Datasets:
QCRI
/

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
Firoj's picture
Update README.md
31bd03e verified
metadata
license: cc-by-4.0
task_categories:
  - text-classification
language:
  - ar
  - bg
  - nl
  - en
pretty_name: ' COVID-19-disinformation'
size_categories:
  - 10K<n<100K
dataset_info:
  - config_name: arabic
    features:
      - name: tweet_id
        dtype: string
      - name: text
        dtype: string
      - name: q1_label
        dtype: string
      - name: q2_label
        dtype: string
      - name: q3_label
        dtype: string
      - name: q4_label
        dtype: string
      - name: q5_label
        dtype: string
      - name: q6_label
        dtype: string
      - name: q7_label
        dtype: string
    splits:
      - name: binary_train
        num_bytes: 1327709
        num_examples: 3631
      - name: binary_dev
        num_bytes: 119559
        num_examples: 339
      - name: binary_test
        num_bytes: 371852
        num_examples: 996
      - name: multiclass_train
        num_bytes: 1685764
        num_examples: 3631
      - name: multiclass_dev
        num_bytes: 152673
        num_examples: 339
      - name: multiclass_test
        num_bytes: 470286
        num_examples: 996
  - config_name: bulgarian
    features:
      - name: tweet_id
        dtype: string
      - name: text
        dtype: string
      - name: q1_label
        dtype: string
      - name: q2_label
        dtype: string
      - name: q3_label
        dtype: string
      - name: q4_label
        dtype: string
      - name: q5_label
        dtype: string
      - name: q6_label
        dtype: string
      - name: q7_label
        dtype: string
    splits:
      - name: binary_train
        num_bytes: 825675
        num_examples: 2710
      - name: binary_dev
        num_bytes: 77271
        num_examples: 251
      - name: binary_test
        num_bytes: 215992
        num_examples: 736
      - name: multiclass_train
        num_bytes: 1084422
        num_examples: 2710
      - name: multiclass_dev
        num_bytes: 101532
        num_examples: 251
      - name: multiclass_test
        num_bytes: 287336
        num_examples: 736
  - config_name: dutch
    features:
      - name: tweet_id
        dtype: string
      - name: text
        dtype: string
      - name: q1_label
        dtype: string
      - name: q2_label
        dtype: string
      - name: q3_label
        dtype: string
      - name: q4_label
        dtype: string
      - name: q5_label
        dtype: string
      - name: q6_label
        dtype: string
      - name: q7_label
        dtype: string
    splits:
      - name: binary_train
        num_bytes: 456893
        num_examples: 1950
      - name: binary_dev
        num_bytes: 42346
        num_examples: 181
      - name: binary_test
        num_bytes: 126916
        num_examples: 534
      - name: multiclass_train
        num_bytes: 602248
        num_examples: 1950
      - name: multiclass_dev
        num_bytes: 54308
        num_examples: 181
      - name: multiclass_test
        num_bytes: 166412
        num_examples: 534
  - config_name: english
    features:
      - name: tweet_id
        dtype: string
      - name: text
        dtype: string
      - name: q1_label
        dtype: string
      - name: q2_label
        dtype: string
      - name: q3_label
        dtype: string
      - name: q4_label
        dtype: string
      - name: q5_label
        dtype: string
      - name: q6_label
        dtype: string
      - name: q7_label
        dtype: string
    splits:
      - name: binary_train
        num_bytes: 1019808
        num_examples: 3324
      - name: binary_dev
        num_bytes: 94039
        num_examples: 307
      - name: binary_test
        num_bytes: 280445
        num_examples: 911
      - name: multiclass_train
        num_bytes: 1321619
        num_examples: 3324
      - name: multiclass_dev
        num_bytes: 121786
        num_examples: 307
      - name: multiclass_test
        num_bytes: 362128
        num_examples: 911
  - config_name: multilang
    features:
      - name: tweet_id
        dtype: string
      - name: text
        dtype: string
      - name: q1_label
        dtype: string
      - name: q2_label
        dtype: string
      - name: q3_label
        dtype: string
      - name: q4_label
        dtype: string
      - name: q5_label
        dtype: string
      - name: q6_label
        dtype: string
      - name: q7_label
        dtype: string
    splits:
      - name: binary_train
        num_bytes: 3630085
        num_examples: 11615
      - name: binary_dev
        num_bytes: 333215
        num_examples: 1078
      - name: binary_test
        num_bytes: 995205
        num_examples: 3177
      - name: multiclass_train
        num_bytes: 4694053
        num_examples: 11615
      - name: multiclass_dev
        num_bytes: 430299
        num_examples: 1078
      - name: multiclass_test
        num_bytes: 1286162
        num_examples: 3177
    download_size: 11409949
    dataset_size: 22738038
configs:
  - config_name: arabic
    data_files:
      - split: binary_train
        path: data/arabic_binary_train-*
      - split: binary_dev
        path: data/arabic_binary_dev-*
      - split: binary_test
        path: data/arabic_binary_test-*
      - split: multiclass_train
        path: data/arabic_multiclass_train-*
      - split: multiclass_dev
        path: data/arabic_multiclass_dev-*
      - split: multiclass_test
        path: data/arabic_multiclass_dev-*
  - config_name: bulgarian
    data_files:
      - split: binary_train
        path: data/bulgarian_binary_train-*
      - split: binary_dev
        path: data/bulgarian_binary_dev-*
      - split: binary_test
        path: data/bulgarian_binary_test-*
      - split: multiclass_train
        path: data/bulgarian_multiclass_train-*
      - split: multiclass_dev
        path: data/bulgarian_multiclass_dev-*
      - split: multiclass_test
        path: data/bulgarian_multiclass_dev-*
  - config_name: dutch
    data_files:
      - split: binary_train
        path: data/dutch_binary_train-*
      - split: binary_dev
        path: data/dutch_binary_dev-*
      - split: binary_test
        path: data/dutch_binary_test-*
      - split: multiclass_train
        path: data/dutch_multiclass_train-*
      - split: multiclass_dev
        path: data/dutch_multiclass_dev-*
      - split: multiclass_test
        path: data/dutch_multiclass_dev-*
  - config_name: english
    data_files:
      - split: binary_train
        path: data/english_binary_train-*
      - split: binary_dev
        path: data/english_binary_dev-*
      - split: binary_test
        path: data/english_binary_test-*
      - split: multiclass_train
        path: data/english_multiclass_train-*
      - split: multiclass_dev
        path: data/english_multiclass_dev-*
      - split: multiclass_test
        path: data/english_multiclass_dev-*
  - config_name: multilang
    data_files:
      - split: binary_train
        path: data/multilang_binary_train-*
      - split: binary_dev
        path: data/multilang_binary_dev-*
      - split: binary_test
        path: data/multilang_binary_test-*
      - split: multiclass_train
        path: data/multilang_multiclass_train-*
      - split: multiclass_dev
        path: data/multilang_multiclass_dev-*
      - split: multiclass_test
        path: data/multilang_multiclass_dev-*

COVID-19 Infodemic Multilingual Dataset

This repository contains a multilingual dataset related to the COVID-19 infodemic, annotated with fine-grained labels. The dataset is curated to address questions of interest to journalists, fact-checkers, social media platforms, policymakers, and the general public. The dataset includes tweets in Arabic, Bulgarian, Dutch, and English, focusing on both binary (misinformation detection) and multiclass classification (different types of infodemic content).

Table of Contents:

Dataset Overview

The dataset consists of tweets related to COVID-19, categorized under two tasks:

  1. Binary Classification:
    Detecting whether a tweet contains misinformation.

  2. Multiclass Classification:
    Classifying the tweet into specific infodemic categories such as conspiracy theories, harmful content, or false cures.

Languages and Splits

The dataset includes the following languages, each with train, development (dev), and test splits:

  • Arabic
  • Bulgarian
  • Dutch
  • English

In addition to individual language datasets, a multilang directory contains a multilingual dataset where tweets from all the above languages are combined in the binary and multiclass formats.

File Formats

The dataset is provided in TSV (Tab-Separated Values) format. Each file contains tweet IDs, labels for seven questions (Q1-Q7), and binary/multiclass annotations. The actual tweet text and associated metadata are not included for privacy reasons.

Directory Structure

  • Readme.md: This file
  • arabic/, bulgarian/, dutch/, english/: Directories containing language-specific datasets for both binary and multiclass classification.
  • multilang/: A directory containing the multilingual version of the dataset.

Each language and the multilingual directory include three sets:

  • train
  • dev
  • test

The *_binary_* files correspond to binary classification, while the *_multiclass_* files correspond to multiclass classification.

Annotations

The dataset contains labels for the following seven questions (Q1-Q7), each related to different aspects of the tweets:

  1. Is the tweet understandable?

    • Labels: Yes, No, Not sure
    • This question evaluates whether the tweet's content is understandable.
  2. Does the tweet contain false information?

    • Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
    • This question assesses the likelihood of false information in the tweet.
  3. Will the tweet’s claim be of interest to the general public?

    • Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
    • Evaluates whether the tweet’s claim is relevant or interesting to the public.
  4. Is the tweet harmful?

    • Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
    • Assesses if the tweet might cause harm to individuals, society, or businesses.
  5. Should a professional fact-checker verify the claim?

    • Labels: No need, Too trivial, Not urgent, Very urgent, Not sure
    • Evaluates whether the tweet should be reviewed by fact-checkers.
  6. Why might the tweet be harmful?

    • Labels: No harm, Panic, Hate speech, Rumor, Conspiracy, etc.
    • Categorizes the nature of potential harm the tweet might cause.
  7. Should this tweet get the attention of a government entity?

    • Labels: Not interesting, Calls for action, Blames authorities, etc.
    • Determines if the tweet should be flagged for government attention.

Dataset Examples

An example from the dataset:

Tweet: "Please don’t take hydroxychloroquine (Plaquenil) plus Azithromycin for #COVID19 UNLESS your doctor prescribes it. Both drugs affect the QT interval of your heart and can lead to arrhythmias and sudden death, especially if you are taking other meds or have a heart condition."

Labels:

  • Q1: Yes
  • Q2: No, probably contains no false information
  • Q3: Yes, definitely of interest
  • Q4: No, probably not harmful
  • Q5: Yes, very urgent
  • Q6: No, not harmful
  • Q7: Yes, calls for action

Data Statistics

  • Arabic: 5,000 binary samples, 4,000 multiclass samples
  • Bulgarian: 3,000 binary samples, 2,500 multiclass samples
  • Dutch: 4,000 binary samples, 3,500 multiclass samples
  • English: 6,000 binary samples, 5,000 multiclass samples
  • Multilang: Combined data from all languages, provided in both binary and multiclass splits.

License

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

Citation

If you use this dataset, please cite it as:

@inproceedings{alam-etal-2021-fighting-covid,
    title = "Fighting the {COVID}-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society",
    author = "Alam, Firoj  and
      Shaar, Shaden  and
      Dalvi, Fahim  and
      Sajjad, Hassan  and
      Nikolov, Alex  and
      Mubarak, Hamdy  and
      Da San Martino, Giovanni  and
      Abdelali, Ahmed  and
      Durrani, Nadir  and
      Darwish, Kareem  and
      Al-Homaid, Abdulaziz  and
      Zaghouani, Wajdi  and
      Caselli, Tommaso  and
      Danoe, Gijs  and
      Stolk, Friso  and
      Bruntink, Britt  and
      Nakov, Preslav",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.56",
    doi = "10.18653/v1/2021.findings-emnlp.56",
    pages = "611--649",

}

@inproceedings{alam2021fighting,
  title={Fighting the COVID-19 infodemic in social media: A holistic perspective and a call to arms},
  author={Alam, Firoj and Dalvi, Fahim and Shaar, Shaden and Durrani, Nadir and Mubarak, Hamdy and Nikolov, Alex and Da San Martino, Giovanni and Abdelali, Ahmed and Sajjad, Hassan and Darwish, Kareem and others},
  booktitle={Proceedings of the International AAAI Conference on Web and Social Media},
  volume={15},
  pages={913--922},
  year={2021}
}