|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search.""" |
|
|
|
|
|
import json |
|
import os.path |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "CC-BY-4.0" |
|
|
|
_URL = "https://auburn.edu/~tmp0038/PiC/" |
|
_SPLITS = { |
|
"train": "train-v1.0.json", |
|
"dev": "dev-v1.0.json", |
|
"test": "test-v1.0.json", |
|
} |
|
|
|
_PR_PASS = "PR-pass" |
|
_PR_PAGE = "PR-page" |
|
|
|
|
|
class PiCConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Phrase Retrieval in PiC.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Phrase Retrieval in PiC. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PiCConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PhraseRetrieval(datasets.GeneratorBasedBuilder): |
|
"""Phrase Retrieval in PiC dataset. Version 1.0.""" |
|
|
|
BUILDER_CONFIGS = [PiCConfig( |
|
name=_PR_PASS, |
|
version=datasets.Version("1.0.0"), |
|
description="The PiC Dataset for Phrase Retrieval at short passage level (~11 sentences)" |
|
), |
|
PiCConfig( |
|
name=_PR_PAGE, |
|
version=datasets.Version("1.0.0"), |
|
description="The PiC Dataset for Phrase Retrieval at Wiki page level" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"answer_start": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
), |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
urls_to_download = { |
|
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]), |
|
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]), |
|
"test": os.path.join(_URL, self.config.name, _SPLITS["test"]) |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
pic_pr = json.load(f) |
|
for example in pic_pr["data"]: |
|
title = example.get("title", "") |
|
|
|
|
|
|
|
yield key, { |
|
"title": title, |
|
"context": example["context"], |
|
"question": example["question"], |
|
"id": example["id"], |
|
"answers": { |
|
"answer_start": example["answers"]["answer_start"], |
|
"text": example["answers"]["text"], |
|
}, |
|
} |
|
key += 1 |
|
|