paraqa-sparqltotext / README.md
glecorve's picture
Enriched README
12d5ecd
metadata
dataset_info:
  features:
    - name: uid
      dtype: string
    - name: query
      dtype: string
    - name: question
      dtype: string
    - name: simplified_query
      dtype: string
    - name: answer
      dtype: string
    - name: verbalized_answer
      dtype: string
    - name: verbalized_answer_2
      dtype: string
    - name: verbalized_answer_3
      dtype: string
    - name: verbalized_answer_4
      dtype: string
    - name: verbalized_answer_5
      dtype: string
    - name: verbalized_answer_6
      dtype: string
    - name: verbalized_answer_7
      dtype: string
    - name: verbalized_answer_8
      dtype: string
  splits:
    - name: train
      num_bytes: 2540548
      num_examples: 3500
    - name: validation
      num_bytes: 369571
      num_examples: 500
    - name: test
      num_bytes: 722302
      num_examples: 1000
  download_size: 1750172
  dataset_size: 3632421
task_categories:
  - conversational
  - question-answering
  - text-generation
  - text2text-generation
tags:
  - qa
  - knowledge-graph
  - sparql

Dataset Card for ParaQA-SPARQLtoText

Table of Contents

Dataset Description

Dataset Summary

Special version of ParaQA with SPARQL queries formatted for the SPARQL-to-Text task

New field simplified_query

New field is named "simplified_query". It results from applying the following step on the field "query":

  • Replacing URIs with a simpler format with prefix "resource:", "property:" and "ontology:".

  • Spacing the delimiters (, {, ., }, ).

  • Randomizing the variables names

  • Shuffling the clauses

New split "valid"

A validation set was randonly extracted from the test set to represent 10% of the whole dataset.

Languages

  • English

Dataset Structure

Types of questions

Comparison of question types compared to related datasets:

SimpleQuestions ParaQA LC-QuAD 2.0 CSQA WebNLQ-QA
Number of triplets in query 1 βœ“ βœ“ βœ“ βœ“ βœ“
2 βœ“ βœ“ βœ“ βœ“
More βœ“ βœ“ βœ“
Logical connector between triplets Conjunction βœ“ βœ“ βœ“ βœ“ βœ“
Disjunction βœ“ βœ“
Exclusion βœ“ βœ“
Topology of the query graph Direct βœ“ βœ“ βœ“ βœ“ βœ“
Sibling βœ“ βœ“ βœ“ βœ“
Chain βœ“ βœ“ βœ“ βœ“
Mixed βœ“ βœ“
Other βœ“ βœ“ βœ“ βœ“
Variable typing in the query None βœ“ βœ“ βœ“ βœ“ βœ“
Target variable βœ“ βœ“ βœ“ βœ“
Internal variable βœ“ βœ“ βœ“ βœ“
Comparisons clauses None βœ“ βœ“ βœ“ βœ“ βœ“
String βœ“ βœ“
Number βœ“ βœ“ βœ“
Date βœ“ βœ“
Superlative clauses No βœ“ βœ“ βœ“ βœ“ βœ“
Yes βœ“
Answer type Entity (open) βœ“ βœ“ βœ“ βœ“ βœ“
Entity (closed) βœ“ βœ“
Number βœ“ βœ“ βœ“
Boolean βœ“ βœ“ βœ“ βœ“
Answer cardinality 0 (unanswerable) βœ“ βœ“
1 βœ“ βœ“ βœ“ βœ“ βœ“
More βœ“ βœ“ βœ“ βœ“
Number of target variables 0 (β‡’ ASK verb) βœ“ βœ“ βœ“ βœ“
1 βœ“ βœ“ βœ“ βœ“ βœ“
2 βœ“ βœ“
Dialogue context Self-sufficient βœ“ βœ“ βœ“ βœ“ βœ“
Coreference βœ“ βœ“
Ellipsis βœ“ βœ“
Meaning Meaningful βœ“ βœ“ βœ“ βœ“ βœ“
Non-sense βœ“

Data splits

Text verbalization is only available for a subset of the test set, referred to as challenge set. Other sample only contain dialogues in the form of follow-up sparql queries.

Train Validation Test
Questions 3,500 500 1,000
NL question per query 1
Characters per query 103 (Β± 27)
Tokens per question 10.3 (Β± 3.7)

Additional information

Related datasets

This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:

Licencing information

  • Content from original dataset: CC-BY 4.0
  • New content: CC BY-SA 4.0

Citation information

This version of the corpus (with normalized SPARQL queries)

@inproceedings{lecorve2022sparql2text,
  title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
  author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
  journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
  year={2022}
}

Original version

@inproceedings{kacupaj2021paraqa,
  title={Paraqa: a question answering dataset with paraphrase responses for single-turn conversation},
  author={Kacupaj, Endri and Banerjee, Barshana and Singh, Kuldeep and Lehmann, Jens},
  booktitle={European semantic web conference},
  pages={598--613},
  year={2021},
  organization={Springer}
}