEmpty()); variable_decl.set_name("foo"); EXPECT_EQ(variable_decl.name(), "foo"); EXPECT_EQ(variable_decl.release_name(), "foo"); EXPECT_THAT(variable_decl.name(), IsEmpty()); } TEST(VariableDecl, Type) { VariableDecl variable_decl; EXPECT_EQ(variable_decl.type(), DynType{}); variable_decl.set_type(StringType{}); EXPECT_EQ(variable_decl.type(), StringType{}); } TEST(VariableDecl, Value) { VariableDecl variable_decl; EXPECT_FALSE(variable_decl.has_value()); EXPECT_EQ(variable_decl.value(), Constant{}); Constant value; value.set_bool_value(true); variable_decl.set_value(value); EXPECT_TRUE(variable_decl.has_value()); EXPECT_EQ(variable_decl.value(), value); EXPECT_EQ(variable_decl.release_value(), value); EXPECT_EQ(variable_decl.value(), Constant{}); } Constant MakeBoolConstant(bool value) { Constant constant; constant.set_bool_value(value); return constant; } TEST(VariableDecl, Equality) { VariableDecl variable_decl; EXPECT_EQ(variable_decl, VariableDecl{}); variable_decl.mutable_value().set_bool_value(true); EXPECT_NE(variable_decl, VariableDecl{}); EXPECT_EQ(MakeVariableDecl("foo", StringType{}), MakeVariableDecl("foo", StringType{})); EXPECT_EQ(MakeVariableDecl("foo", StringType{}), MakeVariableDecl("foo", StringType{})); EXPECT_EQ( MakeConstantVariableDecl("foo", StringType{}, MakeBoolConstant(true)), MakeConstantVariableDecl("foo", StringType{}, MakeBoolConstant(true))); EXPECT_EQ( MakeConstantVariableDecl("foo", StringType{}, MakeBoolConstant(true)), MakeConstantVariableDecl("foo", StringType{}, MakeBoolConstant(true))); } TEST(OverloadDecl, Id) { OverloadDecl overload_decl; EXPECT_THAT(overload_decl.id(), IsEmpty()); overload_decl.set_id("foo"); EXPECT_EQ(overload_decl.id(), "foo"); EXPECT_EQ(overload_decl.release_id(), "foo"); EXPECT_THAT(overload_decl.id(), IsEmpty()); } TEST(OverloadDecl, Result) { OverloadDecl overload_decl; EXPECT_EQ(overload_decl.result(), DynType{}); overload_decl.set_result(StringType{}); EXPECT_EQ(overload_decl.result(), StringType{}); } TEST(OverloadDecl, Args) { OverloadDecl overload_decl; EXPECT_THAT(overload_decl.args(), IsEmpty()); overload_decl.mutable_args().push_back(StringType{}); EXPECT_THAT(overload_decl.args(), ElementsAre(StringType{})); EXPECT_THAT(overload_decl.release_args(), ElementsAre(StringType{})); EXPECT_THAT(overload_decl.args(), IsEmpty()); } TEST(OverloadDecl, Member) { OverloadDecl overload_decl; EXPECT_FALSE(overload_decl.member()); overload_decl.set_member(true); EXPECT_TRUE(overload_decl.member()); } TEST(OverloadDecl, Equality) { OverloadDecl overload_decl; EXPECT_EQ(overload_decl, OverloadDecl{}); overload_decl.set_member(true); EXPECT_NE(overload_decl, OverloadDecl{}); } TEST(OverloadDecl, GetTypeParams) { auto memory_manager = MemoryManagerRef::ReferenceCounting(); auto overload_decl = MakeOverloadDecl( "foo", ListType(memory_manager, TypeParamType(memory_manager, "A")), MapType(memory_manager, TypeParamType(memory_manager, "B"), TypeParamType(memory_manager, "C")), OpaqueType(memory_manager, "bar", {FunctionType(memory_manager, TypeParamType(memory_manager, "D"), {})})); EXPECT_THAT(overload_decl.GetTypeParams(), UnorderedElementsAre("A", "B", "C", "D")); } TEST(FunctionDecl, Name) { FunctionDecl function_decl; EXPECT_THAT(function_decl.name(), IsEmpty()); function_decl.set_name("foo"); EXPECT_EQ(function_decl.name(), "foo"); EXPECT_EQ(function_decl.release_name(), "foo"); EXPECT_THAT(function_decl.name(), IsEmpty()); } TEST(FunctionDecl, Overloads) { ASSERT_OK_AND_ASSIGN( auto function_decl, MakeFunctionDecl( "hello", MakeOverloadDecl("foo", StringType{}, StringType{}), MakeMemberOverloadDecl("bar", StringType{}, StringType{}))); EXPECT_THAT(function_decl.AddOverload( MakeOverloadDecl("baz", DynType{}, StringType{})), StatusIs(absl::StatusCode::kInvalidArgument)); } using common_internal::TypeIsAssignable; TEST(TypeIsAssignable, BoolWrapper) { EXPECT_TRUE(TypeIsAssignable(BoolWrapperTypeView{}, BoolWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(BoolWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(BoolWrapperTypeView{}, BoolTypeView{})); EXPECT_FALSE(TypeIsAssignable(BoolWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, IntWrapper) { EXPECT_TRUE(TypeIsAssignable(IntWrapperTypeView{}, IntWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(IntWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(IntWrapperTypeView{}, IntTypeView{})); EXPECT_FALSE(TypeIsAssignable(IntWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, UintWrapper) { EXPECT_TRUE(TypeIsAssignable(UintWrapperTypeView{}, UintWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(UintWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(UintWrapperTypeView{}, UintTypeView{})); EXPECT_FALSE(TypeIsAssignable(UintWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, DoubleWrapper) { EXPECT_TRUE( TypeIsAssignable(DoubleWrapperTypeView{}, DoubleWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(DoubleWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(DoubleWrapperTypeView{}, DoubleTypeView{})); EXPECT_FALSE(TypeIsAssignable(DoubleWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, BytesWrapper) { EXPECT_TRUE(TypeIsAssignable(BytesWrapperTypeView{}, BytesWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(BytesWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(BytesWrapperTypeView{}, BytesTypeView{})); EXPECT_FALSE(TypeIsAssignable(BytesWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, StringWrapper) { EXPECT_TRUE( TypeIsAssignable(StringWrapperTypeView{}, StringWrapperTypeView{})); EXPECT_TRUE(TypeIsAssignable(StringWrapperTypeView{}, NullTypeView{})); EXPECT_TRUE(TypeIsAssignable(StringWrapperTypeView{}, StringTypeView{})); EXPECT_FALSE(TypeIsAssignable(StringWrapperTypeView{}, DurationTypeView{})); } TEST(TypeIsAssignable, Complex) { auto memory_manager = MemoryManagerRef::ReferenceCounting(); EXPECT_TRUE(TypeIsAssignable(OptionalType(memory_manager, DynTypeView{}), OptionalType(memory_manager, StringTypeView{}))); EXPECT_FALSE( TypeIsAssignable(OptionalType(memory_manager, BoolTypeView{}), OptionalType(memory_manager, StringTypeView{}))); } } }
6
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPE_FACTORY_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPE_FACTORY_H_ #include "absl/strings/string_view.h" #include "common/memory.h" #include "common/sized_input_view.h" #include "common/type.h" namespace cel { namespace common_internal { class PiecewiseValueManager; } class TypeFactory { public: virtual ~TypeFactory() = default; virtual MemoryManagerRef GetMemoryManager() const = 0; ListType CreateListType(TypeView element); MapType CreateMapType(TypeView key, TypeView value); StructType CreateStructType(absl::string_view name); OpaqueType CreateOpaqueType(absl::string_view name, const SizedInputView<TypeView>& parameters); OptionalType CreateOptionalType(TypeView parameter); ListTypeView GetDynListType(); MapTypeView GetDynDynMapType(); MapTypeView GetStringDynMapType(); OptionalTypeView GetDynOptionalType(); NullType GetNullType() { return NullType{}; } ErrorType GetErrorType() { return ErrorType{}; } DynType GetDynType() { return DynType{}; } AnyType GetAnyType() { return AnyType{}; } BoolType GetBoolType() { return BoolType{}; } IntType GetIntType() { return IntType{}; } UintType GetUintType() { return UintType{}; } DoubleType GetDoubleType() { return DoubleType{}; } StringType GetStringType() { return StringType{}; } BytesType GetBytesType() { return BytesType{}; } DurationType GetDurationType() { return DurationType{}; } TimestampType GetTimestampType() { return TimestampType{}; } TypeType GetTypeType() { return TypeType{}; } UnknownType GetUnknownType() { return UnknownType{}; } BoolWrapperType GetBoolWrapperType() { return BoolWrapperType{}; } BytesWrapperType GetBytesWrapperType() { return BytesWrapperType{}; } DoubleWrapperType GetDoubleWrapperType() { return DoubleWrapperType{}; } IntWrapperType GetIntWrapperType() { return IntWrapperType{}; } StringWrapperType GetStringWrapperType() { return StringWrapperType{}; } UintWrapperType GetUintWrapperType() { return UintWrapperType{}; } Type GetJsonValueType() { return DynType{}; } ListType GetJsonListType() { return ListType(GetDynListType()); } MapType GetJsonMapType() { return MapType(GetStringDynMapType()); } protected: friend class common_internal::PiecewiseValueManager; virtual ListType CreateListTypeImpl(TypeView element) = 0; virtual MapType CreateMapTypeImpl(TypeView key, TypeView value) = 0; virtual StructType CreateStructTypeImpl(absl::string_view name) = 0; virtual OpaqueType CreateOpaqueTypeImpl( absl::string_view name, const SizedInputView<TypeView>& parameters) = 0; }; } #endif #include "common/type_factory.h" #include "absl/base/attributes.h" #include "absl/log/absl_check.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/sized_input_view.h" #include "common/type.h" #include "common/type_kind.h" #include "common/types/type_cache.h" #include "internal/names.h" namespace cel { namespace { using common_internal::ListTypeCacheMap; using common_internal::MapTypeCacheMap; using common_internal::OpaqueTypeCacheMap; using common_internal::ProcessLocalTypeCache; using common_internal::StructTypeCacheMap; bool IsValidMapKeyType(TypeView type) { switch (type.kind()) { case TypeKind::kDyn: ABSL_FALLTHROUGH_INTENDED; case TypeKind::kError: ABSL_FALLTHROUGH_INTENDED; case TypeKind::kBool: ABSL_FALLTHROUGH_INTENDED; case TypeKind::kInt: ABSL_FALLTHROUGH_INTENDED; case TypeKind::kUint: ABSL_FALLTHROUGH_INTENDED; case TypeKind::kString: return true; default: return false; } } } ListType TypeFactory::CreateListType(TypeView element) { if (auto list_type = ProcessLocalTypeCache::Get()->FindListType(element); list_type.has_value()) { return ListType(*list_type); } return CreateListTypeImpl(element); } MapType TypeFactory::CreateMapType(TypeView key, TypeView value) { ABSL_DCHECK(IsValidMapKeyType(key)) << key; if (auto map_type = ProcessLocalTypeCache::Get()->FindMapType(key, value); map_type.has_value()) { return MapType(*map_type); } return CreateMapTypeImpl(key, value); } StructType TypeFactory::CreateStructType(absl::string_view name) { ABSL_DCHECK(internal::IsValidRelativeName(name)) << name; return CreateStructTypeImpl(name); } OpaqueType TypeFactory::CreateOpaqueType( absl::string_view name, const SizedInputView<TypeView>& parameters) { ABSL_DCHECK(internal::IsValidRelativeName(name)) << name; if (auto opaque_type = ProcessLocalTypeCache::Get()->FindOpaqueType(name, parameters); opaque_type.has_value()) { return OpaqueType(*opaque_type); } return CreateOpaqueTypeImpl(name, parameters); } OptionalType TypeFactory::CreateOptionalType(TypeView parameter) { return Cast<OptionalType>(CreateOpaqueType(OptionalType::kName, {parameter})); } ListTypeView TypeFactory::GetDynListType() { return ProcessLocalTypeCache::Get()->GetDynListType(); } MapTypeView TypeFactory::GetDynDynMapType() { return ProcessLocalTypeCache::Get()->GetDynDynMapType(); } MapTypeView TypeFactory::GetStringDynMapType() { return ProcessLocalTypeCache::Get()->GetStringDynMapType(); } OptionalTypeView TypeFactory::GetDynOptionalType() { return ProcessLocalTypeCache::Get()->GetDynOptionalType(); } }
#include "common/type_factory.h" #include <ostream> #include <sstream> #include <string> #include <tuple> #include "absl/types/optional.h" #include "common/memory.h" #include "common/memory_testing.h" #include "common/type.h" #include "common/type_introspector.h" #include "common/type_manager.h" #include "common/types/type_cache.h" #include "internal/testing.h" namespace cel { namespace { using common_internal::ProcessLocalTypeCache; using testing::_; using testing::Eq; using testing::Ne; using testing::TestParamInfo; using testing::TestWithParam; enum class ThreadSafety { kCompatible, kSafe, }; std::ostream& operator<<(std::ostream& out, ThreadSafety thread_safety) { switch (thread_safety) { case ThreadSafety::kCompatible: return out << "THREAD_SAFE"; case ThreadSafety::kSafe: return out << "THREAD_COMPATIBLE"; } } class TypeFactoryTest : public common_internal::ThreadCompatibleMemoryTest<ThreadSafety> { public: void SetUp() override { ThreadCompatibleMemoryTest::SetUp(); switch (thread_safety()) { case ThreadSafety::kCompatible: type_manager_ = NewThreadCompatibleTypeManager( memory_manager(), NewThreadCompatibleTypeIntrospector(memory_manager())); break; case ThreadSafety::kSafe: type_manager_ = NewThreadSafeTypeManager( memory_manager(), NewThreadSafeTypeIntrospector(memory_manager())); break; } } void TearDown() override { Finish(); } void Finish() { type_manager_.reset(); ThreadCompatibleMemoryTest::Finish(); } TypeFactory& type_factory() const { return **type_manager_; } ThreadSafety thread_safety() const { return std::get<1>(GetParam()); } static std::string ToString( TestParamInfo<std::tuple<MemoryManagement, ThreadSafety>> param) { std::ostringstream out; out << std::get<0>(param.param) << "_" << std::get<1>(param.param); return out.str(); } private: absl::optional<Shared<TypeManager>> type_manager_; }; TEST_P(TypeFactoryTest, ListType) { auto list_type1 = type_factory().CreateListType(StringType()); EXPECT_THAT(type_factory().CreateListType(StringType()), Eq(list_type1)); EXPECT_THAT(type_factory().CreateListType(BytesType()), Ne(list_type1)); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto list_type2 = type_factory().CreateListType(struct_type1); EXPECT_THAT(type_factory().CreateListType(struct_type1), Eq(list_type2)); EXPECT_THAT(type_factory().CreateListType(struct_type2), Ne(list_type2)); EXPECT_EQ(type_factory().GetDynListType(), ProcessLocalTypeCache::Get()->GetDynListType()); } TEST_P(TypeFactoryTest, MapType) { auto map_type1 = type_factory().CreateMapType(StringType(), BytesType()); EXPECT_THAT(type_factory().CreateMapType(StringType(), BytesType()), Eq(map_type1)); EXPECT_THAT(type_factory().CreateMapType(StringType(), StringType()), Ne(map_type1)); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto map_type2 = type_factory().CreateMapType(StringType(), struct_type1); EXPECT_THAT(type_factory().CreateMapType(StringType(), struct_type1), Eq(map_type2)); EXPECT_THAT(type_factory().CreateMapType(StringType(), struct_type2), Ne(map_type2)); EXPECT_EQ(type_factory().GetDynDynMapType(), ProcessLocalTypeCache::Get()->GetDynDynMapType()); EXPECT_EQ(type_factory().GetStringDynMapType(), ProcessLocalTypeCache::Get()->GetStringDynMapType()); } TEST_P(TypeFactoryTest, MapTypeInvalidKeyType) { EXPECT_DEBUG_DEATH(type_factory().CreateMapType(DoubleType(), BytesType()), _); } TEST_P(TypeFactoryTest, StructType) { auto struct_type1 = type_factory().CreateStructType("test.Struct1"); EXPECT_THAT(type_factory().CreateStructType("test.Struct1"), Eq(struct_type1)); EXPECT_THAT(type_factory().CreateStructType("test.Struct2"), Ne(struct_type1)); } TEST_P(TypeFactoryTest, StructTypeBadName) { EXPECT_DEBUG_DEATH(type_factory().CreateStructType("test.~"), _); } TEST_P(TypeFactoryTest, OpaqueType) { auto opaque_type1 = type_factory().CreateOpaqueType("test.Struct1", {BytesType()}); EXPECT_THAT(type_factory().CreateOpaqueType("test.Struct1", {BytesType()}), Eq(opaque_type1)); EXPECT_THAT(type_factory().CreateOpaqueType("test.Struct2", {}), Ne(opaque_type1)); } TEST_P(TypeFactoryTest, OpaqueTypeBadName) { EXPECT_DEBUG_DEATH(type_factory().CreateOpaqueType("test.~", {}), _); } TEST_P(TypeFactoryTest, OptionalType) { auto optional_type1 = type_factory().CreateOptionalType(StringType()); EXPECT_THAT(type_factory().CreateOptionalType(StringType()), Eq(optional_type1)); EXPECT_THAT(type_factory().CreateOptionalType(BytesType()), Ne(optional_type1)); auto struct_type1 = type_factory().CreateStructType("test.Struct1"); auto struct_type2 = type_factory().CreateStructType("test.Struct2"); auto optional_type2 = type_factory().CreateOptionalType(struct_type1); EXPECT_THAT(type_factory().CreateOptionalType(struct_type1), Eq(optional_type2)); EXPECT_THAT(type_factory().CreateOptionalType(struct_type2), Ne(optional_type2)); EXPECT_EQ(type_factory().GetDynOptionalType(), ProcessLocalTypeCache::Get()->GetDynOptionalType()); } INSTANTIATE_TEST_SUITE_P( TypeFactoryTest, TypeFactoryTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), ::testing::Values(ThreadSafety::kCompatible, ThreadSafety::kSafe)), TypeFactoryTest::ToString); } }
7
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_AST_TRAVERSE_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_AST_TRAVERSE_H_ #include "google/api/expr/v1alpha1/syntax.pb.h" #include "eval/public/ast_visitor.h" namespace google::api::expr::runtime { struct TraversalOptions { bool use_comprehension_callbacks; TraversalOptions() : use_comprehension_callbacks(false) {} }; void AstTraverse(const google::api::expr::v1alpha1::Expr* expr, const google::api::expr::v1alpha1::SourceInfo* source_info, AstVisitor* visitor, TraversalOptions options = TraversalOptions()); } #endif #include "eval/public/ast_traverse.h" #include <stack> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/log/absl_log.h" #include "absl/types/variant.h" #include "eval/public/ast_visitor.h" #include "eval/public/source_position.h" namespace google::api::expr::runtime { using google::api::expr::v1alpha1::Expr; using google::api::expr::v1alpha1::SourceInfo; using Ident = google::api::expr::v1alpha1::Expr::Ident; using Select = google::api::expr::v1alpha1::Expr::Select; using Call = google::api::expr::v1alpha1::Expr::Call; using CreateList = google::api::expr::v1alpha1::Expr::CreateList; using CreateStruct = google::api::expr::v1alpha1::Expr::CreateStruct; using Comprehension = google::api::expr::v1alpha1::Expr::Comprehension; namespace { struct ArgRecord { const Expr* expr; const SourceInfo* source_info; const Expr* calling_expr; int call_arg; }; struct ComprehensionRecord { const Expr* expr; const SourceInfo* source_info; const Comprehension* comprehension; const Expr* comprehension_expr; ComprehensionArg comprehension_arg; bool use_comprehension_callbacks; }; struct ExprRecord { const Expr* expr; const SourceInfo* source_info; }; using StackRecordKind = absl::variant<ExprRecord, ArgRecord, ComprehensionRecord>; struct StackRecord { public: ABSL_ATTRIBUTE_UNUSED static constexpr int kNotCallArg = -1; static constexpr int kTarget = -2; StackRecord(const Expr* e, const SourceInfo* info) { ExprRecord record; record.expr = e; record.source_info = info; record_variant = record; } StackRecord(const Expr* e, const SourceInfo* info, const Comprehension* comprehension, const Expr* comprehension_expr, ComprehensionArg comprehension_arg, bool use_comprehension_callbacks) { if (use_comprehension_callbacks) { ComprehensionRecord record; record.expr = e; record.source_info = info; record.comprehension = comprehension; record.comprehension_expr = comprehension_expr; record.comprehension_arg = comprehension_arg; record.use_comprehension_callbacks = use_comprehension_callbacks; record_variant = record; return; } ArgRecord record; record.expr = e; record.source_info = info; record.calling_expr = comprehension_expr; record.call_arg = comprehension_arg; record_variant = record; } StackRecord(const Expr* e, const SourceInfo* info, const Expr* call, int argnum) { ArgRecord record; record.expr = e; record.source_info = info; record.calling_expr = call; record.call_arg = argnum; record_variant = record; } StackRecordKind record_variant; bool visited = false; }; struct PreVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PreVisitExpr(expr, &position); switch (expr->expr_kind_case()) { case Expr::kConstExpr: visitor->PreVisitConst(&expr->const_expr(), expr, &position); break; case Expr::kIdentExpr: visitor->PreVisitIdent(&expr->ident_expr(), expr, &position); break; case Expr::kSelectExpr: visitor->PreVisitSelect(&expr->select_expr(), expr, &position); break; case Expr::kCallExpr: visitor->PreVisitCall(&expr->call_expr(), expr, &position); break; case Expr::kListExpr: visitor->PreVisitCreateList(&expr->list_expr(), expr, &position); break; case Expr::kStructExpr: visitor->PreVisitCreateStruct(&expr->struct_expr(), expr, &position); break; case Expr::kComprehensionExpr: visitor->PreVisitComprehension(&expr->comprehension_expr(), expr, &position); break; default: break; } } void operator()(const ArgRecord&) {} void operator()(const ComprehensionRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PreVisitComprehensionSubexpression( expr, record.comprehension, record.comprehension_arg, &position); } AstVisitor* visitor; }; void PreVisit(const StackRecord& record, AstVisitor* visitor) { absl::visit(PreVisitor{visitor}, record.record_variant); } struct PostVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); switch (expr->expr_kind_case()) { case Expr::kConstExpr: visitor->PostVisitConst(&expr->const_expr(), expr, &position); break; case Expr::kIdentExpr: visitor->PostVisitIdent(&expr->ident_expr(), expr, &position); break; case Expr::kSelectExpr: visitor->PostVisitSelect(&expr->select_expr(), expr, &position); break; case Expr::kCallExpr: visitor->PostVisitCall(&expr->call_expr(), expr, &position); break; case Expr::kListExpr: visitor->PostVisitCreateList(&expr->list_expr(), expr, &position); break; case Expr::kStructExpr: visitor->PostVisitCreateStruct(&expr->struct_expr(), expr, &position); break; case Expr::kComprehensionExpr: visitor->PostVisitComprehension(&expr->comprehension_expr(), expr, &position); break; default: ABSL_LOG(ERROR) << "Unsupported Expr kind: " << expr->expr_kind_case(); } visitor->PostVisitExpr(expr, &position); } void operator()(const ArgRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); if (record.call_arg == StackRecord::kTarget) { visitor->PostVisitTarget(record.calling_expr, &position); } else { visitor->PostVisitArg(record.call_arg, record.calling_expr, &position); } } void operator()(const ComprehensionRecord& record) { const Expr* expr = record.expr; const SourcePosition position(expr->id(), record.source_info); visitor->PostVisitComprehensionSubexpression( expr, record.comprehension, record.comprehension_arg, &position); } AstVisitor* visitor; }; void PostVisit(const StackRecord& record, AstVisitor* visitor) { absl::visit(PostVisitor{visitor}, record.record_variant); } void PushSelectDeps(const Select* select_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { if (select_expr->has_operand()) { stack->push(StackRecord(&select_expr->operand(), source_info)); } } void PushCallDeps(const Call* call_expr, const Expr* expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const int arg_size = call_expr->args_size(); for (int i = arg_size - 1; i >= 0; --i) { stack->push(StackRecord(&call_expr->args(i), source_info, expr, i)); } if (call_expr->has_target()) { stack->push(StackRecord(&call_expr->target(), source_info, expr, StackRecord::kTarget)); } } void PushListDeps(const CreateList* list_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const auto& elements = list_expr->elements(); for (auto it = elements.rbegin(); it != elements.rend(); ++it) { const auto& element = *it; stack->push(StackRecord(&element, source_info)); } } void PushStructDeps(const CreateStruct* struct_expr, const SourceInfo* source_info, std::stack<StackRecord>* stack) { const auto& entries = struct_expr->entries(); for (auto it = entries.rbegin(); it != entries.rend(); ++it) { const auto& entry = *it; if (entry.has_value()) { stack->push(StackRecord(&entry.value(), source_info)); } if (entry.has_map_key()) { stack->push(StackRecord(&entry.map_key(), source_info)); } } } void PushComprehensionDeps(const Comprehension* c, const Expr* expr, const SourceInfo* source_info, std::stack<StackRecord>* stack, bool use_comprehension_callbacks) { StackRecord iter_range(&c->iter_range(), source_info, c, expr, ITER_RANGE, use_comprehension_callbacks); StackRecord accu_init(&c->accu_init(), source_info, c, expr, ACCU_INIT, use_comprehension_callbacks); StackRecord loop_condition(&c->loop_condition(), source_info, c, expr, LOOP_CONDITION, use_comprehension_callbacks); StackRecord loop_step(&c->loop_step(), source_info, c, expr, LOOP_STEP, use_comprehension_callbacks); StackRecord result(&c->result(), source_info, c, expr, RESULT, use_comprehension_callbacks); stack->push(result); stack->push(loop_step); stack->push(loop_condition); stack->push(accu_init); stack->push(iter_range); } struct PushDepsVisitor { void operator()(const ExprRecord& record) { const Expr* expr = record.expr; switch (expr->expr_kind_case()) { case Expr::kSelectExpr: PushSelectDeps(&expr->select_expr(), record.source_info, &stack); break; case Expr::kCallExpr: PushCallDeps(&expr->call_expr(), expr, record.source_info, &stack); break; case Expr::kListExpr: PushListDeps(&expr->list_expr(), record.source_info, &stack); break; case Expr::kStructExpr: PushStructDeps(&expr->struct_expr(), record.source_info, &stack); break; case Expr::kComprehensionExpr: PushComprehensionDeps(&expr->comprehension_expr(), expr, record.source_info, &stack, options.use_comprehension_callbacks); break; default: break; } } void operator()(const ArgRecord& record) { stack.push(StackRecord(record.expr, record.source_info)); } void operator()(const ComprehensionRecord& record) { stack.push(StackRecord(record.expr, record.source_info)); } std::stack<StackRecord>& stack; const TraversalOptions& options; }; void PushDependencies(const StackRecord& record, std::stack<StackRecord>& stack, const TraversalOptions& options) { absl::visit(PushDepsVisitor{stack, options}, record.record_variant); } } void AstTraverse(const Expr* expr, const SourceInfo* source_info, AstVisitor* visitor, TraversalOptions options) { std::stack<StackRecord> stack; stack.push(StackRecord(expr, source_info)); while (!stack.empty()) { StackRecord& record = stack.top(); if (!record.visited) { PreVisit(record, visitor); PushDependencies(record, stack, options); record.visited = true; } else { PostVisit(record, visitor); stack.pop(); } } } }
#include "eval/public/ast_traverse.h" #include "eval/public/ast_visitor.h" #include "internal/testing.h" namespace google::api::expr::runtime { namespace { using google::api::expr::v1alpha1::Constant; using google::api::expr::v1alpha1::Expr; using google::api::expr::v1alpha1::SourceInfo; using testing::_; using Ident = google::api::expr::v1alpha1::Expr::Ident; using Select = google::api::expr::v1alpha1::Expr::Select; using Call = google::api::expr::v1alpha1::Expr::Call; using CreateList = google::api::expr::v1alpha1::Expr::CreateList; using CreateStruct = google::api::expr::v1alpha1::Expr::CreateStruct; using Comprehension = google::api::expr::v1alpha1::Expr::Comprehension; class MockAstVisitor : public AstVisitor { public: MOCK_METHOD(void, PreVisitExpr, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitExpr, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitConst, (const Constant* const_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitConst, (const Constant* const_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitIdent, (const Ident* ident_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitIdent, (const Ident* ident_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitSelect, (const Select* select_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitSelect, (const Select* select_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCall, (const Call* call_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCall, (const Call* call_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitComprehension, (const Comprehension* comprehension_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitComprehension, (const Comprehension* comprehension_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitComprehensionSubexpression, (const Expr* expr, const Comprehension* comprehension_expr, ComprehensionArg comprehension_arg, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitComprehensionSubexpression, (const Expr* expr, const Comprehension* comprehension_expr, ComprehensionArg comprehension_arg, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitTarget, (const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitArg, (int arg_num, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCreateList, (const CreateList* list_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCreateList, (const CreateList* list_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PreVisitCreateStruct, (const CreateStruct* struct_expr, const Expr* expr, const SourcePosition* position), (override)); MOCK_METHOD(void, PostVisitCreateStruct, (const CreateStruct* struct_expr, const Expr* expr, const SourcePosition* position), (override)); }; TEST(AstCrawlerTest, CheckCrawlConstant) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto const_expr = expr.mutable_const_expr(); EXPECT_CALL(handler, PreVisitConst(const_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlIdent) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto ident_expr = expr.mutable_ident_expr(); EXPECT_CALL(handler, PreVisitIdent(ident_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlSelectNotCrashingPostVisitAbsentOperand) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto select_expr = expr.mutable_select_expr(); EXPECT_CALL(handler, PostVisitSelect(select_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlSelect) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto select_expr = expr.mutable_select_expr(); auto operand = select_expr->mutable_operand(); auto ident_expr = operand->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PostVisitIdent(ident_expr, operand, _)).Times(1); EXPECT_CALL(handler, PostVisitSelect(select_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlCallNoReceiver) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto* call_expr = expr.mutable_call_expr(); Expr* arg0 = call_expr->add_args(); auto* const_expr = arg0->mutable_const_expr(); Expr* arg1 = call_expr->add_args(); auto* ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitTarget(_, _)).Times(0); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(0, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(1, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(&expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlCallReceiver) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto* call_expr = expr.mutable_call_expr(); Expr* target = call_expr->mutable_target(); auto* target_ident = target->mutable_ident_expr(); Expr* arg0 = call_expr->add_args(); auto* const_expr = arg0->mutable_const_expr(); Expr* arg1 = call_expr->add_args(); auto* ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(target_ident, target, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(target, _)).Times(1); EXPECT_CALL(handler, PostVisitTarget(&expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(0, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(1, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitCall(call_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitExpr(&expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCrawlComprehension) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto c = expr.mutable_comprehension_expr(); auto iter_range = c->mutable_iter_range(); auto iter_range_expr = iter_range->mutable_const_expr(); auto accu_init = c->mutable_accu_init(); auto accu_init_expr = accu_init->mutable_ident_expr(); auto loop_condition = c->mutable_loop_condition(); auto loop_condition_expr = loop_condition->mutable_const_expr(); auto loop_step = c->mutable_loop_step(); auto loop_step_expr = loop_step->mutable_ident_expr(); auto result = c->mutable_result(); auto result_expr = result->mutable_const_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitComprehension(c, &expr, _)).Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(iter_range, c, ITER_RANGE, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(iter_range_expr, iter_range, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(iter_range, c, ITER_RANGE, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(accu_init, c, ACCU_INIT, _)) .Times(1); EXPECT_CALL(handler, PostVisitIdent(accu_init_expr, accu_init, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(accu_init, c, ACCU_INIT, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(loop_condition, c, LOOP_CONDITION, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(loop_condition_expr, loop_condition, _)) .Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(loop_condition, c, LOOP_CONDITION, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(loop_step, c, LOOP_STEP, _)) .Times(1); EXPECT_CALL(handler, PostVisitIdent(loop_step_expr, loop_step, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(loop_step, c, LOOP_STEP, _)) .Times(1); EXPECT_CALL(handler, PreVisitComprehensionSubexpression(result, c, RESULT, _)) .Times(1); EXPECT_CALL(handler, PostVisitConst(result_expr, result, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehensionSubexpression(result, c, RESULT, _)) .Times(1); EXPECT_CALL(handler, PostVisitComprehension(c, &expr, _)).Times(1); TraversalOptions opts; opts.use_comprehension_callbacks = true; AstTraverse(&expr, &source_info, &handler, opts); } TEST(AstCrawlerTest, CheckCrawlComprehensionLegacyCallbacks) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto c = expr.mutable_comprehension_expr(); auto iter_range = c->mutable_iter_range(); auto iter_range_expr = iter_range->mutable_const_expr(); auto accu_init = c->mutable_accu_init(); auto accu_init_expr = accu_init->mutable_ident_expr(); auto loop_condition = c->mutable_loop_condition(); auto loop_condition_expr = loop_condition->mutable_const_expr(); auto loop_step = c->mutable_loop_step(); auto loop_step_expr = loop_step->mutable_ident_expr(); auto result = c->mutable_result(); auto result_expr = result->mutable_const_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitComprehension(c, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(iter_range_expr, iter_range, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(ITER_RANGE, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(accu_init_expr, accu_init, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(ACCU_INIT, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(loop_condition_expr, loop_condition, _)) .Times(1); EXPECT_CALL(handler, PostVisitArg(LOOP_CONDITION, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(loop_step_expr, loop_step, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(LOOP_STEP, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(result_expr, result, _)).Times(1); EXPECT_CALL(handler, PostVisitArg(RESULT, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitComprehension(c, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCreateList) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto list_expr = expr.mutable_list_expr(); auto arg0 = list_expr->add_elements(); auto const_expr = arg0->mutable_const_expr(); auto arg1 = list_expr->add_elements(); auto ident_expr = arg1->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCreateList(list_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(const_expr, arg0, _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(ident_expr, arg1, _)).Times(1); EXPECT_CALL(handler, PostVisitCreateList(list_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckCreateStruct) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto struct_expr = expr.mutable_struct_expr(); auto entry0 = struct_expr->add_entries(); auto key = entry0->mutable_map_key()->mutable_const_expr(); auto value = entry0->mutable_value()->mutable_ident_expr(); testing::InSequence seq; EXPECT_CALL(handler, PreVisitCreateStruct(struct_expr, &expr, _)).Times(1); EXPECT_CALL(handler, PostVisitConst(key, &entry0->map_key(), _)).Times(1); EXPECT_CALL(handler, PostVisitIdent(value, &entry0->value(), _)).Times(1); EXPECT_CALL(handler, PostVisitCreateStruct(struct_expr, &expr, _)).Times(1); AstTraverse(&expr, &source_info, &handler); } TEST(AstCrawlerTest, CheckExprHandlers) { SourceInfo source_info; MockAstVisitor handler; Expr expr; auto struct_expr = expr.mutable_struct_expr(); auto entry0 = struct_expr->add_entries(); entry0->mutable_map_key()->mutable_const_expr(); entry0->mutable_value()->mutable_ident_expr(); EXPECT_CALL(handler, PreVisitExpr(_, _)).Times(3); EXPECT_CALL(handler, PostVisitExpr(_, _)).Times(3); AstTraverse(&expr, &source_info, &handler); } } }
8
#ifndef THIRD_PARTY_CEL_CPP_COMMON_SOURCE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_SOURCE_H_ #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "absl/types/variant.h" namespace cel { namespace common_internal { class SourceImpl; } class Source; using SourcePosition = int32_t; struct SourceRange final { SourcePosition begin = -1; SourcePosition end = -1; }; inline bool operator==(const SourceRange& lhs, const SourceRange& rhs) { return lhs.begin == rhs.begin && lhs.end == rhs.end; } inline bool operator!=(const SourceRange& lhs, const SourceRange& rhs) { return !operator==(lhs, rhs); } struct SourceLocation final { int32_t line = -1; int32_t column = -1; }; inline bool operator==(const SourceLocation& lhs, const SourceLocation& rhs) { return lhs.line == rhs.line && lhs.column == rhs.column; } inline bool operator!=(const SourceLocation& lhs, const SourceLocation& rhs) { return !operator==(lhs, rhs); } class SourceContentView final { public: SourceContentView(const SourceContentView&) = default; SourceContentView(SourceContentView&&) = default; SourceContentView& operator=(const SourceContentView&) = default; SourceContentView& operator=(SourceContentView&&) = default; SourcePosition size() const; bool empty() const; char32_t at(SourcePosition position) const; std::string ToString(SourcePosition begin, SourcePosition end) const; std::string ToString(SourcePosition begin) const { return ToString(begin, size()); } std::string ToString() const { return ToString(0); } void AppendToString(std::string& dest) const; private: friend class Source; constexpr SourceContentView() = default; constexpr explicit SourceContentView(absl::Span<const char> view) : view_(view) {} constexpr explicit SourceContentView(absl::Span<const uint8_t> view) : view_(view) {} constexpr explicit SourceContentView(absl::Span<const char16_t> view) : view_(view) {} constexpr explicit SourceContentView(absl::Span<const char32_t> view) : view_(view) {} absl::variant<absl::Span<const char>, absl::Span<const uint8_t>, absl::Span<const char16_t>, absl::Span<const char32_t>> view_; }; class Source { public: using ContentView = SourceContentView; Source(const Source&) = delete; Source(Source&&) = delete; virtual ~Source() = default; Source& operator=(const Source&) = delete; Source& operator=(Source&&) = delete; virtual absl::string_view description() const ABSL_ATTRIBUTE_LIFETIME_BOUND = 0; absl::optional<SourceLocation> GetLocation(SourcePosition position) const; absl::optional<SourcePosition> GetPosition( const SourceLocation& location) const; absl::optional<std::string> Snippet(int32_t line) const; std::string DisplayErrorLocation(SourceLocation location) const; virtual ContentView content() const ABSL_ATTRIBUTE_LIFETIME_BOUND = 0; virtual absl::Span<const SourcePosition> line_offsets() const ABSL_ATTRIBUTE_LIFETIME_BOUND = 0; protected: static constexpr ContentView EmptyContentView() { return ContentView(); } static constexpr ContentView MakeContentView(absl::Span<const char> view) { return ContentView(view); } static constexpr ContentView MakeContentView(absl::Span<const uint8_t> view) { return ContentView(view); } static constexpr ContentView MakeContentView( absl::Span<const char16_t> view) { return ContentView(view); } static constexpr ContentView MakeContentView( absl::Span<const char32_t> view) { return ContentView(view); } private: friend class common_internal::SourceImpl; Source() = default; absl::optional<SourcePosition> FindLinePosition(int32_t line) const; absl::optional<std::pair<int32_t, SourcePosition>> FindLine( SourcePosition position) const; }; using SourcePtr = std::unique_ptr<Source>; absl::StatusOr<absl::Nonnull<SourcePtr>> NewSource( absl::string_view content, std::string description = "<input>"); absl::StatusOr<absl::Nonnull<SourcePtr>> NewSource( const absl::Cord& content, std::string description = "<input>"); } #endif #include "common/source.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/functional/overload.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "internal/unicode.h" #include "internal/utf8.h" namespace cel { SourcePosition SourceContentView::size() const { return static_cast<SourcePosition>(absl::visit( absl::Overload( [](absl::Span<const char> view) { return view.size(); }, [](absl::Span<const uint8_t> view) { return view.size(); }, [](absl::Span<const char16_t> view) { return view.size(); }, [](absl::Span<const char32_t> view) { return view.size(); }), view_)); } bool SourceContentView::empty() const { return absl::visit( absl::Overload( [](absl::Span<const char> view) { return view.empty(); }, [](absl::Span<const uint8_t> view) { return view.empty(); }, [](absl::Span<const char16_t> view) { return view.empty(); }, [](absl::Span<const char32_t> view) { return view.empty(); }), view_); } char32_t SourceContentView::at(SourcePosition position) const { ABSL_DCHECK_GE(position, 0); ABSL_DCHECK_LT(position, size()); return absl::visit( absl::Overload( [position = static_cast<size_t>(position)](absl::Span<const char> view) { return static_cast<char32_t>(static_cast<uint8_t>(view[position])); }, [position = static_cast<size_t>(position)](absl::Span<const uint8_t> view) { return static_cast<char32_t>(view[position]); }, [position = static_cast<size_t>(position)](absl::Span<const char16_t> view) { return static_cast<char32_t>(view[position]); }, [position = static_cast<size_t>(position)](absl::Span<const char32_t> view) { return static_cast<char32_t>(view[position]); }), view_); } std::string SourceContentView::ToString(SourcePosition begin, SourcePosition end) const { ABSL_DCHECK_GE(begin, 0); ABSL_DCHECK_LE(end, size()); ABSL_DCHECK_LE(begin, end); return absl::visit( absl::Overload( [begin = static_cast<size_t>(begin), end = static_cast<size_t>(end)](absl::Span<const char> view) { view = view.subspan(begin, end - begin); return std::string(view.data(), view.size()); }, [begin = static_cast<size_t>(begin), end = static_cast<size_t>(end)](absl::Span<const uint8_t> view) { view = view.subspan(begin, end - begin); std::string result; result.reserve(view.size() * 2); for (const auto& code_point : view) { internal::Utf8Encode(result, code_point); } result.shrink_to_fit(); return result; }, [begin = static_cast<size_t>(begin), end = static_cast<size_t>(end)](absl::Span<const char16_t> view) { view = view.subspan(begin, end - begin); std::string result; result.reserve(view.size() * 3); for (const auto& code_point : view) { internal::Utf8Encode(result, code_point); } result.shrink_to_fit(); return result; }, [begin = static_cast<size_t>(begin), end = static_cast<size_t>(end)](absl::Span<const char32_t> view) { view = view.subspan(begin, end - begin); std::string result; result.reserve(view.size() * 4); for (const auto& code_point : view) { internal::Utf8Encode(result, code_point); } result.shrink_to_fit(); return result; }), view_); } void SourceContentView::AppendToString(std::string& dest) const { absl::visit(absl::Overload( [&dest](absl::Span<const char> view) { dest.append(view.data(), view.size()); }, [&dest](absl::Span<const uint8_t> view) { for (const auto& code_point : view) { internal::Utf8Encode(dest, code_point); } }, [&dest](absl::Span<const char16_t> view) { for (const auto& code_point : view) { internal::Utf8Encode(dest, code_point); } }, [&dest](absl::Span<const char32_t> view) { for (const auto& code_point : view) { internal::Utf8Encode(dest, code_point); } }), view_); } namespace common_internal { class SourceImpl : public Source { public: SourceImpl(std::string description, absl::InlinedVector<SourcePosition, 1> line_offsets) : description_(std::move(description)), line_offsets_(std::move(line_offsets)) {} absl::string_view description() const final { return description_; } absl::Span<const SourcePosition> line_offsets() const final { return absl::MakeConstSpan(line_offsets_); } private: const std::string description_; const absl::InlinedVector<SourcePosition, 1> line_offsets_; }; namespace { class AsciiSource final : public SourceImpl { public: AsciiSource(std::string description, absl::InlinedVector<SourcePosition, 1> line_offsets, std::vector<char> text) : SourceImpl(std::move(description), std::move(line_offsets)), text_(std::move(text)) {} ContentView content() const override { return MakeContentView(absl::MakeConstSpan(text_)); } private: const std::vector<char> text_; }; class Latin1Source final : public SourceImpl { public: Latin1Source(std::string description, absl::InlinedVector<SourcePosition, 1> line_offsets, std::vector<uint8_t> text) : SourceImpl(std::move(description), std::move(line_offsets)), text_(std::move(text)) {} ContentView content() const override { return MakeContentView(absl::MakeConstSpan(text_)); } private: const std::vector<uint8_t> text_; }; class BasicPlaneSource final : public SourceImpl { public: BasicPlaneSource(std::string description, absl::InlinedVector<SourcePosition, 1> line_offsets, std::vector<char16_t> text) : SourceImpl(std::move(description), std::move(line_offsets)), text_(std::move(text)) {} ContentView content() const override { return MakeContentView(absl::MakeConstSpan(text_)); } private: const std::vector<char16_t> text_; }; class SupplementalPlaneSource final : public SourceImpl { public: SupplementalPlaneSource(std::string description, absl::InlinedVector<SourcePosition, 1> line_offsets, std::vector<char32_t> text) : SourceImpl(std::move(description), std::move(line_offsets)), text_(std::move(text)) {} ContentView content() const override { return MakeContentView(absl::MakeConstSpan(text_)); } private: const std::vector<char32_t> text_; }; template <typename T> struct SourceTextTraits; template <> struct SourceTextTraits<absl::string_view> { using iterator_type = absl::string_view; static iterator_type Begin(absl::string_view text) { return text; } static void Advance(iterator_type& it, size_t n) { it.remove_prefix(n); } static void AppendTo(std::vector<uint8_t>& out, absl::string_view text, size_t n) { const auto* in = reinterpret_cast<const uint8_t*>(text.data()); out.insert(out.end(), in, in + n); } static std::vector<char> ToVector(absl::string_view in) { std::vector<char> out; out.reserve(in.size()); out.insert(out.end(), in.begin(), in.end()); return out; } }; template <> struct SourceTextTraits<absl::Cord> { using iterator_type = absl::Cord::CharIterator; static iterator_type Begin(const absl::Cord& text) { return text.char_begin(); } static void Advance(iterator_type& it, size_t n) { absl::Cord::Advance(&it, n); } static void AppendTo(std::vector<uint8_t>& out, const absl::Cord& text, size_t n) { auto it = text.char_begin(); while (n > 0) { auto str = absl::Cord::ChunkRemaining(it); size_t to_append = std::min(n, str.size()); const auto* in = reinterpret_cast<const uint8_t*>(str.data()); out.insert(out.end(), in, in + to_append); n -= to_append; absl::Cord::Advance(&it, to_append); } } static std::vector<char> ToVector(const absl::Cord& in) { std::vector<char> out; out.reserve(in.size()); for (const auto& chunk : in.Chunks()) { out.insert(out.end(), chunk.begin(), chunk.end()); } return out; } }; template <typename T> absl::StatusOr<SourcePtr> NewSourceImpl(std::string description, const T& text, const size_t text_size) { if (ABSL_PREDICT_FALSE( text_size > static_cast<size_t>(std::numeric_limits<int32_t>::max()))) { return absl::InvalidArgumentError("expression larger than 2GiB limit"); } using Traits = SourceTextTraits<T>; size_t index = 0; typename Traits::iterator_type it = Traits::Begin(text); SourcePosition offset = 0; char32_t code_point; size_t code_units; std::vector<uint8_t> data8; std::vector<char16_t> data16; std::vector<char32_t> data32; absl::InlinedVector<SourcePosition, 1> line_offsets; while (index < text_size) { std::tie(code_point, code_units) = cel::internal::Utf8Decode(it); if (ABSL_PREDICT_FALSE(code_point == cel::internal::kUnicodeReplacementCharacter && code_units == 1)) { return absl::InvalidArgumentError("cannot parse malformed UTF-8 input"); } if (code_point == '\n') { line_offsets.push_back(offset + 1); } if (code_point <= 0x7f) { Traits::Advance(it, code_units); index += code_units; ++offset; continue; } if (code_point <= 0xff) { data8.reserve(text_size); Traits::AppendTo(data8, text, index); data8.push_back(static_cast<uint8_t>(code_point)); Traits::Advance(it, code_units); index += code_units; ++offset; goto latin1; } if (code_point <= 0xffff) { data16.reserve(text_size); for (size_t offset = 0; offset < index; offset++) { data16.push_back(static_cast<uint8_t>(text[offset])); } data16.push_back(static_cast<char16_t>(code_point)); Traits::Advance(it, code_units); index += code_units; ++offset; goto basic; } data32.reserve(text_size); for (size_t offset = 0; offset < index; offset++) { data32.push_back(static_cast<char32_t>(text[offset])); } data32.push_back(code_point); Traits::Advance(it, code_units); index += code_units; ++offset; goto supplemental; } line_offsets.push_back(offset + 1); return std::make_unique<AsciiSource>( std::move(description), std::move(line_offsets), Traits::ToVector(text)); latin1: while (index < text_size) { std::tie(code_point, code_units) = internal::Utf8Decode(it); if (ABSL_PREDICT_FALSE(code_point == internal::kUnicodeReplacementCharacter && code_units == 1)) { return absl::InvalidArgumentError("cannot parse malformed UTF-8 input"); } if (code_point == '\n') { line_offsets.push_back(offset + 1); } if (code_point <= 0xff) { data8.push_back(static_cast<uint8_t>(code_point)); Traits::Advance(it, code_units); index += code_units; ++offset; continue; } if (code_point <= 0xffff) { data16.reserve(text_size); for (const auto& value : data8) { data16.push_back(value); } std::vector<uint8_t>().swap(data8); data16.push_back(static_cast<char16_t>(code_point)); Traits::Advance(it, code_units); index += code_units; ++offset; goto basic; } data32.reserve(text_size); for (const auto& value : data8) { data32.push_back(value); } std::vector<uint8_t>().swap(data8); data32.push_back(code_point); Traits::Advance(it, code_units); index += code_units; ++offset; goto supplemental; } line_offsets.push_back(offset + 1); return std::make_unique<Latin1Source>( std::move(description), std::move(line_offsets), std::move(data8)); basic: while (index < text_size) { std::tie(code_point, code_units) = internal::Utf8Decode(it); if (ABSL_PREDICT_FALSE(code_point == internal::kUnicodeReplacementCharacter && code_units == 1)) { return absl::InvalidArgumentError("cannot parse malformed UTF-8 input"); } if (code_point == '\n') { line_offsets.push_back(offset + 1); } if (code_point <= 0xffff) { data16.push_back(static_cast<char16_t>(code_point)); Traits::Advance(it, code_units); index += code_units; ++offset; continue; } data32.reserve(text_size); for (const auto& value : data16) { data32.push_back(static_cast<char32_t>(value)); } std::vector<char16_t>().swap(data16); data32.push_back(code_point); Traits::Advance(it, code_units); index += code_units; ++offset; goto supplemental; } line_offsets.push_back(offset + 1); return std::make_unique<BasicPlaneSource>( std::move(description), std::move(line_offsets), std::move(data16)); supplemental: while (index < text_size) { std::tie(code_point, code_units) = internal::Utf8Decode(it); if (ABSL_PREDICT_FALSE(code_point == internal::kUnicodeReplacementCharacter && code_units == 1)) { return absl::InvalidArgumentError("cannot parse malformed UTF-8 input"); } if (code_point == '\n') { line_offsets.push_back(offset + 1); } data32.push_back(code_point); Traits::Advance(it, code_units); index += code_units; ++offset; } line_offsets.push_back(offset + 1); return std::make_unique<SupplementalPlaneSource>( std::move(description), std::move(line_offsets), std::move(data32)); } } } absl::optional<SourceLocation> Source::GetLocation( SourcePosition position) const { if (auto line_and_offset = FindLine(position); ABSL_PREDICT_TRUE(line_and_offset.has_value())) { return SourceLocation{line_and_offset->first, position - line_and_offset->second}; } return absl::nullopt; } absl::optional<SourcePosition> Source::GetPosition( const SourceLocation& location) const { if (ABSL_PREDICT_FALSE(location.line < 1 || location.column < 0)) { return absl::nullopt; } if (auto position = FindLinePosition(location.line); ABSL_PREDICT_TRUE(position.has_value())) { return *position + location.column; } return absl::nullopt; } absl::optional<std::string> Source::Snippet(int32_t line) const { auto content = this->content(); auto start = FindLinePosition(line); if (ABSL_PREDICT_FALSE(!start.has_value() || content.empty())) { return absl::nullopt; } auto end = FindLinePosition(line + 1); if (end.has_value()) { return content.ToString(*start, *end - 1); } return content.ToString(*start); } std::string Source::DisplayErrorLocation(SourceLocation location) const { constexpr char32_t kDot = '.'; constexpr char32_t kHat = '^'; constexpr char32_t kWideDot = 0xff0e; constexpr char32_t kWideHat = 0xff3e; absl::optional<std::string> snippet = Snippet(location.line); if (!snippet || snippet->empty()) { return ""; } *snippet = absl::StrReplaceAll(*snippet, {{"\t", " "}}); absl::string_view snippet_view(*snippet); std::string result; absl::StrAppend(&result, "\n | ", *snippet); absl::StrAppend(&result, "\n | "); std::string index_line; for (int32_t i = 0; i < location.column && !snippet_view.empty(); ++i) { size_t count; std::tie(std::ignore, count) = internal::Utf8Decode(snippet_view); snippet_view.remove_prefix(count); if (count > 1) { internal::Utf8Encode(index_line, kWideDot); } else { internal::Utf8Encode(index_line, kDot); } } size_t count = 0; if (!snippet_view.empty()) { std::tie(std::ignore, count) = internal::Utf8Decode(snippet_view); } if (count > 1) { internal::Utf8Encode(index_line, kWideHat); } else { internal::Utf8Encode(index_line, kHat); } absl::StrAppend(&result, index_line); return result; } absl::optional<SourcePosition> Source::FindLinePosition(int32_t line) const { if (ABSL_PREDICT_FALSE(line < 1)) { return absl::nullopt; } if (line == 1) { return SourcePosition{0}; } const auto line_offsets = this->line_offsets(); if (ABSL_PREDICT_TRUE(line <= static_cast<int32_t>(line_offsets.size()))) { return line_offsets[static_cast<size_t>(line - 2)]; } return absl::nullopt; } absl::optional<std::pair<int32_t, SourcePosition>> Source::FindLine( SourcePosition position) const { if (ABSL_PREDICT_FALSE(position < 0)) { return absl::nullopt; } int32_t line = 1; const auto line_offsets = this->line_offsets(); for (const auto& line_offset : line_offsets) { if (line_offset > position) { break; } ++line; } if (line == 1) { return std::make_pair(line, SourcePosition{0}); } return std::make_pair(line, line_offsets[static_cast<size_t>(line) - 2]); } absl::StatusOr<absl::Nonnull<SourcePtr>> NewSource(absl::string_view content, std::string description) { return common_internal::NewSourceImpl(std::move(description), content, content.size()); } absl::StatusOr<absl::Nonnull<SourcePtr>> NewSource(const absl::Cord& content, std::string description) { return common_internal::NewSourceImpl(std::move(description), content, content.size()); } }
#include "common/source.h" #include "absl/strings/cord.h" #include "absl/types/optional.h" #include "internal/testing.h" namespace cel { namespace { using testing::ElementsAre; using testing::Eq; using testing::Ne; using testing::Optional; TEST(SourceRange, Default) { SourceRange range; EXPECT_EQ(range.begin, -1); EXPECT_EQ(range.end, -1); } TEST(SourceRange, Equality) { EXPECT_THAT((SourceRange{}), (Eq(SourceRange{}))); EXPECT_THAT((SourceRange{0, 1}), (Ne(SourceRange{0, 0}))); } TEST(SourceLocation, Default) { SourceLocation location; EXPECT_EQ(location.line, -1); EXPECT_EQ(location.column, -1); } TEST(SourceLocation, Equality) { EXPECT_THAT((SourceLocation{}), (Eq(SourceLocation{}))); EXPECT_THAT((SourceLocation{1, 1}), (Ne(SourceLocation{1, 0}))); } TEST(StringSource, Description) { ASSERT_OK_AND_ASSIGN( auto source, NewSource("c.d &&\n\t b.c.arg(10) &&\n\t test(10)", "offset-test")); EXPECT_THAT(source->description(), Eq("offset-test")); } TEST(StringSource, Content) { ASSERT_OK_AND_ASSIGN( auto source, NewSource("c.d &&\n\t b.c.arg(10) &&\n\t test(10)", "offset-test")); EXPECT_THAT(source->content().ToString(), Eq("c.d &&\n\t b.c.arg(10) &&\n\t test(10)")); } TEST(StringSource, PositionAndLocation) { ASSERT_OK_AND_ASSIGN( auto source, NewSource("c.d &&\n\t b.c.arg(10) &&\n\t test(10)", "offset-test")); EXPECT_THAT(source->line_offsets(), ElementsAre(7, 24, 35)); auto start = source->GetPosition(SourceLocation{int32_t{1}, int32_t{2}}); auto end = source->GetPosition(SourceLocation{int32_t{3}, int32_t{2}}); ASSERT_TRUE(start.has_value()); ASSERT_TRUE(end.has_value()); EXPECT_THAT(source->GetLocation(*start), Optional(Eq(SourceLocation{int32_t{1}, int32_t{2}}))); EXPECT_THAT(source->GetLocation(*end), Optional(Eq(SourceLocation{int32_t{3}, int32_t{2}}))); EXPECT_THAT(source->GetLocation(-1), Eq(absl::nullopt)); EXPECT_THAT(source->content().ToString(*start, *end), Eq("d &&\n\t b.c.arg(10) &&\n\t ")); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{0}, int32_t{0}}), Eq(absl::nullopt)); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{1}, int32_t{-1}}), Eq(absl::nullopt)); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{4}, int32_t{0}}), Eq(absl::nullopt)); } TEST(StringSource, SnippetSingle) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("hello, world", "one-line-test")); EXPECT_THAT(source->Snippet(1), Optional(Eq("hello, world"))); EXPECT_THAT(source->Snippet(2), Eq(absl::nullopt)); } TEST(StringSource, SnippetMulti) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("hello\nworld\nmy\nbub\n", "four-line-test")); EXPECT_THAT(source->Snippet(0), Eq(absl::nullopt)); EXPECT_THAT(source->Snippet(1), Optional(Eq("hello"))); EXPECT_THAT(source->Snippet(2), Optional(Eq("world"))); EXPECT_THAT(source->Snippet(3), Optional(Eq("my"))); EXPECT_THAT(source->Snippet(4), Optional(Eq("bub"))); EXPECT_THAT(source->Snippet(5), Optional(Eq(""))); EXPECT_THAT(source->Snippet(6), Eq(absl::nullopt)); } TEST(CordSource, Description) { ASSERT_OK_AND_ASSIGN( auto source, NewSource(absl::Cord("c.d &&\n\t b.c.arg(10) &&\n\t test(10)"), "offset-test")); EXPECT_THAT(source->description(), Eq("offset-test")); } TEST(CordSource, Content) { ASSERT_OK_AND_ASSIGN( auto source, NewSource(absl::Cord("c.d &&\n\t b.c.arg(10) &&\n\t test(10)"), "offset-test")); EXPECT_THAT(source->content().ToString(), Eq("c.d &&\n\t b.c.arg(10) &&\n\t test(10)")); } TEST(CordSource, PositionAndLocation) { ASSERT_OK_AND_ASSIGN( auto source, NewSource(absl::Cord("c.d &&\n\t b.c.arg(10) &&\n\t test(10)"), "offset-test")); EXPECT_THAT(source->line_offsets(), ElementsAre(7, 24, 35)); auto start = source->GetPosition(SourceLocation{int32_t{1}, int32_t{2}}); auto end = source->GetPosition(SourceLocation{int32_t{3}, int32_t{2}}); ASSERT_TRUE(start.has_value()); ASSERT_TRUE(end.has_value()); EXPECT_THAT(source->GetLocation(*start), Optional(Eq(SourceLocation{int32_t{1}, int32_t{2}}))); EXPECT_THAT(source->GetLocation(*end), Optional(Eq(SourceLocation{int32_t{3}, int32_t{2}}))); EXPECT_THAT(source->GetLocation(-1), Eq(absl::nullopt)); EXPECT_THAT(source->content().ToString(*start, *end), Eq("d &&\n\t b.c.arg(10) &&\n\t ")); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{0}, int32_t{0}}), Eq(absl::nullopt)); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{1}, int32_t{-1}}), Eq(absl::nullopt)); EXPECT_THAT(source->GetPosition(SourceLocation{int32_t{4}, int32_t{0}}), Eq(absl::nullopt)); } TEST(CordSource, SnippetSingle) { ASSERT_OK_AND_ASSIGN(auto source, NewSource(absl::Cord("hello, world"), "one-line-test")); EXPECT_THAT(source->Snippet(1), Optional(Eq("hello, world"))); EXPECT_THAT(source->Snippet(2), Eq(absl::nullopt)); } TEST(CordSource, SnippetMulti) { ASSERT_OK_AND_ASSIGN( auto source, NewSource(absl::Cord("hello\nworld\nmy\nbub\n"), "four-line-test")); EXPECT_THAT(source->Snippet(0), Eq(absl::nullopt)); EXPECT_THAT(source->Snippet(1), Optional(Eq("hello"))); EXPECT_THAT(source->Snippet(2), Optional(Eq("world"))); EXPECT_THAT(source->Snippet(3), Optional(Eq("my"))); EXPECT_THAT(source->Snippet(4), Optional(Eq("bub"))); EXPECT_THAT(source->Snippet(5), Optional(Eq(""))); EXPECT_THAT(source->Snippet(6), Eq(absl::nullopt)); } TEST(Source, DisplayErrorLocationBasic) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("'Hello' +\n 'world'")); SourceLocation location{2, 3}; EXPECT_EQ(source->DisplayErrorLocation(location), "\n | 'world'" "\n | ...^"); } TEST(Source, DisplayErrorLocationOutOfRange) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("'Hello world!'")); SourceLocation location{3, 3}; EXPECT_EQ(source->DisplayErrorLocation(location), ""); } TEST(Source, DisplayErrorLocationTabsShortened) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("'Hello' +\n\t\t'world!'")); SourceLocation location{2, 4}; EXPECT_EQ(source->DisplayErrorLocation(location), "\n | 'world!'" "\n | ....^"); } TEST(Source, DisplayErrorLocationFullWidth) { ASSERT_OK_AND_ASSIGN(auto source, NewSource("'Hello'")); SourceLocation location{1, 2}; EXPECT_EQ(source->DisplayErrorLocation(location), "\n | 'Hello'" "\n | ..^"); } } }
9
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
48
Edit dataset card

Collection including Nutanix/cpp_unit_tests_alignment_eval_data