|
--- |
|
license: cc-by-sa-4.0 |
|
size_categories: |
|
- n<1K |
|
task_categories: |
|
- graph-ml |
|
pretty_name: 2D quasistatic non-linear structural mechanics solutions |
|
tags: |
|
- physics learning |
|
- geometry learning |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: all_samples |
|
path: data/all_samples-* |
|
dataset_info: |
|
description: |
|
legal: |
|
owner: Safran |
|
license: cc-by-sa-4.0 |
|
data_production: |
|
type: simulation |
|
physics: 2D quasistatic non-linear structural mechanics, small deformations, |
|
plane strain |
|
split: |
|
test: |
|
- 500 |
|
- 501 |
|
- 502 |
|
- 503 |
|
- 504 |
|
- 505 |
|
- 506 |
|
- 507 |
|
- 508 |
|
- 509 |
|
- 510 |
|
- 511 |
|
- 512 |
|
- 513 |
|
- 514 |
|
- 515 |
|
- 516 |
|
- 517 |
|
- 518 |
|
- 519 |
|
- 520 |
|
- 521 |
|
- 522 |
|
- 523 |
|
- 524 |
|
- 525 |
|
- 526 |
|
- 527 |
|
- 528 |
|
- 529 |
|
- 530 |
|
- 531 |
|
- 532 |
|
- 533 |
|
- 534 |
|
- 535 |
|
- 536 |
|
- 537 |
|
- 538 |
|
- 539 |
|
- 540 |
|
- 541 |
|
- 542 |
|
- 543 |
|
- 544 |
|
- 545 |
|
- 546 |
|
- 547 |
|
- 548 |
|
- 549 |
|
- 550 |
|
- 551 |
|
- 552 |
|
- 553 |
|
- 554 |
|
- 555 |
|
- 556 |
|
- 557 |
|
- 558 |
|
- 559 |
|
- 560 |
|
- 561 |
|
- 562 |
|
- 563 |
|
- 564 |
|
- 565 |
|
- 566 |
|
- 567 |
|
- 568 |
|
- 569 |
|
- 570 |
|
- 571 |
|
- 572 |
|
- 573 |
|
- 574 |
|
- 575 |
|
- 576 |
|
- 577 |
|
- 578 |
|
- 579 |
|
- 580 |
|
- 581 |
|
- 582 |
|
- 583 |
|
- 584 |
|
- 585 |
|
- 586 |
|
- 587 |
|
- 588 |
|
- 589 |
|
- 590 |
|
- 591 |
|
- 592 |
|
- 593 |
|
- 594 |
|
- 595 |
|
- 596 |
|
- 597 |
|
- 598 |
|
- 599 |
|
- 600 |
|
- 601 |
|
- 602 |
|
- 603 |
|
- 604 |
|
- 605 |
|
- 606 |
|
- 607 |
|
- 608 |
|
- 609 |
|
- 610 |
|
- 611 |
|
- 612 |
|
- 613 |
|
- 614 |
|
- 615 |
|
- 616 |
|
- 617 |
|
- 618 |
|
- 619 |
|
- 620 |
|
- 621 |
|
- 622 |
|
- 623 |
|
- 624 |
|
- 625 |
|
- 626 |
|
- 627 |
|
- 628 |
|
- 629 |
|
- 630 |
|
- 631 |
|
- 632 |
|
- 633 |
|
- 634 |
|
- 635 |
|
- 636 |
|
- 637 |
|
- 638 |
|
- 639 |
|
- 640 |
|
- 641 |
|
- 642 |
|
- 643 |
|
- 644 |
|
- 645 |
|
- 646 |
|
- 647 |
|
- 648 |
|
- 649 |
|
- 650 |
|
- 651 |
|
- 652 |
|
- 653 |
|
- 654 |
|
- 655 |
|
- 656 |
|
- 657 |
|
- 658 |
|
- 659 |
|
- 660 |
|
- 661 |
|
- 662 |
|
- 663 |
|
- 664 |
|
- 665 |
|
- 666 |
|
- 667 |
|
- 668 |
|
- 669 |
|
- 670 |
|
- 671 |
|
- 672 |
|
- 673 |
|
- 674 |
|
- 675 |
|
- 676 |
|
- 677 |
|
- 678 |
|
- 679 |
|
- 680 |
|
- 681 |
|
- 682 |
|
- 683 |
|
- 684 |
|
- 685 |
|
- 686 |
|
- 687 |
|
- 688 |
|
- 689 |
|
- 690 |
|
- 691 |
|
- 692 |
|
- 693 |
|
- 694 |
|
- 695 |
|
- 696 |
|
- 697 |
|
- 698 |
|
- 699 |
|
OOD: |
|
- 700 |
|
- 701 |
|
train_8: |
|
- 35 |
|
- 95 |
|
- 188 |
|
- 210 |
|
- 312 |
|
- 322 |
|
- 401 |
|
- 408 |
|
train_16: |
|
- 17 |
|
- 35 |
|
- 64 |
|
- 95 |
|
- 170 |
|
- 174 |
|
- 184 |
|
- 188 |
|
- 210 |
|
- 267 |
|
- 290 |
|
- 312 |
|
- 322 |
|
- 401 |
|
- 408 |
|
- 496 |
|
train_32: |
|
- 12 |
|
- 17 |
|
- 19 |
|
- 35 |
|
- 64 |
|
- 92 |
|
- 95 |
|
- 99 |
|
- 144 |
|
- 148 |
|
- 159 |
|
- 170 |
|
- 171 |
|
- 174 |
|
- 184 |
|
- 188 |
|
- 206 |
|
- 210 |
|
- 267 |
|
- 290 |
|
- 312 |
|
- 322 |
|
- 364 |
|
- 371 |
|
- 395 |
|
- 400 |
|
- 401 |
|
- 403 |
|
- 408 |
|
- 436 |
|
- 481 |
|
- 496 |
|
train_64: |
|
- 4 |
|
- 12 |
|
- 17 |
|
- 19 |
|
- 22 |
|
- 24 |
|
- 35 |
|
- 40 |
|
- 53 |
|
- 64 |
|
- 78 |
|
- 86 |
|
- 92 |
|
- 95 |
|
- 99 |
|
- 109 |
|
- 114 |
|
- 138 |
|
- 144 |
|
- 148 |
|
- 156 |
|
- 157 |
|
- 159 |
|
- 168 |
|
- 170 |
|
- 171 |
|
- 172 |
|
- 174 |
|
- 179 |
|
- 184 |
|
- 188 |
|
- 195 |
|
- 206 |
|
- 207 |
|
- 210 |
|
- 226 |
|
- 233 |
|
- 256 |
|
- 267 |
|
- 279 |
|
- 287 |
|
- 290 |
|
- 299 |
|
- 302 |
|
- 312 |
|
- 322 |
|
- 327 |
|
- 343 |
|
- 351 |
|
- 364 |
|
- 371 |
|
- 395 |
|
- 400 |
|
- 401 |
|
- 403 |
|
- 405 |
|
- 408 |
|
- 409 |
|
- 436 |
|
- 446 |
|
- 465 |
|
- 469 |
|
- 481 |
|
- 496 |
|
train_125: |
|
- 0 |
|
- 4 |
|
- 8 |
|
- 12 |
|
- 16 |
|
- 17 |
|
- 19 |
|
- 22 |
|
- 24 |
|
- 33 |
|
- 34 |
|
- 35 |
|
- 36 |
|
- 37 |
|
- 39 |
|
- 40 |
|
- 46 |
|
- 49 |
|
- 51 |
|
- 53 |
|
- 63 |
|
- 64 |
|
- 74 |
|
- 78 |
|
- 86 |
|
- 89 |
|
- 92 |
|
- 94 |
|
- 95 |
|
- 99 |
|
- 100 |
|
- 109 |
|
- 114 |
|
- 138 |
|
- 139 |
|
- 144 |
|
- 148 |
|
- 151 |
|
- 156 |
|
- 157 |
|
- 159 |
|
- 163 |
|
- 168 |
|
- 170 |
|
- 171 |
|
- 172 |
|
- 174 |
|
- 179 |
|
- 183 |
|
- 184 |
|
- 188 |
|
- 189 |
|
- 195 |
|
- 201 |
|
- 206 |
|
- 207 |
|
- 210 |
|
- 212 |
|
- 216 |
|
- 220 |
|
- 225 |
|
- 226 |
|
- 228 |
|
- 230 |
|
- 233 |
|
- 241 |
|
- 255 |
|
- 256 |
|
- 262 |
|
- 267 |
|
- 268 |
|
- 275 |
|
- 277 |
|
- 279 |
|
- 287 |
|
- 289 |
|
- 290 |
|
- 296 |
|
- 299 |
|
- 300 |
|
- 301 |
|
- 302 |
|
- 311 |
|
- 312 |
|
- 314 |
|
- 318 |
|
- 322 |
|
- 327 |
|
- 329 |
|
- 341 |
|
- 343 |
|
- 347 |
|
- 348 |
|
- 351 |
|
- 364 |
|
- 371 |
|
- 379 |
|
- 385 |
|
- 387 |
|
- 390 |
|
- 392 |
|
- 394 |
|
- 395 |
|
- 400 |
|
- 401 |
|
- 403 |
|
- 405 |
|
- 407 |
|
- 408 |
|
- 409 |
|
- 421 |
|
- 422 |
|
- 431 |
|
- 436 |
|
- 440 |
|
- 444 |
|
- 446 |
|
- 456 |
|
- 465 |
|
- 466 |
|
- 469 |
|
- 470 |
|
- 471 |
|
- 481 |
|
- 496 |
|
train_250: |
|
- 0 |
|
- 4 |
|
- 5 |
|
- 8 |
|
- 9 |
|
- 11 |
|
- 12 |
|
- 16 |
|
- 17 |
|
- 19 |
|
- 21 |
|
- 22 |
|
- 24 |
|
- 32 |
|
- 33 |
|
- 34 |
|
- 35 |
|
- 36 |
|
- 37 |
|
- 39 |
|
- 40 |
|
- 41 |
|
- 42 |
|
- 45 |
|
- 46 |
|
- 47 |
|
- 49 |
|
- 51 |
|
- 53 |
|
- 58 |
|
- 59 |
|
- 63 |
|
- 64 |
|
- 67 |
|
- 68 |
|
- 74 |
|
- 76 |
|
- 78 |
|
- 81 |
|
- 83 |
|
- 86 |
|
- 87 |
|
- 88 |
|
- 89 |
|
- 90 |
|
- 92 |
|
- 94 |
|
- 95 |
|
- 96 |
|
- 99 |
|
- 100 |
|
- 101 |
|
- 103 |
|
- 105 |
|
- 106 |
|
- 109 |
|
- 110 |
|
- 111 |
|
- 112 |
|
- 114 |
|
- 116 |
|
- 122 |
|
- 125 |
|
- 126 |
|
- 127 |
|
- 128 |
|
- 130 |
|
- 131 |
|
- 136 |
|
- 137 |
|
- 138 |
|
- 139 |
|
- 144 |
|
- 146 |
|
- 147 |
|
- 148 |
|
- 151 |
|
- 152 |
|
- 156 |
|
- 157 |
|
- 159 |
|
- 162 |
|
- 163 |
|
- 166 |
|
- 168 |
|
- 170 |
|
- 171 |
|
- 172 |
|
- 173 |
|
- 174 |
|
- 179 |
|
- 180 |
|
- 183 |
|
- 184 |
|
- 188 |
|
- 189 |
|
- 195 |
|
- 199 |
|
- 201 |
|
- 204 |
|
- 205 |
|
- 206 |
|
- 207 |
|
- 208 |
|
- 210 |
|
- 211 |
|
- 212 |
|
- 213 |
|
- 214 |
|
- 216 |
|
- 218 |
|
- 220 |
|
- 222 |
|
- 223 |
|
- 225 |
|
- 226 |
|
- 227 |
|
- 228 |
|
- 230 |
|
- 231 |
|
- 233 |
|
- 236 |
|
- 241 |
|
- 242 |
|
- 245 |
|
- 248 |
|
- 251 |
|
- 252 |
|
- 255 |
|
- 256 |
|
- 257 |
|
- 258 |
|
- 259 |
|
- 261 |
|
- 262 |
|
- 264 |
|
- 267 |
|
- 268 |
|
- 272 |
|
- 275 |
|
- 277 |
|
- 279 |
|
- 280 |
|
- 282 |
|
- 283 |
|
- 285 |
|
- 286 |
|
- 287 |
|
- 289 |
|
- 290 |
|
- 291 |
|
- 294 |
|
- 295 |
|
- 296 |
|
- 299 |
|
- 300 |
|
- 301 |
|
- 302 |
|
- 307 |
|
- 309 |
|
- 311 |
|
- 312 |
|
- 313 |
|
- 314 |
|
- 315 |
|
- 316 |
|
- 318 |
|
- 322 |
|
- 324 |
|
- 327 |
|
- 329 |
|
- 331 |
|
- 332 |
|
- 340 |
|
- 341 |
|
- 343 |
|
- 344 |
|
- 347 |
|
- 348 |
|
- 350 |
|
- 351 |
|
- 355 |
|
- 358 |
|
- 364 |
|
- 366 |
|
- 367 |
|
- 371 |
|
- 372 |
|
- 374 |
|
- 375 |
|
- 376 |
|
- 377 |
|
- 379 |
|
- 385 |
|
- 387 |
|
- 388 |
|
- 390 |
|
- 392 |
|
- 394 |
|
- 395 |
|
- 396 |
|
- 397 |
|
- 399 |
|
- 400 |
|
- 401 |
|
- 402 |
|
- 403 |
|
- 404 |
|
- 405 |
|
- 407 |
|
- 408 |
|
- 409 |
|
- 411 |
|
- 412 |
|
- 413 |
|
- 418 |
|
- 419 |
|
- 421 |
|
- 422 |
|
- 424 |
|
- 426 |
|
- 431 |
|
- 436 |
|
- 438 |
|
- 439 |
|
- 440 |
|
- 442 |
|
- 444 |
|
- 445 |
|
- 446 |
|
- 448 |
|
- 451 |
|
- 455 |
|
- 456 |
|
- 457 |
|
- 458 |
|
- 465 |
|
- 466 |
|
- 468 |
|
- 469 |
|
- 470 |
|
- 471 |
|
- 473 |
|
- 474 |
|
- 475 |
|
- 476 |
|
- 477 |
|
- 481 |
|
- 491 |
|
- 496 |
|
train_500: |
|
- 0 |
|
- 1 |
|
- 2 |
|
- 3 |
|
- 4 |
|
- 5 |
|
- 6 |
|
- 7 |
|
- 8 |
|
- 9 |
|
- 10 |
|
- 11 |
|
- 12 |
|
- 13 |
|
- 14 |
|
- 15 |
|
- 16 |
|
- 17 |
|
- 18 |
|
- 19 |
|
- 20 |
|
- 21 |
|
- 22 |
|
- 23 |
|
- 24 |
|
- 25 |
|
- 26 |
|
- 27 |
|
- 28 |
|
- 29 |
|
- 30 |
|
- 31 |
|
- 32 |
|
- 33 |
|
- 34 |
|
- 35 |
|
- 36 |
|
- 37 |
|
- 38 |
|
- 39 |
|
- 40 |
|
- 41 |
|
- 42 |
|
- 43 |
|
- 44 |
|
- 45 |
|
- 46 |
|
- 47 |
|
- 48 |
|
- 49 |
|
- 50 |
|
- 51 |
|
- 52 |
|
- 53 |
|
- 54 |
|
- 55 |
|
- 56 |
|
- 57 |
|
- 58 |
|
- 59 |
|
- 60 |
|
- 61 |
|
- 62 |
|
- 63 |
|
- 64 |
|
- 65 |
|
- 66 |
|
- 67 |
|
- 68 |
|
- 69 |
|
- 70 |
|
- 71 |
|
- 72 |
|
- 73 |
|
- 74 |
|
- 75 |
|
- 76 |
|
- 77 |
|
- 78 |
|
- 79 |
|
- 80 |
|
- 81 |
|
- 82 |
|
- 83 |
|
- 84 |
|
- 85 |
|
- 86 |
|
- 87 |
|
- 88 |
|
- 89 |
|
- 90 |
|
- 91 |
|
- 92 |
|
- 93 |
|
- 94 |
|
- 95 |
|
- 96 |
|
- 97 |
|
- 98 |
|
- 99 |
|
- 100 |
|
- 101 |
|
- 102 |
|
- 103 |
|
- 104 |
|
- 105 |
|
- 106 |
|
- 107 |
|
- 108 |
|
- 109 |
|
- 110 |
|
- 111 |
|
- 112 |
|
- 113 |
|
- 114 |
|
- 115 |
|
- 116 |
|
- 117 |
|
- 118 |
|
- 119 |
|
- 120 |
|
- 121 |
|
- 122 |
|
- 123 |
|
- 124 |
|
- 125 |
|
- 126 |
|
- 127 |
|
- 128 |
|
- 129 |
|
- 130 |
|
- 131 |
|
- 132 |
|
- 133 |
|
- 134 |
|
- 135 |
|
- 136 |
|
- 137 |
|
- 138 |
|
- 139 |
|
- 140 |
|
- 141 |
|
- 142 |
|
- 143 |
|
- 144 |
|
- 145 |
|
- 146 |
|
- 147 |
|
- 148 |
|
- 149 |
|
- 150 |
|
- 151 |
|
- 152 |
|
- 153 |
|
- 154 |
|
- 155 |
|
- 156 |
|
- 157 |
|
- 158 |
|
- 159 |
|
- 160 |
|
- 161 |
|
- 162 |
|
- 163 |
|
- 164 |
|
- 165 |
|
- 166 |
|
- 167 |
|
- 168 |
|
- 169 |
|
- 170 |
|
- 171 |
|
- 172 |
|
- 173 |
|
- 174 |
|
- 175 |
|
- 176 |
|
- 177 |
|
- 178 |
|
- 179 |
|
- 180 |
|
- 181 |
|
- 182 |
|
- 183 |
|
- 184 |
|
- 185 |
|
- 186 |
|
- 187 |
|
- 188 |
|
- 189 |
|
- 190 |
|
- 191 |
|
- 192 |
|
- 193 |
|
- 194 |
|
- 195 |
|
- 196 |
|
- 197 |
|
- 198 |
|
- 199 |
|
- 200 |
|
- 201 |
|
- 202 |
|
- 203 |
|
- 204 |
|
- 205 |
|
- 206 |
|
- 207 |
|
- 208 |
|
- 209 |
|
- 210 |
|
- 211 |
|
- 212 |
|
- 213 |
|
- 214 |
|
- 215 |
|
- 216 |
|
- 217 |
|
- 218 |
|
- 219 |
|
- 220 |
|
- 221 |
|
- 222 |
|
- 223 |
|
- 224 |
|
- 225 |
|
- 226 |
|
- 227 |
|
- 228 |
|
- 229 |
|
- 230 |
|
- 231 |
|
- 232 |
|
- 233 |
|
- 234 |
|
- 235 |
|
- 236 |
|
- 237 |
|
- 238 |
|
- 239 |
|
- 240 |
|
- 241 |
|
- 242 |
|
- 243 |
|
- 244 |
|
- 245 |
|
- 246 |
|
- 247 |
|
- 248 |
|
- 249 |
|
- 250 |
|
- 251 |
|
- 252 |
|
- 253 |
|
- 254 |
|
- 255 |
|
- 256 |
|
- 257 |
|
- 258 |
|
- 259 |
|
- 260 |
|
- 261 |
|
- 262 |
|
- 263 |
|
- 264 |
|
- 265 |
|
- 266 |
|
- 267 |
|
- 268 |
|
- 269 |
|
- 270 |
|
- 271 |
|
- 272 |
|
- 273 |
|
- 274 |
|
- 275 |
|
- 276 |
|
- 277 |
|
- 278 |
|
- 279 |
|
- 280 |
|
- 281 |
|
- 282 |
|
- 283 |
|
- 284 |
|
- 285 |
|
- 286 |
|
- 287 |
|
- 288 |
|
- 289 |
|
- 290 |
|
- 291 |
|
- 292 |
|
- 293 |
|
- 294 |
|
- 295 |
|
- 296 |
|
- 297 |
|
- 298 |
|
- 299 |
|
- 300 |
|
- 301 |
|
- 302 |
|
- 303 |
|
- 304 |
|
- 305 |
|
- 306 |
|
- 307 |
|
- 308 |
|
- 309 |
|
- 310 |
|
- 311 |
|
- 312 |
|
- 313 |
|
- 314 |
|
- 315 |
|
- 316 |
|
- 317 |
|
- 318 |
|
- 319 |
|
- 320 |
|
- 321 |
|
- 322 |
|
- 323 |
|
- 324 |
|
- 325 |
|
- 326 |
|
- 327 |
|
- 328 |
|
- 329 |
|
- 330 |
|
- 331 |
|
- 332 |
|
- 333 |
|
- 334 |
|
- 335 |
|
- 336 |
|
- 337 |
|
- 338 |
|
- 339 |
|
- 340 |
|
- 341 |
|
- 342 |
|
- 343 |
|
- 344 |
|
- 345 |
|
- 346 |
|
- 347 |
|
- 348 |
|
- 349 |
|
- 350 |
|
- 351 |
|
- 352 |
|
- 353 |
|
- 354 |
|
- 355 |
|
- 356 |
|
- 357 |
|
- 358 |
|
- 359 |
|
- 360 |
|
- 361 |
|
- 362 |
|
- 363 |
|
- 364 |
|
- 365 |
|
- 366 |
|
- 367 |
|
- 368 |
|
- 369 |
|
- 370 |
|
- 371 |
|
- 372 |
|
- 373 |
|
- 374 |
|
- 375 |
|
- 376 |
|
- 377 |
|
- 378 |
|
- 379 |
|
- 380 |
|
- 381 |
|
- 382 |
|
- 383 |
|
- 384 |
|
- 385 |
|
- 386 |
|
- 387 |
|
- 388 |
|
- 389 |
|
- 390 |
|
- 391 |
|
- 392 |
|
- 393 |
|
- 394 |
|
- 395 |
|
- 396 |
|
- 397 |
|
- 398 |
|
- 399 |
|
- 400 |
|
- 401 |
|
- 402 |
|
- 403 |
|
- 404 |
|
- 405 |
|
- 406 |
|
- 407 |
|
- 408 |
|
- 409 |
|
- 410 |
|
- 411 |
|
- 412 |
|
- 413 |
|
- 414 |
|
- 415 |
|
- 416 |
|
- 417 |
|
- 418 |
|
- 419 |
|
- 420 |
|
- 421 |
|
- 422 |
|
- 423 |
|
- 424 |
|
- 425 |
|
- 426 |
|
- 427 |
|
- 428 |
|
- 429 |
|
- 430 |
|
- 431 |
|
- 432 |
|
- 433 |
|
- 434 |
|
- 435 |
|
- 436 |
|
- 437 |
|
- 438 |
|
- 439 |
|
- 440 |
|
- 441 |
|
- 442 |
|
- 443 |
|
- 444 |
|
- 445 |
|
- 446 |
|
- 447 |
|
- 448 |
|
- 449 |
|
- 450 |
|
- 451 |
|
- 452 |
|
- 453 |
|
- 454 |
|
- 455 |
|
- 456 |
|
- 457 |
|
- 458 |
|
- 459 |
|
- 460 |
|
- 461 |
|
- 462 |
|
- 463 |
|
- 464 |
|
- 465 |
|
- 466 |
|
- 467 |
|
- 468 |
|
- 469 |
|
- 470 |
|
- 471 |
|
- 472 |
|
- 473 |
|
- 474 |
|
- 475 |
|
- 476 |
|
- 477 |
|
- 478 |
|
- 479 |
|
- 480 |
|
- 481 |
|
- 482 |
|
- 483 |
|
- 484 |
|
- 485 |
|
- 486 |
|
- 487 |
|
- 488 |
|
- 489 |
|
- 490 |
|
- 491 |
|
- 492 |
|
- 493 |
|
- 494 |
|
- 495 |
|
- 496 |
|
- 497 |
|
- 498 |
|
- 499 |
|
task: regression |
|
in_scalars_names: |
|
- P |
|
- p1 |
|
- p2 |
|
- p3 |
|
- p4 |
|
- p5 |
|
out_scalars_names: |
|
- max_von_mises |
|
- max_q |
|
- max_U2_top |
|
- max_sig22_top |
|
in_timeseries_names: [] |
|
out_timeseries_names: [] |
|
in_fields_names: [] |
|
out_fields_names: |
|
- U1 |
|
- U2 |
|
- q |
|
- sig11 |
|
- sig22 |
|
- sig12 |
|
in_meshes_names: |
|
- /Base_2_2/Zone |
|
out_meshes_names: [] |
|
features: |
|
- name: sample |
|
dtype: binary |
|
splits: |
|
- name: all_samples |
|
num_bytes: 3571624 |
|
num_examples: 4 |
|
download_size: 1705231 |
|
dataset_size: 3571624 |
|
--- |
|
|
|
# Dataset Card |
|
![image/png](https://i.ibb.co/Js062hF/preview.png) |
|
|
|
This dataset contains a single huggingface split, named 'all_samples'. |
|
|
|
The samples contains a single huggingface feature, named called "sample". |
|
|
|
Samples are instances of [plaid.containers.sample.Sample](https://plaid-lib.readthedocs.io/en/latest/autoapi/plaid/containers/sample/index.html#plaid.containers.sample.Sample). |
|
Mesh objects included in samples follow the [CGNS](https://cgns.github.io/) standard, and can be converted in |
|
[Muscat.Containers.Mesh.Mesh](https://muscat.readthedocs.io/en/latest/_source/Muscat.Containers.Mesh.html#Muscat.Containers.Mesh.Mesh). |
|
|
|
|
|
Example of commands: |
|
```python |
|
import pickle |
|
from datasets import load_dataset |
|
from plaid.containers.sample import Sample |
|
|
|
# Load the dataset |
|
dataset = load_dataset("chanel/dataset", split="all_samples") |
|
|
|
# Get the first sample of the first split |
|
split_names = list(dataset.description["split"].keys()) |
|
ids_split_0 = dataset.description["split"][split_names[0]] |
|
sample_0_split_0 = dataset[ids_split_0[0]]["sample"] |
|
plaid_sample = Sample.model_validate(pickle.loads(sample_0_split_0)) |
|
print("type(plaid_sample) =", type(plaid_sample)) |
|
|
|
print("plaid_sample =", plaid_sample) |
|
|
|
# Get a field from the sample |
|
field_names = plaid_sample.get_field_names() |
|
field = plaid_sample.get_field(field_names[0]) |
|
print("field_names[0] =", field_names[0]) |
|
|
|
print("field.shape =", field.shape) |
|
|
|
# Get the mesh and convert it to Muscat |
|
from Muscat.Bridges import CGNSBridge |
|
CGNS_tree = plaid_sample.get_mesh() |
|
mesh = CGNSBridge.CGNSToMesh(CGNS_tree) |
|
print(mesh) |
|
``` |
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
|
|
|
|
This dataset contains 2D quasistatic non-linear structural mechanics solutions, under geometrical variations. |
|
|
|
A description is provided in the [MMGP paper ](https://arxiv.org/pdf/2305.12871) Sections 4.1 and A.2. |
|
|
|
The variablity in the samples are 6 input scalars and the geometry (mesh). Outputs of interest are 4 scalars and 6 fields. |
|
|
|
Seven nested training sets of sizes 8 to 500 are provided, with complete input-output data. A testing set of size 200, as well as two out-of-distribution samples, are provided, for which outputs are not provided. |
|
|
|
Dataset created using the [PLAID](https://plaid-lib.readthedocs.io/) library and datamodel, version: 0.0.10.dev0+g197feb3.d20240624. |
|
|
|
- **Language:** [PLAID](https://plaid-lib.readthedocs.io/) |
|
- **License:** cc-by-sa-4.0 |
|
- **Owner:** Safran |
|
|
|
### Dataset Sources |
|
|
|
- **Repository:** [Zenodo](https://zenodo.org/records/10124594) |
|
- **Paper:** [arxiv](https://arxiv.org/pdf/2305.12871) |
|
|