Datasets:

Languages:
Chinese
ArXiv:
License:
小臣子吃大橙子 commited on
Commit
b6d2702
1 Parent(s): 776fc7a

update README

Browse files
Files changed (2) hide show
  1. README.md +11 -14
  2. README_zh.md +7 -17
README.md CHANGED
@@ -10,9 +10,9 @@ viewer: False
10
 
11
  <div align="center">
12
 
13
- ![MULTI](./overview.png)
14
 
15
- 🌐 [Website](https://OpenDFM.github.io/MULTI-Benchmark/) | 📃 [Paper](https://arxiv.org/abs/2402.03173/) | 🤗 [Dataset](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark) | 🎯 [Leaderboard]() (Coming Soon)
16
 
17
  [简体中文](./README_zh.md) | English
18
 
@@ -20,11 +20,11 @@ viewer: False
20
 
21
  ## 🔥 News
22
 
23
- - **[Cooming Soon]** We will release the official evaluation platform.
24
- - **[2024.2.19]** We release the [HuggingFace Page](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/).
25
- - **[2024.2.6]** We publish our [paper](https://arxiv.org/abs/2402.03173/) on arXiv.
26
- - **[2023.12.7]** We release the [code](https://github.com/OpenDFM/MULTI-Benchmark/tree/main/eval) of our benchmark evaluation.
27
- - **[2023.12.5]** We release the [GitHub Page](https://OpenDFM.github.io/MULTI-Benchmark/).
28
 
29
  ## 📖 Overview
30
 
@@ -48,8 +48,6 @@ Rapid progress in multimodal large language models (MLLMs) highlights the need t
48
  | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
49
  | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
50
 
51
- For more details, please visit our [leaderboard]() (Coming Soon).
52
-
53
  ## ⏬ Download
54
 
55
  You can simply download data using the following command:
@@ -70,7 +68,6 @@ The structure of `./data` should be something like:
70
  └── captions_v1.2.0_20231217.csv # image captions generated by BLIP-6.7b
71
  ```
72
 
73
-
74
  ## 📝 How to Evaluate
75
 
76
  We provide a unified evaluation framework in `eval`. Each file in `eval/models` contains an evaluator specified to one M/LLM, and implements a `generate_answer` method to receive a question as input and give out the answer of it.
@@ -185,13 +182,13 @@ You need to first prepare a UTF-8 encoded JSON file with the following format:
185
  }
186
  ```
187
 
188
- If you evaluate the model with our official code, you can simply zip the experiment result folder `results/EXPERIMENT_NAME`.
189
 
190
- Then, you can submit your result to our [evaluation platform](https://wj.sjtu.edu.cn/q/89UmRAJn) (Coming Soon).
191
 
192
- You are also welcome to pull a request and contribute your code to our evaluation code. We will be very grateful for your contribution!
193
 
194
- **[Notice]** Thank you for being so interested in the **MULTI** dataset! As the automated evaluation platform is not yet online, please fill in [this questionnaire](https://wj.sjtu.edu.cn/q/89UmRAJn) to get the evaluation results, your information will be kept strictly confidential, so please feel free to fill it out. 🤗
195
 
196
 
197
  ## 📑 Citation
 
10
 
11
  <div align="center">
12
 
13
+ ![MULTI](./docs/static/images/overview.png)
14
 
15
+ 🌐 [Website](https://OpenDFM.github.io/MULTI-Benchmark/) | 📃 [Paper](https://arxiv.org/abs/2402.03173/) | 🤗 [Dataset](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark) | 📮 [Submit](https://opendfm.github.io/MULTI-Benchmark/static/pages/submit.html)
16
 
17
  [简体中文](./README_zh.md) | English
18
 
 
20
 
21
  ## 🔥 News
22
 
23
+ - **[2024.3.4]** We have released the [evaluation page](https://OpenDFM.github.io/MULTI-Benchmark/static/pages/submit.html).
24
+ - **[2024.2.19]** We have released the [HuggingFace Page](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/).
25
+ - **[2024.2.6]** We have published our [paper](https://arxiv.org/abs/2402.03173/) on arXiv.
26
+ - **[2023.12.7]** We have released the [code](https://github.com/OpenDFM/MULTI-Benchmark/tree/main/eval) of our benchmark evaluation.
27
+ - **[2023.12.5]** We have released the [GitHub Page](https://OpenDFM.github.io/MULTI-Benchmark/).
28
 
29
  ## 📖 Overview
30
 
 
48
  | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
49
  | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
50
 
 
 
51
  ## ⏬ Download
52
 
53
  You can simply download data using the following command:
 
68
  └── captions_v1.2.0_20231217.csv # image captions generated by BLIP-6.7b
69
  ```
70
 
 
71
  ## 📝 How to Evaluate
72
 
73
  We provide a unified evaluation framework in `eval`. Each file in `eval/models` contains an evaluator specified to one M/LLM, and implements a `generate_answer` method to receive a question as input and give out the answer of it.
 
182
  }
183
  ```
184
 
185
+ If you evaluate the model with our official code, you can simply zip the prediction file `prediction.json` and the configuration file `args.json` in the experiment results folder `. /results/EXPERIMENT_NAME` in `.zip` format.
186
 
187
+ Then, you can submit your result to our [evaluation page](https://opendfm.github.io/MULTI-Benchmark/static/pages/submit.html).
188
 
189
+ You are also welcomed to pull a request and contribute your code to our evaluation code. We will be very grateful for your contribution!
190
 
191
+ **[Notice]** Thank you for being so interested in the **MULTI** dataset! If you want to add your model in our leaderboard, please fill in [this questionnaire](https://wj.sjtu.edu.cn/q/89UmRAJn), your information will be kept strictly confidential, so please feel free to fill it out. 🤗
192
 
193
 
194
  ## 📑 Citation
README_zh.md CHANGED
@@ -1,18 +1,10 @@
1
- ---
2
- license: mit
3
- language:
4
- - zh
5
- pretty_name: MULTI-Benchmark
6
- viewer: False
7
- ---
8
-
9
  # 🖼️ MULTI-Benchmark: Multimodal Understanding Leaderboard with Text and Images
10
 
11
  <div align="center">
12
 
13
- ![MULTI](./overview.png)
14
 
15
- 🌐 [网站](https://OpenDFM.github.io/MULTI-Benchmark/) | 📃 [论文](https://arxiv.org/abs/2402.03173/) | 🤗 [数据](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark) | 🎯 [榜单]() (即将上线)
16
 
17
  简体中文 | [English](./README.md)
18
 
@@ -20,7 +12,7 @@ viewer: False
20
 
21
  ## 🔥 新闻
22
 
23
- - **[即将上线]** 我们将发布官方评测平台。
24
  - **[2024.2.19]** 我们发布了[HuggingFace页面](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/)。
25
  - **[2024.2.6]** 我们在arXiv上发布了我们的[论文](https://arxiv.org/abs/2402.03173/)。
26
  - **[2023.12.7]** 我们发布了我们的基准评测[代码](https://github.com/OpenDFM/MULTI-Benchmark/tree/main/eval)。
@@ -48,8 +40,6 @@ viewer: False
48
  | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
49
  | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
50
 
51
- 更多详情,请访问我们的[排行榜]()(即将推出)。
52
-
53
  ## ⏬ 下载
54
 
55
  您只需使用以下命令即可下载数据:
@@ -183,13 +173,13 @@ python model_tester.py <args> # args 类似于上面的默认设置
183
  ...
184
  }
185
  ```
186
- 如果您使用我们的官方代码评测模型,可以直接压缩实验结果文件夹`./results/EXPERIMENT_NAME`。
187
 
188
- 然后,您可以将你的结果提交到我们的[评测平台]()(即将推出)。
189
 
190
  欢迎拉取请求(Pull Request)并贡献您的代码到我们的评测代码中。我们感激不尽!
191
 
192
- **[提示]** 感谢您对 MULTI 数据集的关注!由于自动评测平台尚未上线,请填写[此问卷](https://wj.sjtu.edu.cn/q/89UmRAJn)以获取评测结果,您的个人信息将被严格保密,请放心填写。🤗
193
 
194
  ## 📑 引用
195
 
@@ -208,4 +198,4 @@ python model_tester.py <args> # args 类似于上面的默认设置
208
 
209
  ## 📧 联系我们
210
 
211
- 如果你有任何问题,请随时通过电子邮件联系我们 `[email protected]` 和 `[email protected]`
 
 
 
 
 
 
 
 
 
1
  # 🖼️ MULTI-Benchmark: Multimodal Understanding Leaderboard with Text and Images
2
 
3
  <div align="center">
4
 
5
+ ![MULTI](./docs/static/images/overview.png)
6
 
7
+ 🌐 [网站](https://OpenDFM.github.io/MULTI-Benchmark/) | 📃 [论文](https://arxiv.org/abs/2402.03173/) | 🤗 [数据](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark) | 📮 [提交](https://opendfm.github.io/MULTI-Benchmark/static/pages/submit.html)
8
 
9
  简体中文 | [English](./README.md)
10
 
 
12
 
13
  ## 🔥 新闻
14
 
15
+ - **[2024.3.4]** 我们发布了[评测页面](https://opendfm.github.io/MULTI-Benchmark/static/pages/submit.html)。
16
  - **[2024.2.19]** 我们发布了[HuggingFace页面](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/)。
17
  - **[2024.2.6]** 我们在arXiv上发布了我们的[论文](https://arxiv.org/abs/2402.03173/)。
18
  - **[2023.12.7]** 我们发布了我们的基准评测[代码](https://github.com/OpenDFM/MULTI-Benchmark/tree/main/eval)。
 
40
  | 🖼️ | VisualGLM | visualglm-6b | 31.1 | 12.8 |
41
  | 🖼️ | Chinese-LLaVA | Chinese-LLaVA-Cllama2 | 28.5 | 12.3 |
42
 
 
 
43
  ## ⏬ 下载
44
 
45
  您只需使用以下命令即可下载数据:
 
173
  ...
174
  }
175
  ```
176
+ 如果您使用我们的官方代码评测模型,可以直接压缩实验结果文件夹`./results/EXPERIMENT_NAME`中的预测文件`prediction.json`和配置文件`args.json`为`.zip`格式。
177
 
178
+ 然后,您可以将你的结果提交到我们的[评测页面](https://opendfm.github.io/MULTI-Benchmark/static/pages/submit.html)
179
 
180
  欢迎拉取请求(Pull Request)并贡献您的代码到我们的评测代码中。我们感激不尽!
181
 
182
+ **[提示]** 感谢您对 MULTI 数据集的关注!如果您希望将您的模型结果添加至榜单,请填写[此问卷](https://wj.sjtu.edu.cn/q/89UmRAJn),您的个人信息将被严格保密,请放心填写。🤗
183
 
184
  ## 📑 引用
185
 
 
198
 
199
  ## 📧 联系我们
200
 
201
+ 如果您有任何问题,请随时通过电子邮件与我们联系: `[email protected]` 和 `[email protected]`