File size: 4,916 Bytes
7098bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search."""
import json
import os.path
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
_LICENSE = "CC-BY-4.0"
_URL = "https://auburn.edu/~tmp0038/PiC/"
_SPLITS = {
"train": "train-v1.0.json",
"dev": "dev-v1.0.json",
"test": "test-v1.0.json",
}
_PR_PASS = "PR-pass"
_PR_PAGE = "PR-page"
class PiCConfig(datasets.BuilderConfig):
"""BuilderConfig for Phrase Retrieval in PiC."""
def __init__(self, **kwargs):
"""BuilderConfig for Phrase Retrieval in PiC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PiCConfig, self).__init__(**kwargs)
class PhraseRetrieval(datasets.GeneratorBasedBuilder):
"""Phrase Retrieval in PiC dataset. Version 1.0."""
BUILDER_CONFIGS = [PiCConfig(
name=_PR_PASS,
version=datasets.Version("1.0.0"),
description="The PiC Dataset for Phrase Retrieval at short passage level (~11 sentences)"
),
PiCConfig(
name=_PR_PAGE,
version=datasets.Version("1.0.0"),
description="The PiC Dataset for Phrase Retrieval at Wiki page level"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Sequence(datasets.Value("string")),
"answer_start": datasets.Sequence(datasets.Value("int32")),
}
),
}
),
# No default supervised_keys (as we have to pass both question and context as input).
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
urls_to_download = {
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]),
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]),
"test": os.path.join(_URL, self.config.name, _SPLITS["test"])
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, encoding="utf-8") as f:
pic_pr = json.load(f)
for example in pic_pr["data"]:
title = example.get("title", "")
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield key, {
"title": title,
"context": example["context"],
"question": example["question"],
"id": example["id"],
"answers": {
"answer_start": example["answers"]["answer_start"],
"text": example["answers"]["text"],
},
}
key += 1
|