File size: 4,971 Bytes
7098bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ed974
7098bc3
 
 
 
 
 
 
44ed974
7098bc3
 
 
 
 
bd43662
 
 
 
 
7ae0fa8
44ed974
7098bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d62c1
8541359
7098bc3
8541359
 
be3e2a5
7098bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8541359
 
 
7098bc3
 
 
68049d3
7098bc3
4edbeb8
7098bc3
 
8541359
 
7098bc3
 
 
bd43662
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search."""


import json
import os.path

import datasets
from datasets.tasks import QuestionAnsweringExtractive


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
"""

_DESCRIPTION = """\
"""

_HOMEPAGE = ""

_LICENSE = "CC-BY-4.0"

_URL = "https://auburn.edu/~tmp0038/PiC/"
_SPLITS = {
    "train": "train-v1.0.json",
    "dev": "dev-v1.0.json",
    "test": "test-v1.0.json",
}

_PR_PASS = "PR-pass"
_PR_PAGE = "PR-page"


class PRConfig(datasets.BuilderConfig):
    """BuilderConfig for Phrase Retrieval in PiC."""

    def __init__(self, **kwargs):
        """BuilderConfig for Phrase Retrieval in PiC.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PRConfig, self).__init__(**kwargs)


class PhraseRetrieval(datasets.GeneratorBasedBuilder):
    """Phrase Retrieval in PiC dataset. Version 1.0."""

    BUILDER_CONFIGS = [
        PRConfig(
            name=_PR_PASS,
            version=datasets.Version("1.0.0"),
            description="The PiC Dataset for Phrase Retrieval at short passage level (~11 sentences)"
        ),
        PRConfig(
            name=_PR_PAGE,
            version=datasets.Version("1.0.0"),
            description="The PiC Dataset for Phrase Retrieval at Wiki page level"
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "query": datasets.Value("string"),
                    "answers": datasets.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both question and context as input).
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question", context_column="context", answers_column="answers"
                )
            ],
        )

    def _split_generators(self, dl_manager):

        urls_to_download = {
            "train": os.path.join(_URL, self.config.name, _SPLITS["train"]),
            "dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]),
            "test": os.path.join(_URL, self.config.name, _SPLITS["test"])
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            pic_pr = json.load(f)
            for example in pic_pr["data"]:
                answer_starts = [answer["answer_start"] for answer in example["answers"]]
                answers = [answer["text"] for answer in example["answers"]]

                # Features currently used are "context", "question", and "answers".
                # Others are extracted here for the ease of future expansions.
                yield key, {
                    "title": example["title"],
                    "context": example["context"],
                    "query": example["question"],
                    "id": example["id"],
                    "answers": {
                        "answer_start": answer_starts,
                        "text": answers,
                    },
                }
                key += 1